Bioethanol Production from Date Seed Cellulosic Fraction Using Saccharomyces cerevisiae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Date Seed Material
2.2. Chemical Characterization of Date Seeds
2.2.1. Determination of Extractives Content
2.2.2. Determination of Insoluble and Soluble Lignin Content
2.2.3. Determination of Holocellulose Content
2.2.4. Determination of Cellulose and Hemicellulose Contents
2.3. Infrared Spectroscopy Analyses
2.4. Extraction of Cellulose from Date Seeds
2.5. Microbial Strains and Culture Conditions
2.5.1. Penicillium occitanis Pol6
2.5.2. Saccharomyces cerevisiae Strain Culture
2.6. Enzymatic Hydrolysis
2.6.1. Enzyme Activity Measurements
2.6.2. Date Seed Cellulose Hydrolysis
2.7. Ethanol Fermentation of Date Seed Cellulose Hydrolysates
2.8. Statistical Analysis
3. Results and Discussion
3.1. Date Seed Characterization
3.2. Extraction of Cellulose from Date Seeds
3.3. Enzymatic Hydrolysis of Date Seed Cellulose
3.3.1. Optimization of Enzyme Production
3.3.2. Cellulose Hydrolysis
3.4. Ethanol Production by Yeast Fermentation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Awasthi, P.; Shrivastava, S.; Kharkwal, A.C.; Varma, A. Biofuel from agricultural waste: A review. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 470–477. [Google Scholar]
- Shah, N.; Rehan, T. Bioethanol production from biomass. J. Chem. Biochem. 2014, 2, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Balan, V.; Chiaramonti, D.; Kumar, S. Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels Bioprod. Biorefin. 2013, 7, 732–759. [Google Scholar] [CrossRef]
- Chandel, A.K.; Chan, E.N.; Rudravaram, R.; Lakshmi Narasu, M.; Venkateswar Rao, L.; Ravindra, P. Economics and environmental impact of bioethanol production technologies: An appraisal. Biotechnol. Mol. Biol. Rev. 2007, 2, 14–32. [Google Scholar]
- Conde-Mejía, C.; Jiménez-Gutiérrez, A.; El-Halwagi, M. A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Saf. Environ. Prot. 2012, 90, 189–202. [Google Scholar] [CrossRef]
- Mood, S.M.; Golfeshan, A.H.; Tabatabaei, M.; Jouzani, G.S.; Najafi, G.H.; Gholami, M.; Ardjmand, M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 2013, 27, 77–93. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Pan, X.J. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresour. Technol. 2010, 101, 4992–5002. [Google Scholar] [CrossRef]
- Hu, G.; Heitmann, J.A.; Rojas, O.J. Feedstock pretreatment strategies for producing ethanol from wood, bark, and forest residues. BioResources 2008, 3, 270–294. [Google Scholar]
- Sarkar, N.; Ghosh, S.K.; Bannerjee, S.; Aikat, K. Bioethanol production from agricultural wastes: An overview. Renew. Energy 2012, 37, 19–27. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 2009, 86, 2273–2282. [Google Scholar] [CrossRef]
- Dagnino, E.P.; Chamorro, E.R.; Romano, S.D.; Felissia, F.E.; Area, M.C. Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production. Ind. Crop. Prod. 2013, 42, 363–368. [Google Scholar] [CrossRef]
- Krishna, S.H.; Prasanthi, K.; Chowdary, G.V.; Ayyanna, C. Simultaneous saccharification and fermentation of pretreated sugar cane leaves to ethanol. Process Biochem. 1998, 33, 825–830. [Google Scholar] [CrossRef]
- Kádár, Z.; Szengyel, Z.; Réczey, K. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind. Crop. Prod. 2004, 20, 103–110. [Google Scholar] [CrossRef]
- Demirbas, A. Biofuels securing the planet’s future energy needs. Energy Convers. Manag. 2009, 50, 2239–2249. [Google Scholar] [CrossRef]
- Marta, A.D.; Mancini, M.; Orlando, F.; Natali, F.; Capecchi, L.; Orlandini, S. Sweet sorghum for bioethanol production: Crop responses to different water stress levels. Biomass Bioenergy 2014, 64, 211–219. [Google Scholar] [CrossRef]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef]
- Cheng, K.K.; Ge, J.P.; Zhang, J.A.; Ling, H.Z.; Zhou, Y.J.; Yang, M.D.; Xu, J.M. Fermentation of pretreated sugarcane bagasse hemicellulose hydrolysate to ethanol by Pachysolen tannophilus. Biotechnol. Lett. 2007, 29, 1051–1055. [Google Scholar] [CrossRef]
- Pasha, C.; Kuhad, R.C.; Rao, L.V. Strain improvement of thermotolerant Saccharomyces cerevisiae vs. strain for better utilization of lignocellulosic substrates. J. Appl. Microbiol. 2007, 103, 1480–1489. [Google Scholar] [CrossRef]
- Walfridsson, M.; Bao, X.; Anderlund, M.; Lilius, G.; Bülow, L.; Hahn-Hägerdal, B. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl. Environ. Microbiol. 1996, 62, 4648–4651. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Tang, X.; Zhang, X.; Zhang, J.; Tian, X.; Wang, J.; Xiong, M.; Xiao, W. Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose. Metab. Eng. 2014, 24, 150–159. [Google Scholar] [CrossRef]
- Martín, C.; Galbe, M.; Wahlbom, C.F.; Hahn-Hägerdal, B.; Jönsson, L.J. Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzym. Microb. Technol. 2002, 31, 274–282. [Google Scholar] [CrossRef]
- Gong, C.S.; Chen, L.F.; Flickinger, M.C.; Chiang, L.C.; Tsao, G.T. Production of ethanol from D-xylose by using D-xylose isomerase and yeasts. Appl. Environ. Microbiol. 1981, 41, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Afiq, M.J.A.; Rahman, R.A.; Man, Y.B.C.; AL-Kahtani, H.A.; Mansor, T.S.T. Date seed and date seed oil. Int. Food Res. J. 2013, 20, 2035–2043. [Google Scholar]
- Hamada, J.S.; Hashim, I.B.; Sharif, F.A. Preliminary analysis and potential uses of date pits in foods. Food Chem. 2002, 76, 135–137. [Google Scholar] [CrossRef]
- Shokrollahi, F.; Taghizadeh, M. Date seed as a new source of dietary fiber: Physicochemical and baking properties. Int. Food Res. J. 2016, 23, 2419–2425. [Google Scholar]
- Bouaziz, F.; Abdeddayem, A.B.; Koubaa, M.; Ghorbel, R.E.; Chaabouni, S.E. Date seeds as a natural source of dietary fibers to improve texture and sensory properties of wheat bread. Foods 2020, 9, 737. [Google Scholar] [CrossRef] [PubMed]
- Food and Agricultural Organization of the United Nation FAO, Statistical Databases. Available online: http://www.fao.org/faostat/en/#home (accessed on 17 April 2020).
- Herch, W.; Kallel, H.; Boukhchina, S. Physicochemical properties and antioxidant activity of Tunisian date palm (Phoenix dactylifera L.) oil as affected by different extraction methods. Food Sci. Technol. 2014, 34, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Koubaa, M.; Ktata, A.; Barba, F.J.; Grimi, N.; Mhemdi, H.; Bouaziz, F.; Driss, D.; Chaabouni, S.E. Water-soluble polysaccharides from Opuntia stricta Haw. fruit peels: Recovery, identification and evaluation of their antioxidant activities. Int. Agrophys. 2015, 29, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Bettaieb, F.; Khiari, R.; Dufresne, A.; Mhenni, M.F.; Belgacem, M.N. Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydr. Polym. 2015, 123, 99–104. [Google Scholar] [CrossRef]
- Bettaieb, F.; Khiari, R.; Hassan, M.L.; Belgacem, M.N.; Bras, J.; Dufresne, A.; Mhenni, M.F. Preparation and characterization of new cellulose nanocrystals from marine biomass Posidonia oceanica. Ind. Crop. Prod. 2015, 72, 175–182. [Google Scholar] [CrossRef]
- Dufresne, A. Nanocellulose: From Nature to High Performance Tailored Materials; Walter de Gruyter GmbH & Co. KG: Berlin, Germany, 2012; ISBN 978-3-11-048041-2. [Google Scholar]
- Jain, S.; Parriche, M.; Durand, H.; Tiraby, G. Production of polysaccharidases by a cellulase-pectinase hyperproducing mutant (Pol6) of Penicillium occitanis. Enzym. Microb. Technol. 1990, 12, 691–696. [Google Scholar] [CrossRef]
- Chaabouni, S.E.; Belguith, H.; Hassairi, I.; M’Rad, K.; Ellouz, R. Optimization of cellulase production by Penicillium occitanis. Appl. Microbiol. Biotechnol. 1995, 43, 267–269. [Google Scholar] [CrossRef]
- Mandels, M.; Weber, J. The production of cellulases. In Cellulases and Their Applications; Hajny, G.J., Reese, E.T., Eds.; American Chemical Society: Washington, DC, USA, 1969; Volume 95, pp. 391–414. ISBN 0-8412-0095-5. [Google Scholar]
- Ghose, T.K. Measurement of cellulase activities. Pure Appl. Chem. 1987, 59, 257–268. [Google Scholar] [CrossRef]
- Bailey, M.J.; Biely, P.; Poutanen, K. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 1992, 23, 257–270. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Bryan, W.L. Solid-state fermentation of sugars in sweet sorghum. Enzym. Microb. Technol. 1990, 12, 437–442. [Google Scholar] [CrossRef]
- Boudechiche, L.; Araba, A.; Tahar, A.; Ouzrout, R. Etude de la composition chimique des noyaux de dattes en vue d’une incorporation en alimentation animale. Livest. Res. Rural Dev. 2009, 21, 69. [Google Scholar]
- Aguirre, M.J.; Isaacs, M.; Matsuhiro, B.; Mendoza, L.; Zúñiga, E.A. Characterization of a neutral polysaccharide with antioxidant capacity from red wine. Carbohydr. Res. 2009, 344, 1095–1101. [Google Scholar] [CrossRef]
- Sebastian, S.; Sundaraganesan, N.; Manoharan, S. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of ferulic acid by density functional study. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 2009, 74, 312–323. [Google Scholar] [CrossRef]
- Hua, D.; Zhang, D.; Huang, B.; Yi, P.; Yan, C. Structural characterization and DPPH radical scavenging activity of a polysaccharide from Guara fruits. Carbohydr. Polym. 2014, 103, 143–147. [Google Scholar] [CrossRef]
- Sila, A.; Sayari, N.; Balti, R.; Martinez-Alvarez, O.; Nedjar-Arroume, N.; Moncef, N.; Bougatef, A. Biochemical and antioxidant properties of peptidic fraction of carotenoproteins generated from shrimp by-products by enzymatic hydrolysis. Food Chem. 2014, 148, 445–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeddou, K.B.; Maktouf, S.; Ghazala, I.; Frikha, D.; Ghribi, D.; Ghorbel, R.E.; Nouri-Ellouz, O. Potato peel as feedstock for bioethanol production: A comparison of acidic and enzymatic hydrolysis. Ind. Crop. Prod. 2014, 52, 144–149. [Google Scholar]
- Vučurović, V.M.; Puškaš, V.S.; Miljić, U.D. Bioethanol production from sugar beet molasses and thick juice by free and immobilised Saccharomyces cerevisiae. J. Inst. Brew. 2019, 125, 134–142. [Google Scholar] [CrossRef]
Allig | Deglet Nour | Ghars | |
---|---|---|---|
Humidity | 4.76 ± 0.2 | 8.02 ± 0.18 | 7.81 ± 0.12 |
Cellulose | 26.6 ± 0.08 | 33.92 ± 0.075 | 31.94 ± 0.089 |
Hemicellulose | 42.3 ± 0.3 | 31.97 ± 0.26 | 34.29 ± 0.241 |
Lignin | 24.06 ± 0.04 | 21.2 ± 0.062 | 23.96 ± 0.033 |
µmax (h−1) | G (h) | Y X/S (%) | Y P/S (%) | |
---|---|---|---|---|
G 1% | 0.204 | 4.90 | 27.01 | 98.31 |
G 2% | 0.257 | 3.89 | 14.68 | 69.91 |
G 4% | 0.427 | 2.34 | 8.86 | 62.89 |
HCDS 1% | 0.248 | 4.03 | 15.31 | 84.33 |
HCDS 2% | 0.262 | 3.82 | 11.16 | 71.86 |
HCDS 4% | 0.306 | 3.27 | 7.16 | 65.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouaziz, F.; Abdeddayem, A.B.; Koubaa, M.; Barba, F.J.; Jeddou, K.B.; Kacem, I.; Ghorbel, R.E.; Chaabouni, S.E. Bioethanol Production from Date Seed Cellulosic Fraction Using Saccharomyces cerevisiae. Separations 2020, 7, 67. https://doi.org/10.3390/separations7040067
Bouaziz F, Abdeddayem AB, Koubaa M, Barba FJ, Jeddou KB, Kacem I, Ghorbel RE, Chaabouni SE. Bioethanol Production from Date Seed Cellulosic Fraction Using Saccharomyces cerevisiae. Separations. 2020; 7(4):67. https://doi.org/10.3390/separations7040067
Chicago/Turabian StyleBouaziz, Fatma, Amal Ben Abdeddayem, Mohamed Koubaa, Francisco J. Barba, Khawla Ben Jeddou, Imen Kacem, Raoudha Ellouz Ghorbel, and Semia Ellouz Chaabouni. 2020. "Bioethanol Production from Date Seed Cellulosic Fraction Using Saccharomyces cerevisiae" Separations 7, no. 4: 67. https://doi.org/10.3390/separations7040067
APA StyleBouaziz, F., Abdeddayem, A. B., Koubaa, M., Barba, F. J., Jeddou, K. B., Kacem, I., Ghorbel, R. E., & Chaabouni, S. E. (2020). Bioethanol Production from Date Seed Cellulosic Fraction Using Saccharomyces cerevisiae. Separations, 7(4), 67. https://doi.org/10.3390/separations7040067