Graphene Oxide Nanoparticles and Their Influence on Chromatographic Separation Using Polymeric High Internal Phase Emulsions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterisation
2.2. Application of Graphene Oxide-Modified PolyHIPE Materials in Liquid Chromatographic Separations
2.3. Investigating the Reduction of Graphene Oxide-Modified PolyHIPE Stationary Phases
3. Materials and Methods
3.1. Silanisation of Fused Silica Capillary
3.2. Fabrication of Graphene Oxide-Modified PolyHIPE Capillary Columns
3.3. Reduction of Graphene Oxide-Modified PolyHIPE Capillary Columns
3.4. Instrumental Conditions
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
i.d. | Internal diameter |
RSD | Relative standard deviation |
RP-HPLC | Reversed-phase high performance liquid chromatography |
PS | Polystyrene |
DVB | Divinylbenzene |
GO | Graphene oxide |
GONP | Graphene oxide nanoparticle |
rGONP | Reduced graphene oxide nanoparticle |
NP | Nanoparticles |
SEM | Scanning electron microscopy |
FESEM | Field emission scanning electron microscopy |
FTIR | Fourier transform infrared spectroscopy |
OTCEC | Open tubular capillary electrochromatography |
CEC | Capillary electrochromatography |
PAH | Polyaromatic hydrocarbon |
polyHIPE | polymeric high internal phase emulsion |
PPS | Potassium persulfate |
UV | Ultraviolet |
References
- Silverstein, M.S. Emulsion-templated porous polymers: A retrospective perspective. Polymer 2014, 55, 304–320. [Google Scholar] [CrossRef]
- Choudhury, S.; Connolly, D.; White, B. Supermacroporous polyHIPE and cryogel monolithic materials as stationary phases in separation science: A review. Anal. Meth. 2015, 7, 6967–6982. [Google Scholar] [CrossRef]
- Kimmins, S.D.; Cameron, N.R. Functional Porous Polymers by Emulsion Templating: Recent Advances. Adv. Mater. 2011, 21, 211–225. [Google Scholar] [CrossRef]
- Pulko, I.; Krajnc, P. High Internal Phase Emulsion Templating—A Path to Hierarchically Porous Functional Polymers. Macromol. Rapid Commun. 2012, 33, 1731–1746. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, M.S.; Tai, H.; Sergienko, A.; Lumelsky, Y.; Pavlovsky, S. PolyHIPE: IPNs, hybrids, nanoscale porosity, silica monoliths and ICP-based sensors. Polymer 2005, 46, 6682–6694. [Google Scholar] [CrossRef]
- Krenkova, J.; Foret, F.; Svec, F. Less common applications of monoliths: V. Monolithic scaffolds modified with nanostructures for chromatographic separations and tissue engineering. J. Sep. Sci. 2012, 35, 1266–1283. [Google Scholar] [CrossRef] [PubMed]
- Barbetta, A.; Dentini, M.; Zannoni, E.M.; De Stefano, M.E. Tailoring the Porosity and Morphology of Gelatin-Methacrylate PolyHIPE Scaffolds for Tissue Engineering Applications. Langmuir 2005, 21, 12333–12341. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Zhen, X.; Sun, L.; Qin, Q.; Guo, L.; Ruan, G. Development and validation of polymerized high internal phase emulsion monoliths coupled with high-performance liquid chromatography and fluorescence detection for the determination of trace tetracycline antibiotics in environmental water samples. J. Sep. Sci. 2015, 38, 3774–3780. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Ruan, G.; Nie, H.; Xie, T.; Zheng, Y.; Du, F.; Li, J. Development of high internal phase emulsion polymeric monoliths for highly efficient enrichment of trace polycyclic aromatic hydrocarbons from large-volume water samples. J. Chromatogr. A 2015, 1405, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, G.L.; Liu, H.Y.; Bai, L.G.; Zhang, Q.X. Novel Porous Monolithic Column Using Poly(high internal phase emulsion) Methacrylate as Materials for Immunoglobulin Separation Performance on HPLC. Chin. J. Chem. 2010, 28, 229–234. [Google Scholar] [CrossRef]
- Yao, C.H.; Qi, L.; Jia, H.Y.; Xin, P.Y.; Yang, G.L.; Chen, Y. A novel glycidyl methacrylate-based monolith with sub-micron skeletons and well-defined macropores. J. Mater. Chem. 2009, 19, 767–772. [Google Scholar] [CrossRef]
- Choudhury, S.; Connolly, D.; White, B. Application of polymeric high-internal-phase-emulsion-coated stationary-phase columns in open-tubular capillary electrochromatography. J. Appl. Polym. Sci. 2016, 133, 11563–11568. [Google Scholar] [CrossRef]
- Yao, C.H.; Qi, L.; Yang, G.L.; Wang, F.Y. Preparation of sub-micron skeletal monoliths with high capacity for liquid chromatography. J. Sep. Sci. 2010, 33, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Barbetta, A.; Cameron, N.R. Morphology and surface area of emulsion-derived (PolyHIPE) solid foams prepared with oil-phase soluble porogenic solvents: Span 80 as surfactant. Macromolecules 2004, 37, 3188–3201. [Google Scholar] [CrossRef]
- Sergienko, A.Y.; Tai, H.W.; Narkis, M.; Silverstein, M.S. Polymerized high internal phase emulsions containing a porogen: Specific surface area and sorption. J. Appl. Polym. Sci. 2004, 94, 2233–2239. [Google Scholar] [CrossRef]
- Cameron, N.R.; Barbetta, A. The influence of porogen type on the porosity, surface area and morphology of poly(divinylbenzene) PolyHIPE foams. J. Mater. Chem. 2000, 10, 2466–2471. [Google Scholar] [CrossRef]
- Mert, E.H.; Kaya, M.A.; Yildirim, H. Preparation and Characterization of Polyester-Glycidyl Methacrylate PolyHIPE Monoliths to Use in Heavy Metal Removal. Des. Monomers Polym. 2012, 15, 113–126. [Google Scholar] [CrossRef]
- Floris, P.; Twamley, B.; Nesterenko, P.N.; Paull, B.; Connolly, D. Fabrication and characterisation of gold nano-particle modified polymer monoliths for flow-through catalytic reactions and their application in the reduction of hexacyanoferrate. Microchim. Acta 2014, 181, 249–256. [Google Scholar] [CrossRef]
- Floris, P.; Twamley, B.; Nesterenko, P.N.; Paull, B.; Connolly, D. Agglomerated polymer monoliths with bimetallic nano-particles as flow-through micro-reactors. Microchim. Acta 2012, 179, 149–156. [Google Scholar] [CrossRef]
- Colver, P.J.; Bon, S.A.F. Cellular polymer monoliths made via pickering high internal phase emulsions. Chem. Mater. 2007, 19, 1537–1539. [Google Scholar] [CrossRef]
- Gui, H.; Xu, P.; Hu, Y.; Wang, J.; Yang, X.; Bahader, A.; Ding, Y. Synergistic effect of graphene and an ionic liquid containing phosphonium on the thermal stability and flame retardancy of polylactide. RSC Adv. 2015, 5, 27814–27822. [Google Scholar] [CrossRef]
- Yu, B.; Shi, Y.; Yuan, B.; Qiu, S.; Xing, W.; Hu, W.; Song, L.; Lo, S.; Hu, Y. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J. Mater. Chem. A 2015, 3, 8034–8044. [Google Scholar] [CrossRef]
- Hu, W.; Yu, B.; Jiang, S.-D.; Song, L.; Hu, Y.; Wang, B. Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene. J. Hazard. Mater. 2015, 300, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Yang, W.; Tang, G.; Wang, B.; Jiang, S.; Hu, Y.; Gui, Z. Comparative study on the thermal stability, flame retardancy and smoke suppression properties of polystyrene composites containing molybdenum disulfide and graphene. RSC Adv. 2013, 3, 25030–25040. [Google Scholar] [CrossRef]
- Yu, B.; Wang, X.; Qian, X.; Xing, W.; Yang, H.; Ma, L.; Lin, Y.; Jiang, S.; Song, L.; Hu, Y.; et al. Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. RSC Adv. 2014, 4, 31782–31794. [Google Scholar] [CrossRef]
- Teo, G.H.; Ng, Y.H.; Zetterlund, P.B.; Thickett, S.C. Factors influencing the preparation of hollow polymer-graphene oxide microcapsules via Pickering miniemulsion polymerization. Polymer 2015, 63, 1–9. [Google Scholar] [CrossRef]
- Thickett, S.C.; Zetterlund, P.B. Graphene oxide (GO) nanosheets as oil-in-water emulsion stabilizers: Influence of oil phase polarity. J. Colloid Interface Sci. 2015, 442, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Man, S.H.C.; Thickett, S.C.; Whittaker, M.R.; Zetterlund, P.B. Nano-sized graphene oxide as sole surfactant in miniemulsion polymerization for nanocomposite synthesis: Effect of pH and ionic strength. Polymer 2014, 55, 3490–3497. [Google Scholar] [CrossRef]
- Man, S.H.C.; Thickett, S.C.; Whittaker, M.R.; Zetterlund, P.B. Synthesis of polystyrene nanoparticles “armoured” with nanodimensional graphene oxide sheets by miniemulsion polymerization. J. Polym. Sci. A Polym. Chem. 2013, 51, 47–58. [Google Scholar] [CrossRef]
- Man, S.H.C.; Yusof, N.Y.M.; Whittaker, M.R.; Thickett, S.C.; Zetterlund, P.B. Influence of monomer type on miniemulsion polymerization systems stabilized by graphene oxide as sole surfactant. J. Polym. Sci. A Polym. Chem. 2013, 51, 5153–5162. [Google Scholar] [CrossRef]
- Thickett, S.C.; Zetterlund, P.B. Functionalization of Graphene Oxide for the Production of Novel Graphene-Based Polymeric and Colloidal Materials. Curr. Org. Chem. 2013, 17, 956–974. [Google Scholar] [CrossRef]
- Thickett, S.C.; Zetterlund, P.B. Preparation of Composite Materials by Using Graphene Oxide as a Surfactant in Ab Initio Emulsion Polymerization Systems. ACS Macro Lett. 2013, 2, 630–634. [Google Scholar] [CrossRef]
- Sitko, R.; Zawisza, B.; Malicka, E. Graphene as a new sorbent in analytical chemistry. TrAC Trends Anal. Chem. 2013, 51, 33–43. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, J.; Jiang, G. Application of graphene in analytical sample preparation. TrAC Trends Anal. Chem. 2012, 37, 1–11. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, J.; Sun, J.; Thanh, W.; Zeng, L.; Jiang, G. Graphene and Graphene Oxide Sheets Supported on Silica as Versatile and High-Performance Adsorbents for Solid-Phase Extraction. Angew. Chem. Int. Ed. 2011, 50, 5913–5927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Du, Z.; Li, G. Layer-by-Layer Fabrication of Chemical-Bonded Graphene Coating for Solid-Phase Microextraction. Anal. Chem. 2011, 83, 7531–7541. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Liu, S.; Song, X.; Zhu, Y.; Jiang, S. Layer-by-layer self-assembled graphene oxide/silica microsphere composites as stationary phase for high performance liquid chromatography. Analyst 2012, 137, 5237–5244. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Wang, X.; Ren, H.; Jiang, S.; Wang, L.; Liu, S. Gold nanoparticle decorated graphene oxide/silica composite stationary phase for high-performance liquid chromatography. J. Sep. Sci. 2014, 37, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qi, L.; Ma, H. Preparation of porous polymer monolithic column using functionalized graphene oxide as a functional crosslinker for high performance liquid chromatography separation of small molecules. Analyst 2013, 138, 5470–5478. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Liu, X.; Guo, L.P.; Yang, L.; Wang, S.T. Graphene oxide and reduced graphene oxide as novel stationary phases via electrostatic assembly for open-tubular capillary electrochromatography. Electrophoresis 2013, 34, 1869–1876. [Google Scholar] [CrossRef] [PubMed]
- Zhaoxia, L. The Effect of Adsorbent Geometry and Surface Chemistry on HPLC Retention. Ph.D. Thesis, Setton Hall University, South Orange, NJ, USA, 2009. [Google Scholar]
- Nesterenko, E.P.; Nesterenko, P.N.; Connolly, D.; He, X.; Floris, P.; Duffy, E.; Paull, B. Nano-particle modified stationary phases for high-performance liquid chromatography. Analyst 2013, 138, 4229–4254. [Google Scholar] [CrossRef] [PubMed]
- Innocenzi, P. Infrared spectroscopy of sol-gel derived silica-based films: A spectra-microstructure overview. J. Non-Cryst. Solids 2003, 316, 309–319. [Google Scholar] [CrossRef]
- Carnachan, E.J.; Bokhari, M.; Przyborski, S.A.; Cameron, N.R. Tailoring the morphology of emilsion-templated porous polymers. Soft Matter 2006, 2, 608–616. [Google Scholar] [CrossRef]
- Barbetta, A.; Cameron, N.R.; Cooper, S.J. High internal phase emulsions (HIPEs) containing divinylbenzene and 4-vinylbenzyl chloride and the morphology of the resulting polyHIPE materials. Chem. Commun. 2000, 3, 221–222. [Google Scholar] [CrossRef]
- Kovacic, S.; Matsko, N.B.; Ferk, G.; Slugovc, C. Nanocomposite foams from iron oxide stabilized dicyclopentadiene high internal phase emulsions: Preparation and bromination. Acta Chim. Slov. 2014, 61, 208–214. [Google Scholar] [PubMed]
- Tunc, Y.; Golgelioglu, C.; Tuncel, A.; Ulubayram, K. Polystyrene-Based High Internal Phase Emulsion Polymer Monolithic Stationary Phase for Capillary Electrochromatography. Sep. Sci. Technol. 2012, 47, 2444–2449. [Google Scholar]
- Tunc, Y.; Golgelioglu, C.; Hasirci, N.; Ulubayram, K.; Tuncel, A. Acrylic-based high internal phase emulsion polymeric monolith for capillary electrochromatography. J. Chromatgr. A 2010, 1217, 1654–1659. [Google Scholar] [CrossRef] [PubMed]
- Urban, J.; Svec, F.; Frechet, J.M.J. Efficient Separation of Small Molecules Using a Large Surface Area Hypercrosslinked Monolithic Polymer Capillary Column. Anal. Chem. 2010, 82, 1621–1623. [Google Scholar] [CrossRef] [PubMed]
- Urban, J.; Svec, F.; Frechet, J.M.J. Hypercrosslinking: New approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules. J. Chromatgr. A 2010, 1217, 8212–8221. [Google Scholar] [CrossRef] [PubMed]
- Tchapla, A.; Colin, H.; Guiochon, G. Linearity of homologous series retention plots in reversed phase liquid chromatography. Anal. Chem. 1984, 56, 621–625. [Google Scholar] [CrossRef]
- Wang, Q.C.; Švec, F.; Fréchet, J.M.J. Reversed-phase chromatography of small molecules and peptides on a continuous rod of macroporous poly (styrene-co-divinylbenzene). J. Chromatgr. A 1994, 669, 230–235. [Google Scholar] [CrossRef]
- Yang, J.; Yang, G.; Liu, H.; Bai, L.; Zhang, Q. Preparation and characterization of porous poly(vinyl ester) resin monoliths as separation media. J. Appl. Polym. Sci. 2011, 119, 412–418. [Google Scholar] [CrossRef]
- Svec, F.; Huber, C.G. Monolithic materials: Promises, challenges, achievements. Anal. Chem. 2006, 78, 2100–2107. [Google Scholar] [CrossRef]
- Fernandez-Merino, M.J.; Guardia, L.; Paredes, J.I.; Villar-Rodil, S.; Solis-Fernandez, P.; Martinez-Alonso, A.; Tascon, J.M.D. Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. J. Phys. Chem. C 2010, 114, 6426–6432. [Google Scholar] [CrossRef]
PolyHIPE | Void Size (µm) | Window Size (µm) |
---|---|---|
Unmodified | 15.59 ± 13.62 | 4.29 ± 1.73 |
Modified | 10.92 ± 5.81 | 2.48 ± 0.75 |
Column | tr (min) | RSD (%) | Rs | k’ |
---|---|---|---|---|
Unmodified polyHIPE | ||||
Ethylbenzene | 7.27 ± 0.06 | 0.9 | 1.14 | 1.15 ± 0.02 |
Propylbenzene | 9.62 ± 0.10 | 0.1 | 1.26 | 1.85 ± 0.02 |
Butylbenzene | 13.48 ± 0.16 | 1.2 | 1.36 | 2.99 ± 0.05 |
Pentylbenzene | 19.73 ± 0.21 | 1.2 | 2.09 | 4.85 ± 0.06 |
GONP-modified polyHIPE | ||||
Ethylbenzene | 6.94 ± 0.02 | 0.3 | 1.25 | 1.11 ± 0.01 |
Propylbenzene | 9.11 ± 0.02 | 0.3 | 1.34 | 1.76 ± 0.01 |
Butylbenzene | 12.80 ± 0.05 | 0.5 | 1.51 | 2.89 ± 0.02 |
Pentylbenzene | 18.60 ± 0.10 | 0.6 | 1.91 | 4.65 ± 0.03 |
Reduced GONP-modified polyHIPE | ||||
Ethylbenzene | 7.13 ± 0.04 | 0.5 | 0.98 | 1.13 ± 0.03 |
Propylbenzene | 9.38 ± 0.05 | 0.5 | 1.27 | 1.78 ± 0.01 |
Butylbenzene | 13.26 ± 0.09 | 0.6 | 1.42 | 2.93 ± 0.03 |
Pentylbenzene | 19.41 ± 0.06 | 0.3 | 1.66 | 4.73 ± 0.05 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhury, S.; Duffy, E.; Connolly, D.; Paull, B.; White, B. Graphene Oxide Nanoparticles and Their Influence on Chromatographic Separation Using Polymeric High Internal Phase Emulsions. Separations 2017, 4, 5. https://doi.org/10.3390/separations4010005
Choudhury S, Duffy E, Connolly D, Paull B, White B. Graphene Oxide Nanoparticles and Their Influence on Chromatographic Separation Using Polymeric High Internal Phase Emulsions. Separations. 2017; 4(1):5. https://doi.org/10.3390/separations4010005
Chicago/Turabian StyleChoudhury, Sidratul, Emer Duffy, Damian Connolly, Brett Paull, and Blánaid White. 2017. "Graphene Oxide Nanoparticles and Their Influence on Chromatographic Separation Using Polymeric High Internal Phase Emulsions" Separations 4, no. 1: 5. https://doi.org/10.3390/separations4010005
APA StyleChoudhury, S., Duffy, E., Connolly, D., Paull, B., & White, B. (2017). Graphene Oxide Nanoparticles and Their Influence on Chromatographic Separation Using Polymeric High Internal Phase Emulsions. Separations, 4(1), 5. https://doi.org/10.3390/separations4010005