An HPLC-DAD Method to Quantify Flavonoids in Sonchus arvensis and Able to Classify the Plant Parts and Their Geographical Area through Principal Component Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Materials
2.3. Sample Preparation and Standard Solutions
2.4. Chromatography Conditions
2.5. Analytical Performance
2.6. Data Analysis
3. Results and Discussion
3.1. Optimization of HPLC-DAD Conditions
3.2. Evaluation of the Analytical Performance of the Developed Method
3.3. Determination of Flavonoid Content in S. arvensis
3.4. Clustering of S. arvensis Samples from the Different Geographical Origin and Plant Parts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holm, L.; Doll, J.; Holm, E.; Pancho, J.; Herberger, J. World Weeds: Natural Histories and Distribution; John Wiley and Sons Inc: New York, NY, USA, 1997. [Google Scholar]
- Li, X.M.; Yang, P.L. Research progress of Sonchus species. Int. J. Food Prop. 2018, 21, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health Republic of Indonesia. Indonesia Herbal Pharmacopoeia, 1st ed.; Ministry of Health Republic of Indonesia: Jakarta, Indonesia, 2010; pp. 138–140.
- Manoi, F. Effect fineness extraction of materials and old quality extract (Sonchus arvensis L.). J. Appl. Agric. Res. 2015, 15, 156–161. [Google Scholar]
- Kanaani, S.; Sani, A.M. Chemical composition of essential oils and in vitro antibacterial activity of methanolic extract of Sonchus arvensis and Eremurus spectabilis against food-borne pathogenic bacteria. J. Essent Oil-Bear Plants 2015, 18, 1093–1099. [Google Scholar] [CrossRef]
- Xia, Z.; Yao, J.; Liang, J. Two new sesquiterpene lactones from Sonchus arvensis. Chem. Nat. Compd. 2012, 48, 47–50. [Google Scholar] [CrossRef]
- Xu, Y.J.; Sun, S.B.; Sun, L.M.; Qiu, D.F.; Liu, X.J.; Jiang, Z.B.; Yuan, C.S. Quinic acid esters and sesquiterpenes from Sonchus arvensis. Food Chem. 2008, 111, 92–97. [Google Scholar] [CrossRef]
- Karamian, K.; Asadbegy, M. Antioxidant activity, total phenolic and flavonoid contents of three Onobrychis species from Iran. J. Pharm. Sci. 2016, 22, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Raffa, D.; Maggio, B.; Raimondi, M.V.; Plescia, F.; Daidone, G. Recent discoveries of anticancer flavonoids. Eur. J. Med. Chem. 2017, 142, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Hajimehdipoor, H.; Kondari, B.M.; Amin, G.R.; Adib, N.; Rastegar, H.; Shekarchi, M. Development of a validated HPLC method for the simultaneous determination of flavonoid in Cuscuta chinesis L. by ultra-violet detection. Daru J. Pharm. Sci. 2012, 20, 57–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, R.T.M.; Bezerra, I.C.F.; Ferreira, M.R.A.; Soares, L.A.L. Spectrophotometric quantification of flavonoids in herbal material, crude extract, and fractions from leaves of Eugenia uniflora Linn. Pharm. Res. 2017, 9, 253–260. [Google Scholar]
- Wang, W.; Lin, P.; Ma, L.; Xu, K.; Lin, X. Separation and determination of flavonoids in three traditional Chinese medicines by capillary electrophoresis with amperometric detection. J. Sep. Sci. 2016, 39, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liu, L.; Li, J. Qualitative and quantitative analysis of five bioactive flavonoids in Salix bordensis turcz. by HPLC-DAD and HPLC-ESI-MS. Am. J. Anal. Chem. 2014, 5, 851–860. [Google Scholar] [CrossRef] [Green Version]
- Magiera, S.; Zareba, M. Chromatographic determination of phenolic acids and flavonoids in Lycium barbarum L. and evaluation of antioxidant activity. Food Anal. Methods 2015, 8, 2665–2674. [Google Scholar] [CrossRef] [Green Version]
- Naveen, P.; Lingaraju, H.B.; Anitha; Prasad, K.S. Simultaneous determination of rutin, isoquercetin, and quercetin flavonoids in Nelumbo nucifera by high-performance liquid chromatography method. Int. J. Pharm. Investig. 2017, 7, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharari, Z.; Bagheri, K.; Danafar, H.; Sharafi, A. Simultaneous determination of baicalein, chrysin and wogonin in four Iranian Scutellaria species by high performance liquid chromatography. J. Appl. Res. Med. Aromat. Plants 2019, 16, 100232. [Google Scholar] [CrossRef]
- Khan, R.A. Evaluation of flavonoids and diverse antioxidant activities of Sonchus arvensis. Chem. Cent. J. 2012, 6, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Seal, T. Quantitative HPLC analysis of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchus arvensis and Oenanthe linearis of North-Eastern region in India. J. Appl. Pharm. Sci. 2016, 6, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Huo, B.S.; Qin, M.J. Content analysis of flavonoids in five species of Sonchus L. Zhiwu Ziyuan Yu Huanjing Xuebao 2008, 17, 77–78. [Google Scholar]
- BPOM (Badan Pengawasan Obat dan Makanan) RI. Fingerprint of Sonchus arvensis Leaf as the Basis of Standardization of Natural Medicinal Plant Extracts. 2010. Available online: http://www.pom.go.id/ppid/2016/ringkasan_riset2010.pdf (accessed on 14 August 2020).
- ICH (International Conference on Harmonization). Validation of Analytical Procedures: Methodology Q2 (R1); ICH: Geneva, Switzerland, 2005. Available online: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf (accessed on 14 August 2020).
- Liu, X.; Wu, Z.; Yang, K.; Ding, H.; Wu, Y. Quantitative analysis combined with chromatographic fingerprint for comprehensive evaluation of Danhong injection using HPLC DAD. J. Pharm. Biomed. 2013, 76, 70–74. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, J.; Liang, Y.; Yia, L.; Cheng, J. Chemical fingerprint analysis for quality control of Fructus Aurantii Immaturus based on HPLC-DAD combined with chemometric methods. Anal. Methods 2010, 2, 1–9. [Google Scholar] [CrossRef]
- Skov, T.; Berg, F.V.D.; Tomasi, G.; Bro, R. Automated alignment of chromatographic data. J. Chemom. 2006, 20, 484–497. [Google Scholar] [CrossRef]
- Kumar, K. Chemometric assisted correlation optimized warping of chromatograms: Optimizing the computational time for correcting the drifts in chromatographic peak positions. Anal. Methods 2018, 10, 1006–1014. [Google Scholar] [CrossRef]
- Jiao, L.; Bing, S.; Wang, X.; Xue, Z.; Li, H. The application of automated correlation optimized warping to the quality evaluation of Radix Puerariae thomsonii: Correcting retention time shift in the chromatographic fingerprints. Quim. Nova 2015, 38, 8–13. [Google Scholar]
- Ni, Y.; Song, R.; Kokot, S. Analysis of HPLC fingerprints: Discrimination of raw and processed Rhubarb samples with the aid of chemometrics. Anal. Methods 2012, 4, 171–176. [Google Scholar] [CrossRef]
Analyte a | OR | HP | RT | MR | LT | QR | KM | AG |
---|---|---|---|---|---|---|---|---|
Retention time (min) | ||||||||
Mean | 16.912 | 21.952 | 22.996 | 26.224 | 35.057 | 38.451 | 43.334 | 45.136 |
RSD (%) | 0.03 | 0.21 | 0.05 | 0.24 | 0.03 | 0.03 | 0.1 | 0.06 |
Peak area | ||||||||
Mean | 276,087 | 1,769,818 | 275,124 | 246,515 | 247,129 | 454,891 | 331,047 | 373,706 |
RSD (%) | 0.31 | 0.42 | 0.22 | 0.34 | 0.62 | 0.41 | 0.13 | 0.46 |
Capacity factor | ||||||||
Mean | 10.956 | 14.684 | 15.258 | 14.453 | 23.779 | 26.197 | 39.685 | 32.605 |
RSD (%) | 0.14 | 0.17 | 0.07 | 0.44 | 0.12 | 0.04 | 0.13 | 0.51 |
Tailing factor | ||||||||
Mean | 0.819 | 1.036 | 1.014 | 1.141 | 0.972 | 0.934 | 1.291 | 1.125 |
RSD (%) | 0.65 | 0.75 | 0.63 | 0.93 | 0.56 | 0.75 | 0.42 | 0.36 |
Theoretical plate number | ||||||||
Mean | 21,383 | 23,821 | 27,756 | 27,336 | 42,393 | 52,963 | 63,706 | 73,598 |
RSD (%) | 0.38 | 0.32 | 1.83 | 1.92 | 1.22 | 2.17 | 1.78 | 2.01 |
Analyte | Regression Equation a | Correlation Coefficient (r2) | Standard Deviation | |
---|---|---|---|---|
Intercept | Slope | |||
OR | y = 27480x + 171.66 | 0.9991 | 193.74 | 264.86 |
HP | y = 35146x + 924.74 | 0.9998 | 249.50 | 135.91 |
RT | y = 17497x + 445.46 | 0.9996 | 547.45 | 197.55 |
MR | y = 24911x + 113.63 | 0.9994 | 304.48 | 94.98 |
LT | y = 25092x + 28.296 | 0.9995 | 113.34 | 217.54 |
QR | y = 45521x + 750.85 | 0.9997 | 184.52 | 746.81 |
KM | y = 33302x + 43.674 | 0.9996 | 19.43 | 86.88 |
AG | y = 36866x + 863.5 | 0.9992 | 128.96 | 166.70 |
Analyte | Precision (RSD, %) | Accuracy a | Stability b (n = 6) | ||
---|---|---|---|---|---|
Intra-Day (n = 6) | Inter-Day (n = 3) | Average Recovery (%) | RSD (%) (n = 3) | ||
OR | Day 1: 2.23 | 1.32 | 97.84 | 2.8 | 1.6 |
Day 2: 1.41 | |||||
Day 3: 1.54 | |||||
HP | Day 1: 0.94 | 0.93 | 103.6 | 2.31 | 1.38 |
Day 2: 1.07 | |||||
Day 3: 0.92 | |||||
RT | Day 1: 1.60 | 1.44 | 97.79 | 2.42 | 1.03 |
Day 2: 1.12 | |||||
Day 3: 1.03 | |||||
MR | Day 1: 0.90 | 0.81 | 104.5 | 1.34 | 1.47 |
Day 2: 1.00 | |||||
Day 3: 0.96 | |||||
LT | Day 1: 1.09 | 0.99 | 105.87 | 1.74 | 1.08 |
Day 2: 1.28 | |||||
Day 3: 1.18 | |||||
QR | Day 1: 0.87 | 0.87 | 99.22 | 1.39 | 1.15 |
Day 2: 0.76 | |||||
Day 3: 1.89 | |||||
KM | Day 1: 0.51 | 0.91 | 97.17 | 2.07 | 1.29 |
Day 2: 0.61 | |||||
Day 3: 0.84 | |||||
AG | Day 1: 0.69 | 0.75 | 105.1 | 0.89 | 0.99 |
Day 2: 0.98 | |||||
Day 3: 0.65 |
Analyte | Geographical Origin of Sample | |||||
---|---|---|---|---|---|---|
Bogor | West Bandung | |||||
Sampel Type | ||||||
Root | Stem | Leaves | Root | Stem | Leaves | |
Concentration (µg/g ± SD), n = 5 | ||||||
OR | 22.70 ± 0.35 | 17.89 ± 0.10 | 24.91 ± 0.35 | 17.80 ± 0.35 | 16.99 ± 0.35 | 16.36 ± 0.45 |
HP | 83.40 ± 0.15 | 1.83 ± 0.22 | 39.34 ± 0.19 | 1.38 ± 0.22 | 1.34 ± 0.25 | 18.64 ± 0.18 |
RT | 46.59 ± 1.03 | 1.75 ± 0.03 | 40.01 ± 0.30 | 2.72 ± 0.04 | 1.73 ± 0.01 | 22.03 ± 0.15 |
MR | 35.55 ± 0.37 | 27.63 ± 0.42 | 43.07 ± 0.22 | 18.00 ± 0.28 | 20.57 ± 0.26 | 313.97 ± 0.15 |
LT | 91.87 ± 2.03 | 82.65 ± 1.52 | 12.57 ± 0.19 | 12.79 ± 0.10 | 4.03 ± 0.06 | 32.68 ± 1.67 |
QR | 9.77 ± 0.21 | 15.88 ± 0.23 | 31.64 ± 0.22 | 2.27 ± 0.03 | 12.41 ± 0.18 | 21.60 ± 0.31 |
KM | 0.91 ± 0.52 | 1.10 ± 0.67 | 1.24 ± 0.71 | 0.97 ± 0.81 | 1.19 ± 0.51 | 1.27 ± 0.22 |
AG | 157.22 ± 2.02 | 234.58 ± 1.57 | 255.39 ± 1.26 | 272.34 ± 1.76 | 123.22 ± 1.31 | 206.65 ± 1.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khuluk, R.H.; Yunita, A.; Rohaeti, E.; Syafitri, U.D.; Linda, R.; Lim, L.W.; Takeuchi, T.; Rafi, M. An HPLC-DAD Method to Quantify Flavonoids in Sonchus arvensis and Able to Classify the Plant Parts and Their Geographical Area through Principal Component Analysis. Separations 2021, 8, 12. https://doi.org/10.3390/separations8020012
Khuluk RH, Yunita A, Rohaeti E, Syafitri UD, Linda R, Lim LW, Takeuchi T, Rafi M. An HPLC-DAD Method to Quantify Flavonoids in Sonchus arvensis and Able to Classify the Plant Parts and Their Geographical Area through Principal Component Analysis. Separations. 2021; 8(2):12. https://doi.org/10.3390/separations8020012
Chicago/Turabian StyleKhuluk, Rifki Husnul, Amalia Yunita, Eti Rohaeti, Utami Dyah Syafitri, Roza Linda, Lee Wah Lim, Toyohide Takeuchi, and Mohamad Rafi. 2021. "An HPLC-DAD Method to Quantify Flavonoids in Sonchus arvensis and Able to Classify the Plant Parts and Their Geographical Area through Principal Component Analysis" Separations 8, no. 2: 12. https://doi.org/10.3390/separations8020012
APA StyleKhuluk, R. H., Yunita, A., Rohaeti, E., Syafitri, U. D., Linda, R., Lim, L. W., Takeuchi, T., & Rafi, M. (2021). An HPLC-DAD Method to Quantify Flavonoids in Sonchus arvensis and Able to Classify the Plant Parts and Their Geographical Area through Principal Component Analysis. Separations, 8(2), 12. https://doi.org/10.3390/separations8020012