Comparison of Neutral Compound Extraction from Archaeological Residues in Pottery Using Two Methodologies: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Sterol and Terpenoid Extractions
3.2. Alkanol Extraction
3.3. Alkane Extraction
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Copley, M.S.; Berstan, R.; Dudd, S.N.; Docherty, G.; Mukherjee, A.J.; Straker, V.; Payne, S.; Evershed, R.P. Direct chemical evidence for widespread dairying in prehistoric Britain. Proc. Natl. Acad. Sci. USA 2003, 100, 1524–1529. [Google Scholar]
- Craig, O.E.; Forster, M.; Andersen, S.H.; Koch, E.; Crombé, P.; Milner, N.J.; Stern, B.; Bailey, G.N.; Heron, C.P. Molecular and isotopic demonstration of the processing of aquatic products in northern European prehistoric pottery. Archaeometry 2007, 49, 135–152. [Google Scholar] [CrossRef]
- Craig, O.E.; Shillito, L.; Albarella, U.; Viner-Daniels, S.; Chan, B.; Cleal, R.; Ixer, R.; Jay, M.; Marshall, P.; Simmons, E.; et al. Feeding Stonehenge: Cuisine and consumption at the late Neolithic site of Durrington Walls. Antiquity 2015, 89, 1096–1109. [Google Scholar] [CrossRef]
- Dudd, S.N.; Evershed, R.P.; Gibson, A.M. Evidence for Varying Patterns of Exploitation of Animal Products in Different Prehistoric Pottery Traditions Based on Lipids Preserved in Surface and Absorbed Residues. J. Archaeol. Sci. 1999, 26, 1473–1482. [Google Scholar] [CrossRef]
- Eerkens, J. The preservation and identification of piñon resins by GC-MS in pottery from the Western Great Basin. Archaeometry 2002, 44, 95–105. [Google Scholar]
- Evershed, R.P. Organic residue analysis in archaeology: The archaeological biomarker revolution. Archaeometry 2008, 50, 895–924. [Google Scholar]
- Evershed, R.P.; Heron, C.; Goad, L.J. Analysis of organic residues of archaeological origin by high-temperature gas chromatography and gas chromatography-mass spectrometry. Analyst 1990, 115, 1339–1342. [Google Scholar] [CrossRef]
- Evershed, R.P.; Mottram, H.R.; Dudd, S.N.; Charters, S.; Stott, A.W.; Lawrence, G.J.; Gibson, A.M.; Conner, A.; Blinkhorn, P.W.; Reeves, V. New criteria for the identification of animal fats preserved in archaeological pottery. Naturwissenschaften 1997, 84, 402–406. [Google Scholar] [CrossRef]
- Heron, C.; Evershed, R.P. The analysis of organic residues and the study of pottery use. In Archaeological Method and Theory; Schiffer, M.B., Ed.; University of Oregon Press: Tucson, OR, USA, 1990; Volume 5, pp. 247–284. [Google Scholar]
- Malainey, M.E.; Przbylski, R.; Sherriff, B.L. The effects of thermal and oxidative degradation on the fatty acid composition of food plants and animals of western Canada: Implications for the identification of archaeological vessel residues. J. Archaeol. Sc. 1999, 26, 95–103. [Google Scholar]
- Reber, E.A.; Hart, J.P. Pine resins and pottery sealing: Analysis of absorbed and visible pottery residues from central New York State. Archaeometry 2008, 50, 999–1017. [Google Scholar] [CrossRef]
- Goldenberg, L.; Neumann, R.; Weiner, S. Microscale distribution and concentration of preserved organic molecules with carbon–carbon double bonds in archaeological ceramics: Relevance to the field of residue analysis. J. Archaeol. Sci. 2014, 42, 509–518. [Google Scholar] [CrossRef]
- Regert, M.; Bland, H.A.; Dudd, S.N.; van Bergen, P.F.; Evershed, R.P. Free and bound fatty acid oxidation products in archaeological ceramic vessels. Proc. R. Soc. B 1998, 265, 2027–2032. [Google Scholar] [CrossRef]
- Craig, O.E.; Love, G.D.; Isaksson, S.; Taylor, G.; Snape, C.E. Stable carbon isotopic characterisation of free and bound lipid constituents of archaeological ceramic vessels released by solvent extraction, alkaline hydrolysis and catalytic hydropyrolysis. J. Anal. Appl. Pyrolysis 2004, 71, 613–634. [Google Scholar] [CrossRef]
- Hammann, S.; Scurr, D.J.; Alexander, M.R.; Cramp, L.J.E. Mechanisms of lipid preservation in archaeological clay ceramics revealed by mass spectrometry imaging. Proc. Natl. Acad. Sci. USA 2020, 117, 14688–14693. [Google Scholar] [CrossRef] [PubMed]
- Stern, B.; Heron, C.; Serpico, M.; Bourriau, J. A comparison of methods for establishing fatty acid concentration gradients across potsherds: A case study using Late Bronze Age Canaanite Amphorae. Archaeometry 2000, 42, 399–414. [Google Scholar] [CrossRef]
- Hansel, F.A.; Bull, I.D.; Evershed, R.P. Gas chromatographic mass spectrometric detection of dihydroxy fatty acids preserved in the ‘bound’ phase of organic residues of archaeological pottery vessels. Rapid Commun. Mass Spectrom. 2011, 25, 1893–1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa-Ascencio, M.; Evershed, R.P. High throughput screening of organic residues in archaeological potsherds using direct acidified methanol extraction. Anal. Methods 2014, 6, 1330–1340. [Google Scholar] [CrossRef]
- Reber, E.A.; Dudd, S.N.; van der Merwe, N.J.; Evershed, R.P. Direct detection of maize in pottery residues via compound specific stable carbon isotope analysis. Antiquity 2004, 78, 682–691. [Google Scholar] [CrossRef]
- Atalay, S.; Hastorf, C.A. Food, Meals, and Daily Activities: Food Habitus at Neolithic Çatalhöyük. Am. Antiq. 2006, 71, 283–319. [Google Scholar] [CrossRef]
- Fritz, G.J. Feeding Cahokia: Early Agriculture in the North American Heartland; The University of Alabama Press: Tuscaloosa, AL, USA, 2019. [Google Scholar]
- Mann, N. Meat in the human diet: An anthropological perspective. Nutr. Diet. 2007, 64, S102–S107. [Google Scholar] [CrossRef]
- Melamed, Y.; Kislev, M.E.; Geffen, E.; Lev-Yadun, S.; Goren-Inbar, N. Acheulian plant food. Proc. Natl. Acad. Sci. USA 2016, 113, 14674–14679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mnich, B.; Mueller-Bieniek, A.; Nowak, M.; Wilczyński, J.; Pospuła, S.; Szostek, K. Terrestrial diet in prehistoric human groups from southern Poland based on human, faunal and botanical stable isotope evidence. J. Archaeol. Sci. Rep. 2020, 32, 102382. [Google Scholar] [CrossRef]
- Reber, E.A.; Evershed, R.P. Ancient vegetarians? Absorbed pottery residue analysis of diet in the late Woodland and Emergent Mississippian periods of the Mississippi Valley. Southeast. Archaeol. 2006, 25, 110–120. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Reber, E.A.; Kelly, J.E.; Boswell, E.; Lane, C.S. Molecular evidence of changing foodways across the Mississippian transition at the George Reeves site (11S650). Southeast. Archaeol. 2020, 39, 71–88. [Google Scholar] [CrossRef]
No. | Chloroform/Methanol Extraction | Acidic Methanol Extraction | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Lipid µg/g | Sample g | Sterols | Fatty Acids | Isoprenoid FA | Alkanols | Alkanes | Terpenoids | Total Lipid µg/g | Sample g | Sterols | Fatty Acids | Isoprenoid FA | Alkanols | Alkanes | Terpenoids | |
1 | 8.2 | 9.1 | x | x | - | x | x | - | 17.6 | 2.6 | - | x | - | x | x | x |
2 | 8.9 | 12.5 | x | x | - | x | x | x | 12.7 | 2.2 | - | x | - | x | x | - |
3 | 8.9 | 7.8 | x | x | - | x | x | x | 33.7 | 2.5 | - | x | - | - | x | x |
4 | 3.2 | 11.5 | x | x | - | - | - | - | 0.5 NR | 2.4 | - | x | - | - | - | x |
5 | 0.6 NR | 7.9 | - | x | - | x | x | x | 5.9 | 2.3 | x | x | - | - | x | - |
6 | 9.1 | 3.6 | x | x | - | x | x | x | 54.3 | 2.3 | x | x | - | x | - | x |
7 | 30.9 | 5.1 | x | x | - | x | x | x | 3186.5 | 2.3 | x | x | - | x | x | x |
8 | 105.7 | 5.1 | x | x | - | x | x | - | 1842.7 | 2.4 | x | x | - | x | x | x |
9 | 1.8 NR | 10.9 | x | x | - | x | x | - | 69.9 | 2.7 | - | x | x | x | x | - |
10 | 0.4 NR | 3.9 | - | x | - | x | x | - | 103.0 | 2.0 | - | x | x | x | x | - |
11 | 0.7 NR | 5.3 | - | x | - | - | - | - | 37.6 | 2.3 | x | x | - | x | x | x |
12 | 4.2 | 4.7 | x | x | - | x | x | - | 83.8 | 2.1 | x | x | x | x | x | x |
13 | 2.0 | 4.8 | x | x | - | x | x | - | 70.5 | 2.5 | x | x | - | x | x | - |
14 | 97.0 | 2.8 | - | x | - | - | - | - | 871.0 | 2.4 | - | x | x | - | - | - |
Compound | 1 S | 1 A | 2 S | 2 A | 3 S | 3 A | 4 S | 4 A | 5 S | 5 A | 6 S | 6 A | 7 S | 7 A | 8 S | 8 A | 9 S | 9 A | 10 S | 10 A | 11 S | 11 A | 12 S | 12 A | 13 S | 13 A | 14 S | 14 A |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cholesterol | 0.01 | - | 0.05 | - | 0.03 | - | 0.1 | - | - | 0.03 | 0.02 | 0.2 | 0.02 | 0.8 | - | - | 0.01 | - | - | - | - | 0.4 | 0.03 | 0.04 | 0.1 | 0.5 | - | - |
Stigmasterol | - | - | - | - | - | - | - | - | - | - | - | - | 0.01 | 0.5 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Campesterol | - | - | - | - | - | 0.02 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Sitosterol | - | - | - | - | 0.02 | 0.04 | - | - | - | - | - | 0.08 | - | - | - | - | Tr. | - | - | - | - | - | - | - | - | 0.06 | - | - |
Agnosterol | - | - | - | - | - | - | - | - | - | - | - | - | 0.04 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
5α-cholestanol | - | - | - | - | - | - | - | - | - | - | - | 0.03 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
5α-stigmastanol | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.01 | 1.0 | - | - | - | - | - | - | - | - | - | - | - | - |
Sitostanol | - | - | - | - | - | - | - | - | - | - | - | 0.1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Total Sterols | 0.01 | - | 0.05 | - | 0.05 | 0.06 | 0.1 | - | - | 0.03 | 0.02 | 0.41 | 0.07 | 1.3 | 0.01 | 1.0 | 0.01 | - | - | - | - | 0.4 | 0.03 | 0.04 | 0.1 | 0.56 | - | - |
Dehydroabietic acid | 0.1 | - | - | 0.4 | 0.1 | 0.1 | 0.1 | 0.03 | - | - | - | - | 0.2 | 0.7 | 0.1 | 6.1 | - | - | - | - | - | 0.9 | - | - | - | 0.08 | - | - |
Amyrin | - | - | - | - | - | 0.01 | - | - | - | - | - | - | 0.03 | 2.5 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
11-oxo-α-amyrin | - | - | - | - | - | - | - | - | - | - | - | - | 0.02 | 2.0 | - | 0.2 | - | - | - | - | - | - | - | - | - | - | - | - |
Lupeol | - | - | - | - | - | - | - | - | - | - | - | - | 0.04 | 0.6 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Total Terpenoids | 0.1 | - | - | 0.4 | 0.1 | 0.11 | 0.1 | 0.03 | - | - | - | - | 0.29 | 5.8 | 0.1 | 6.3 | - | - | - | - | - | 0.9 | - | - | - | 0.08 | - | - |
OL11 | - | - | - | - | - | 0.03 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
OL12 | - | - | 0.03 | - | - | 0.09 | 0.1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.4 | 0.01 | - | - | 0.05 | - | - |
OL13 | - | - | - | - | 0.04 | 0.04 | 0.03 | - | - | - | - | - | - | - | - | - | - | - | - | 0.03 | - | - | 0.02 | - | - | 0.06 | - | - |
OL14 | - | - | 0.07 | - | 0.04 | 0.2 | 0.2 | - | - | - | 0.01 | 0.1 | - | - | - | - | Tr. | - | - | - | - | - | 0.04 | - | 0.04 | 0.2 | - | - |
OL15 | - | - | 0.05 | - | 0.02 | - | 0.04 | - | - | - | - | - | - | - | - | - | Tr. | - | - | - | - | - | 0.02 | - | 0.03 | - | - | - |
OL16 | 0.04 | - | 0.2 | - | 0.3 | 0.1 | 1.3 | - | - | - | 0.02 | 0.2 | - | - | 0.01 | - | 0.02 | - | - | - | - | - | 0.1 | - | 0.2 | - | - | - |
OL17 | - | - | 0.06 | 0.02 | 0.09 | - | 0.08 | - | - | - | Tr. | - | - | - | 0.01 | - | Tr. | - | - | - | - | - | 0.02 | - | 0.04 | - | - | - |
OL18 | 0.06 | 0.1 | 0.1 | - | 0.03 | 0.1 | 1.4 | 0.01 | 0.02 | - | 0.06 | 0.2 | 0.02 | 0.7 | 0.02 | - | 0.04 | 0.1 | - | 0.04 | 0.01 | 0.5 | 0.2 | - | 0.2 | 0.2 | - | - |
OL19 | - | - | 0.04 | - | 0.02 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.01 | - | - | - |
OL20:1 | - | - | - | - | - | - | - | - | - | - | 0.01 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.05 | - | - | - |
OL20 | - | - | 0.08 | - | 0.02 | 0.03 | 0.2 | - | 0.01 | - | 0.02 | - | 0.01 | 0.7 | - | 0.7 | 0.01 | - | - | - | - | - | 0.01 | - | 0.05 | 0.1 | - | - |
OL21 | - | - | - | - | - | - | 0.07 | - | - | - | 0.03 | - | - | - | - | - | Tr. | - | - | - | - | - | 0.01 | - | 0.02 | - | - | - |
OL22 | - | - | 0.2 | - | 0.03 | 0.02 | 0.1 | - | 0.01 | - | - | - | - | 0.2 | 0.02 | 0.2 | Tr. | - | - | 0.06 | - | - | Tr. | - | 0.03 | 0.07 | - | - |
OL23 | - | - | - | - | 0.01 | - | 0.04 | - | - | - | - | - | - | - | - | 0.1 | Tr. | - | - | - | - | - | - | - | 0.01 | 0.03 | - | - |
OL24 | - | - | 0.08 | - | 0.01 | - | 0.06 | - | 0.03 | - | - | 0.07 | 0.01 | 0.3 | 0.05 | 0.6 | Tr. | - | 0.03 | 0.3 | - | - | 0.01 | - | 0.03 | - | - | - |
OL25 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.07 | - | 0.1 | - | - | - | 0.03 | - | - | - | - | - | - | - | - |
OL26 | - | - | 0.06 | - | - | - | 0.03 | - | 0.3 | - | 0.01 | 0.1 | 0.01 | 1.0 | 0.05 | 0.7 | Tr, | - | 0.04 | 0.4 | - | - | 0.01 | - | - | - | - | - |
OL27 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.07 | - | - | - | - | - | 0.03 | - | - | - | - | - | - | - | - |
OL28 | - | - | 0.1 | - | 0.03 | 0.03 | - | - | 0.05 | - | 0.08 | 0.7 | 0.07 | 7.2 | 0.07 | 0.9 | Tr. | - | 0.04 | 0.5 | - | - | 0.02 | - | 0.02 | - | - | - |
OL29 | - | - | - | - | - | - | - | - | - | - | 0.02 | 0.05 | - | 0.2 | 0.01 | - | - | - | 0.01 | 0.08 | - | - | - | - | - | - | - | - |
OL30 | 0.01 | - | 0.05 | - | 0.03 | 0.03 | - | - | 0.04 | - | 0.07 | 0.5 | 0.1 | 4.1 | 0.07 | 0.9 | Tr. | - | 0.09 | 0.9 | - | - | 0.01 | - | 0.01 | - | 0.02 | - |
OL31 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.1 | - | - | - | - | - | - | - | - |
OL32 | - | - | - | - | - | - | - | - | - | - | - | 0.06 | - | 0.5 | 0.04 | 1.0 | - | - | 0.3 | 4.2 | - | - | - | - | - | - | - | - |
OL33 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.3 | - | - | - | - | - | - | - | - |
OL34 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.6 | - | - | - | - | 0.08 | 4.4 | - | - | - | - | - | - | - | - |
Total Alkanols | 0.11 | 0.1 | 1.12 | 0.02 | 0.67 | 0.67 | 3.65 | 0.01 | 0.46 | - | 0.33 | 1.78 | 0.22 | 14.4 | 0.35 | 5.2 | 0.07 | 0.1 | 1.31 | 11.4 | 0.01 | 0.9 | 0.48 | - | 0.74 | 0.71 | 0.02 | - |
AL14 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.01 | 0.09 | - | - | - | 0.4 |
AL15 | - | - | - | - | - | 0.08 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.02 | 0.03 | 0.01 | - | - | - |
AL16 | - | - | - | - | - | 0.1 | - | - | - | - | - | - | - | 0.2 | - | - | - | - | - | - | - | - | 0.03 | 0.2 | 0.02 | 0.03 | - | - |
AL17 | - | - | - | - | - | 0.09 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.04 | - | - | 0.06 | 0.4 | 0.02 | 0.04 | - | - |
AL18:1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.4 | - | - |
AL18 | 0.03 | - | 0.08 | - | 0.06 | 0.07 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.08 | - | 0.6 | 0.04 | 0.2 | 0.04 | 0.3 | - | - |
AL19:1 | - | - | - | - | 0.1 | - | - | - | - | - | - | - | - | - | - | - | - | 0.2 | - | - | - | - | - | - | - | - | - | - |
AL19 | 0.04 | - | 0.2 | - | 0.07 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.02 | - | 0.07 | 0.1 | - | - |
AL20:1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.04 | - | - | - |
AL20 | 0.04 | 0.08 | 0.1 | - | 0.1 | 0.07 | 0.1 | - | - | - | 0.01 | - | - | - | 0.01 | - | 0.01 | 0.3 | - | - | - | 0.7 | 0.05 | - | 0.09 | 0.2 | - | - |
AL21:1 | - | - | 0.1 | - | 0.2 | - | - | - | - | - | Tr. | - | - | - | - | - | - | 0.3 | - | - | - | - | - | - | - | - | - | - |
AL21 | - | 0.2 | 0.06 | - | 0.1 | - | 0.03 | - | - | - | - | - | - | - | - | - | 0.01 | - | - | - | - | - | 0.03 | - | 0.03 | - | - | - |
AL22 | 0.04 | - | 0.1 | 0.2 | 0.09 | - | - | - | 0.02 | 0.06 | 0.02 | - | - | - | - | - | 0.01 | - | - | 0.2 | - | - | - | 0.06 | 0.02 | - | - | - |
AL23:1 | - | - | 0.08 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 4.0 |
AL23 | 0.02 | - | 0.05 | 0.07 | 0.04 | 0.2 | 0.05 | - | - | 0.05 | - | - | - | - | 0.02 | - | Tr. | 0.1 | - | 0.3 | - | 0.3 | Tr. | 0.08 | Tr. | - | - | - |
AL24 | 0.03 | 0.1 | 0.1 | 0.4 | 0.06 | 0.09 | 0.2 | - | - | 0.05 | 0.01 | - | - | - | - | - | Tr. | - | - | 0.1 | - | - | - | 0.2 | - | 0.06 | - | - |
AL25 | 0.05 | 0.1 | - | 0.2 | 0.04 | 0.04 | 0.09 | - | - | 0.06 | - | - | - | - | 0.01 | - | - | - | - | 0.07 | - | - | - | 0.07 | 0.01 | 0.2 | - | - |
AL26 | 0.07 | 0.1 | 0.05 | 0.2 | 0.08 | 0.01 | 0.1 | - | - | 0.03 | - | - | - | - | - | - | - | 0.1 | - | 0.06 | - | - | - | 0.08 | - | 0.2 | - | 0.1 |
AL27 | 0.09 | 0.08 | 0.1 | 0.2 | 0.09 | - | 0.1 | - | - | 0.03 | - | - | - | - | - | - | - | - | - | 0.1 | - | 0.1 | 0.01 | 0.04 | 0.02 | 0.04 | - | 0.2 |
AL28 | 0.1 | 0.07 | 0.08 | 0.08 | 0.1 | - | 0.08 | - | - | - | - | - | - | - | - | - | - | - | - | 0.05 | - | - | - | - | - | - | - | - |
AL29 | 0.1 | - | 0.1 | - | 0.09 | - | 0.08 | - | 0.04 | - | - | - | 0.01 | - | 0.01 | - | Tr. | - | 0.03 | 0.3 | - | 0.5 | 0.03 | 0.09 | 0.04 | 0.4 | - | 0.1 |
AL30 | 0.05 | - | 0.05 | 0.04 | 0.04 | - | 0.04 | - | - | - | - | - | - | 0.1 | - | 0.08 | - | - | - | 0.04 | - | - | - | - | 0.01 | - | - | - |
AL31 | 0.06 | - | 0.06 | 0.08 | 0.07 | - | 0.04 | - | 0.01 | - | 0.02 | - | 0.02 | - | 0.01 | - | Tr. | 0.05 | 0.06 | 0.3 | - | 0.3 | 0.03 | 0.05 | 0.03 | 0.3 | - | - |
AL32 | 0.02 | - | 0.02 | 0.08 | 0.04 | 0.04 | 0.03 | - | 0.01 | - | 0.01 | - | 0.01 | - | 0.01 | - | Tr. | 0.06 | 0.01 | 0.1 | - | 0.2 | 0.01 | 0.05 | 0.01 | 0.3 | - | - |
AL33 | 0.02 | - | 0.02 | - | 0.04 | - | 0.03 | - | 0.01 | - | 0.01 | - | Tr. | - | Tr. | - | Tr. | 0.05 | 0.01 | 0.07 | - | - | 0.01 | 0.07 | 0.01 | - | 0.01 | - |
AL35 | - | - | - | - | - | - | - | - | - | - | 0.01 | - | - | - | - | - | Tr. | 0.08 | - | - | - | - | - | 0.05 | - | 0.08 | - | - |
Total Alkanes | 0.076 | 0.073 | 1.35 | 1.55 | 1.41 | 0.79 | 0.97 | - | 0.09 | 0.28 | 0.09 | - | 0.04 | 0.3 | 0.07 | 0.08 | 0.03 | 1.24 | 0.11 | 1.81 | - | 2.7 | 0.35 | 1.76 | 0.47 | 2.65 | 0.01 | 4.8 |
Chloroform/Methanol Extraction More Complete | Comparable | Acidic Methanol Extraction More Complete | |
---|---|---|---|
Samples 1–4 Sterols | 3 | 1 | 0 |
Samples 1–4 Terpenoids | 2 | 1 | 1 |
Samples 1–4 Alkanols | 2 | 2 | 0 |
Samples 1–4 Alkanes | 2 | 1 | 1 |
Samples 1–4 Totals | 9 | 5 | 1 |
Samples 5–14 Sterols | 1 | 3 | 6 |
Samples 5–14 Terpenoids | 0 | 6 | 4 |
Samples 5–14 Alkanols | 3 | 2 | 5 |
Samples 5–14 Alkanes | 1 | 1 | 8 |
Samples 5–14 Totals | 5 | 11 | 24 |
All Samples Totals | 14 | 16 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reber, E.A. Comparison of Neutral Compound Extraction from Archaeological Residues in Pottery Using Two Methodologies: A Preliminary Study. Separations 2021, 8, 6. https://doi.org/10.3390/separations8010006
Reber EA. Comparison of Neutral Compound Extraction from Archaeological Residues in Pottery Using Two Methodologies: A Preliminary Study. Separations. 2021; 8(1):6. https://doi.org/10.3390/separations8010006
Chicago/Turabian StyleReber, Eleanora A. 2021. "Comparison of Neutral Compound Extraction from Archaeological Residues in Pottery Using Two Methodologies: A Preliminary Study" Separations 8, no. 1: 6. https://doi.org/10.3390/separations8010006
APA StyleReber, E. A. (2021). Comparison of Neutral Compound Extraction from Archaeological Residues in Pottery Using Two Methodologies: A Preliminary Study. Separations, 8(1), 6. https://doi.org/10.3390/separations8010006