Nano-Doped Monolithic Materials for Molecular Separation
Abstract
:1. Introduction
2. Monoliths: Preparation, Types, and Applications
3. Nano-Doped Monolithic Columns
3.1. Carbon-Based Nanoparticles
3.1.1. Carbon Nanotubes
3.1.2. C60-Fullerene
3.1.3. Graphene (GN) and Graphene Oxide (GO)
3.2. Silver Nanoparticles (AgNPs)
3.3. Gold Nanoparticles (AuNPs)
3.4. Alumina Nanoparticles
3.5. Zirconia (ZrO2) Nanoparticles
3.6. Iron Oxide Nanoparticles
3.7. Titanium (TiO2) Nanoparticles
3.8. Hydroxyapatite Nanoparticles (HA-NP)
4. Future Advances in Nano-Doped Monolith Synthesis
5. Conclusions
Conflicts of Interest
References
- Tyn, M.T.; Gusek, T.W. Prediction of diffusion coefficients of proteins. Biotechnol. Bioeng. 1990, 35, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.X.L.; Agyei, D.; Pan, S.; Danquah, M.K. Parametric investigation of batch adsorption of proteins onto polymeric particles. Curr. Pharm. Biotechnol. 2015, 16, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Jungbauer, A.; Hahn, R. Polymethacrylate monoliths for preparative and industrial separation of biomolecular assemblies. J. Chromatogr. A 2008, 1184, 62–79. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.A.H.; Soliven, A.; Allen, R.C.; Filgueira, M.; Carr, P.W. Comparison of core–shell particles and sub-2μm fully porous particles for use as ultrafast second dimension columns in two-dimensional liquid chtomatography. J. Chromatogr. A 2015, 1386, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Gritti, F.; Leonardis, I.; Abia, J.; Guiochon, G. Physical properties and structure of fine core–shell particles used as packing materials for chromatography: Relationships between particle characteristics and column performance. J. Chromatogr. A 2010, 1217, 3819–3843. [Google Scholar] [CrossRef] [PubMed]
- Svec, F.; Tennikova, T.B.; Deyl, Z. Monolithic Materials: Preparation, Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2003; Volume 67. [Google Scholar]
- Roberts, M.W.; Ongkudon, C.M.; Forde, G.M.; Danquah, M.K. Versatility of polymethacrylate monoliths for chromatographic purification of biomolecules. J. Sep. Sci. 2009, 32, 2485–2494. [Google Scholar] [CrossRef] [PubMed]
- Acquah, C.; Moy, C.K.S.; Danquah, M.K.; Ongkudon, C.M. Development and characteristics of polymer monoliths for advanced LC bioscreening applications: A review. J. Chromatogr. B 2016, 1015–1016, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Noel, R.; Sanderson, A.; Spark, L. A monolithic ion-exchange material suitable for downstream processing of bioproducts. In Ion Exchange Advances; Springer: Berlin, Germany, 1992; pp. 229–236. [Google Scholar]
- Jungbauer, A. Chromatographic media for bioseparation. J. Chromatogr. A 2005, 1065, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Chirica, G.S.; Remcho, V.T. Fritless capillary columns for HPLC and CEC prepared by immobilizing the stationary phase in an organic polymer matrix. Anal. Chem. 2000, 72, 3605–3610. [Google Scholar] [CrossRef] [PubMed]
- Ghose, S.; Forde, G.M.; Slater, N.K. Affinity adsorption of plasmid DNA. Biotechnol. Prog. 2004, 20, 841–850. [Google Scholar] [CrossRef] [PubMed]
- González-González, M.; González-Valdez, J.; Mayolo-Deloisa, K.; Rito-Palomares, M. Monolithic chromatography: Insights and practical perspectives: Monolithic chromatography: Insights and practical perspectives. J. Chem. Technol. Biotechnol. 2016, 92. [Google Scholar] [CrossRef]
- Knob, R.; Sahore, V.; Sonker, M.; Woolley, A.T. Advances in monoliths and related porous materials for microfluidics. Biomicrofluidics 2016, 10, 032901. [Google Scholar] [CrossRef] [PubMed]
- Ongkudon, C.M.; Kansil, T.; Wong, C. Challenges and strategies in the preparation of large-volume polymer-based monolithic chromatography adsorbents. J. Sep. Sci. 2014, 37, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Danquah, M.K.; Forde, G.M. Preparation of macroporous methacrylate monolithic material with convective flow properties for bioseparation: Investigating the kinetics of pore formation and hydrodynamic performance. Chem. Eng. J. 2008, 140, 593–599. [Google Scholar] [CrossRef]
- Chan, A.S.; Danquah, M.K.; Agyei, D.; Hartley, P.G.; Zhu, Y. A parametric study of a monolithic microfluidic system for on-chip biomolecular separation. Sep. Sci. Technol. 2014, 49, 854–860. [Google Scholar] [CrossRef]
- Díaz-Bao, M.; Barreiro, R.; Miranda, J.M.; Cepeda, A.; Regal, P. Recent advances and uses of monolithic columns for the analysis of residues and contaminants in food. Chromatography 2015, 2, 79–95. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Liao, Y.; Liu, H. Applications of nanomaterials in liquid chromatography: Opportunities for separation with high efficiency and selectivity. J. Sep. Sci. 2006, 29, 1872–1878. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Alejandro, F.M.; Fréchet, J.M.; Svec, F. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles. J. Chromatogr. A 2012, 1261, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Krenkova, J.; Foret, F. Iron oxide nanoparticle coating of organic polymer-based monolithic columns for phosphopeptide enrichment. J. Sep. Sci. 2011, 34, 2106–2112. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Deng, N.; Wu, C.; Liang, Y.; Jiang, B.; Yang, K.; Liang, Z.; Zhang, L.; Zhang, Y. Aptamer functionalized hydrophilic polymer monolith with gold nanoparticles modification for the sensitive detection of human α-thrombin. Talanta 2016, 154, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ning, X.; Xiao, Q.; Chen, K.; Zhou, H. Development and characterization of porous silver-incorporated hydroxyapatite ceramic for separation and elimination of microorganisms. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 81, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Zhang, L.; Lei, W.; Zhu, Y.; Zhang, W.; Wang, Y. Novel hybrid organic–inorganic monolithic column containing mesoporous nanoparticles for capillary electrochromatography. Talanta 2012, 98, 277–281. [Google Scholar] [CrossRef] [PubMed]
- El-Safty, S.A.; Hanaoka, T.; Mizukami, F. Stability of highly ordered nanostructures with uniformly cylindrical mesochannels. Acta Mater. 2006, 54, 899–908. [Google Scholar] [CrossRef]
- Bai, L.; Wang, J.; Zhang, H.; Liu, S.; Qin, J.; Liu, H. Ionic liquid as porogen in the preparation of a polymer-based monolith for the separation of protein by high performance liquid chromatography. Anal. Methods 2015, 7, 607–613. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, X.; Zhang, H.; Liu, S.; Bai, L.; Liu, H. Preparation of a porous polymer monolithic column with an ionic liquid as a porogen and its applications for the separation of small molecules in high performance liquid chromatography. Anal. Methods 2015, 7, 7879–7888. [Google Scholar] [CrossRef]
- Sui, R.; Liu, S.; Lajoie, G.A.; Charpentier, P.A. Preparing titania aerogel monolithic chromatography columns using supercritical carbon dioxide. J. Sep. Sci. 2010, 33, 1604–1609. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Oschatz, M.; Biemelt, T.; Borchardt, L.; Senkovska, I.; Lohe, M.R.; Kaskel, S. Synthesis, characterization, and hydrogen storage capacities of hierarchical porous carbide derived carbon monolith. J. Mater. Chem. 2012, 22, 23893–23899. [Google Scholar] [CrossRef]
- Navarro-Pascual-Ahuir, M.; Lerma-García, M.J.; Ramis-Ramos, G.; Simó-Alfonso, E.F.; Herrero-Martínez, J.M. Preparation and evaluation of lauryl methacrylate monoliths with embedded silver nanoparticles for capillary electrochromatography. Electrophoresis 2013, 34, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Siouffi, A.-M. Silica gel-based monoliths prepared by the sol–gel method: Facts and figures. J. Chromatogr. A 2003, 1000, 801–818. [Google Scholar] [CrossRef]
- Liu, Z.; Ou, J.; Zou, H. Click polymerization for preparation of monolithic columns for liquid chromatography. TrAC Trends Anal. Chem. 2016, 82, 89–99. [Google Scholar] [CrossRef]
- Mann, S.; Burkett, S.L.; Davis, S.A.; Fowler, C.E.; Mendelson, N.H.; Sims, S.D.; Walsh, D.; Whilton, N.T. Sol-gel synthesis of organized matter. Chem. Mater. 1997, 9, 2300–2310. [Google Scholar] [CrossRef]
- Unger, K.K.; Tanaka, N.; Machtejevas, E. Monolithic Silicas in Separation Science; Wiley-VCH: Weinheim, Germany, 2011; Volume 15, p. 16. [Google Scholar]
- Dong, X.; Dong, J.; Ou, J.; Zhu, Y.; Zou, H. Preparation and evaluation of a vancomycin-immobilized silica monolith as chiral stationary phase for CEC. Electrophoresis 2007, 28, 2606–2612. [Google Scholar] [CrossRef] [PubMed]
- Ongkudon, C.M.; Danquah, M.K. Anion exchange chromatography of 4.2 kbp plasmid based vaccine (pcDNA3F) from alkaline lysed E. coli lysate using amino functionalised polymethacrylate conical monolith. Sep. Purif. Technol. 2011, 78, 303–310. [Google Scholar] [CrossRef]
- Tian, Y.; Zhong, C.; Fu, E.; Zeng, Z. Novel β-cyclodextrin derivative functionalized polymethacrylate-based monolithic columns for enantioselective separation of ibuprofen and naproxen enantiomers in capillary electrochromatography. J. Chromatogr. A 2009, 1216, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, X.; Xie, Z. Preparation and evaluation of a sulfoalkylbetaine-based zwitterionic monolithic column for cec of polar analytes. Electrophoresis 2009, 30, 2702–2710. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Smith, N.W.; Ferguson, P.D.; Taylor, M.R. Hydrophilic interaction chromatography using methacrylate-based monolithic capillary column for the separation of polar analytes. Anal. Chem. 2007, 79, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.S.; Danquah, M.K.; Agyei, D.; Hartley, P.G.; Zhu, Y. A simple microfluidic chip design for fundamental bioseparation. J. Anal. Methods Chem. 2014, 2014, 175457. [Google Scholar] [CrossRef] [PubMed]
- Mallik, R.; Jiang, T.; Hage, D.S. High-performance affinity monolith chromatography: Development and evaluation of human serum albumin columns. Anal. Chem. 2004, 76, 7013–7022. [Google Scholar] [CrossRef] [PubMed]
- Hilder, E.F.; Svec, F.; Fréchet, J.M.J. Latex-functionalized monolithic columns for the separation of carbohydrates by micro anion-exchange chromatography. J. Chromatogr. A 2004, 1053, 101–106. [Google Scholar] [CrossRef]
- Preinerstorfer, B.; Lubda, D.; Mucha, A.; Kafarski, P.; Lindner, W.; Lämmerhofer, M. Stereoselective separations of chiral phosphinic acid pseudodipeptides by CEC using silica monoliths modified with an anion-exchange-type chiral selector. Electrophoresis 2006, 27, 4312–4320. [Google Scholar] [CrossRef] [PubMed]
- Mallik, R.; Hage, D.S. Development of an affinity silica monolith containing human serum albumin for chiral separations. J. Pharm. Biomed. Anal. 2008, 46, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hobo, T. Chemically l-phenylalaninamide-modified monolithic silica column prepared by a sol-gel process for enantioseparation of dansyl amino acids by ligand exchange-capillary electrochromatography. Anal. Chem. 2001, 73, 3348–3357. [Google Scholar] [CrossRef] [PubMed]
- Moravcová, D.; Planeta, J.; Kahle, V.; Roth, M. Zwitterionic silica-based monolithic capillary columns for isocratic and gradient hydrophilic interaction liquid chromatography. J. Chromatogr. A 2012, 1270, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Xu, M.; Svec, F.; Fréchet, J.M. Preparation of monolithic polymers with controlled porous properties for microfluidic chip applications using photoinitiated free-radical polymerization. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 755–769. [Google Scholar] [CrossRef]
- Dong, X.; Wu, R.; Dong, J.; Wu, M.; Zhu, Y.; Zou, H. Polyacrylamide-based monolithic capillary column with coating of cellulose tris(3,5-dimethylphenyl-carbamate) for enantiomer separation in capillary electrochromatography. Electrophoresis 2008, 29, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Bragg, W.; Shamsi, S.A. A novel positively charged achiral co-monomer for β-cyclodextrin monolithic stationary phase: Improved chiral separation of acidic compounds using capillary electrochromatography coupled to mass spectrometry. J. Chromatogr. A 2012, 1267, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, M.; Wu, R.a.; Dong, J.; Ou, J.; Zou, H. Preparation of perphenylcarbamoylated β-cyclodextrin-silica hybrid monolithic column with “one-pot” approach for enantioseparation by capillary liquid chromatography. Anal. Chem. 2011, 83, 3616–3622. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Ou, J.; Zhang, Z.; Dong, J.; Wu, M.; Zou, H. Facile preparation of zwitterionic organic-silica hybrid monolithic capillary column with an improved “one-pot” approach for hydrophilic-interaction liquid chromatography (HILIC). Anal. Chem. 2012, 84, 2721–2728. [Google Scholar] [CrossRef] [PubMed]
- Acquah, C.; Danquah, M.K.; Moy, C.K.S.; Ongkudon, C.M. In-process thermochemical analysis of in situ poly(ethylene glycol methacrylate-co-glycidyl methacrylate) monolithic adsorbent synthesis. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Chambers, S.D.; Holcombe, T.W.; Svec, F.; Fréchet, J.M.J. Porous polymer monoliths functionalized through copolymerization of a C60 fullerene-containing methacrylate monomer for highly efficient separations of small molecules. Anal. Chem. 2011, 83, 9478–9484. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.Z.; Lu, G.D.; Zhang, W.F.; Ma, X.H.; Ge, C.C. Frontal polymerization synthesis of monolithic macroporous polymers. Adv. Funct. Mater. 2007, 17, 3355–3362. [Google Scholar] [CrossRef]
- Feng, Q.; Yan, Q.; Ge, C. Frontal polymerization synthesis and characterization of temperature-and pH-sensitive hydrogels. Colloid Polym. Sci. 2013, 291, 1163–1170. [Google Scholar] [CrossRef]
- Beiler, B.; Vincze, Á.; Svec, F.; Sáfrány, Á. Poly(2-hydroxyethyl acrylate-co-ethyleneglycol dimethacrylate) monoliths synthesized by radiation polymerization in a mold. Polymer 2007, 48, 3033–3040. [Google Scholar] [CrossRef]
- Shih, Y.-H.; Singco, B.; Liu, W.-L.; Hsu, C.-H.; Huang, H.-Y. A rapid synthetic method for organic polymer-based monoliths in a room temperature ionic liquid medium via microwave-assisted vinylization and polymerization. Green Chem. 2011, 13, 296–299. [Google Scholar] [CrossRef]
- Khalil, A.M.; Georgiadou, V.; Guerrouache, M.; Mahouche-Chergui, S.; Dendrinou-Samara, C.; Chehimi, M.M.; Carbonnier, B. Gold-decorated polymeric monoliths: In-situ vs ex-situ immobilization strategies and flow through catalytic applications towards nitrophenols reduction. Polymer 2015, 77, 218–226. [Google Scholar] [CrossRef]
- Yao, C.; Qi, L.; Qiao, J.; Zhang, H.; Wang, F.; Chen, Y.; Yang, G. High-performance affinity monolith chromatography for chiral separation and determination of enzyme kinetic constants. Talanta 2010, 82, 1332–1337. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Gan, H.T.; Latiff, S.M.A.; Chuah, C.; Lee, W.Y.; Yang, Y.-S.; Loo, B.; Ng, S.K.; Gagnon, P. Principles and applications of steric exclusion chromatography. J. Chromatogr. A 2012, 1270, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Mallik, R.; Hage, D.S. Affinity monoliths for ultrafast immunoextraction. Anal. Chem. 2005, 77, 2362–2372. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.G. Monolithic Chromatography and Its Modern Applications; ILM Publications: St Albans, UK, 2010. [Google Scholar]
- Pfaunmiller, E.; Paulemond, M.; Dupper, C.; Hage, D. Affinity monolith chromatography: A review of principles and recent analytical applications. Anal. Bioanal. Chem. 2013, 405, 2133–2145. [Google Scholar] [CrossRef] [PubMed]
- Hirabayashi, J.; Kasai, K.-I. Applied slalom chromatography improved DNA separation by the use of columns developed for reversed-phase chromatography. J. Chromatogr. A 1996, 722, 135–142. [Google Scholar] [CrossRef]
- Peyrin, E.; Caron, C.; Garrel, C.; Ravel, A.; Villet, A.; Grosset, C.; Favier, A. DNA migration regimes in hydrodynamic chromatography and slalom chromatography: Evidence for a transition. Talanta 2001, 55, 291–296. [Google Scholar] [CrossRef]
- Andjelkovic, I.; Tran, D.N.; Kabiri, S.; Azari, S.; Markovic, M.; Losic, D. Graphene aerogels decorated with α-feooh nanoparticles for efficient adsorption of arsenic from contaminated waters. ACS Appl. Mater. Interfaces 2015, 7, 9758–9766. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, P.; Zhang, X.; Lu, Y.; Zhan, W. Edge-to-edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity. Small 2013, 9, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, Y.; Cheng, H.; Shen, Y. Graphene oxide decorated monolithic column as stationary phase for capillary electrochromatography. J. Chromatogr. A 2016, 1452, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Connolly, D.; Currivan, S.; Paull, B. Polymeric monolithic materials modified with nanoparticles for separation and detection of biomolecules: A review. Proteomics 2012, 12, 2904–2917. [Google Scholar] [CrossRef] [PubMed]
- Rechberger, F.; Städler, R.; Tervoort, E.; Niederberger, M. Strategies to improve the electrical conductivity of nanoparticle-based antimony-doped tin oxide aerogels. J. Sol-Gel Sci. Technol. 2016, 80, 660–666. [Google Scholar] [CrossRef]
- Hu, W.; Hong, T.; Gao, X.; Ji, Y. Applications of nanoparticle-modified stationary phases in capillary electrochromatography. TrAC Trends Anal. Chem. 2014, 61, 29–39. [Google Scholar] [CrossRef]
- Carrasco-Correa, E.J.; Ramis-Ramos, G.; Herrero-Martínez, J.M. Hybrid methacrylate monolithic columns containing magnetic nanoparticles for capillary electrochromatography. J. Chromatogr. A 2015, 1385, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Alla, A.J.; Stine, K.J. Development of monolithic column materials for the separation and analysis of glycans. Chromatography 2015, 2, 20–65. [Google Scholar] [CrossRef]
- Delgado, J.L.; Herranz, M.Á.; Martin, N. The nano-forms of carbon. J. Mater. Chem. 2008, 18, 1417–1426. [Google Scholar] [CrossRef]
- Bhunia, S.K.; Saha, A.; Maity, A.R.; Ray, S.C.; Jana, N.R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 2013, 3, 1473. [Google Scholar] [CrossRef] [PubMed]
- Dinadayalane, T.; Leszczynski, J. Remarkable diversity of carbon–carbon bonds: Structures and properties of fullerenes, carbon nanotubes, and graphene. Struct. Chem. 2010, 21, 1155–1169. [Google Scholar] [CrossRef]
- Lam, C.-W.; James, J.T.; McCluskey, R.; Arepalli, S.; Hunter, R.L. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol. 2006, 36, 189–217. [Google Scholar] [CrossRef] [PubMed]
- Kojima, A.; Hyon, C.K.; Kamimura, T.; Maeda, M.; Matsumoto, K. Protein sensor using carbon nanotube field effect transistor. Jpn. J. Appl. Phys. 2005, 44, 1596. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Xiang, R.; Ciuparu, D.; Pfefferle, L.D.; Horváth, C.; Wilkins, J.A. Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase for μ-HPLC and capillary electrochromatography. Anal. Chem. 2005, 77, 1398–1406. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Pascual-Ahuir, M.; Lucena, R.; Cárdenas, S.; Ramis-Ramos, G.; Valcárcel, M.; Herrero-Martínez, J.M. UV-polymerized butyl methacrylate monoliths with embedded carboxylic single-walled carbon nanotubes for cec applications. Anal. Bioanal. Chem. 2014, 406, 6329–6336. [Google Scholar] [CrossRef] [PubMed]
- André, C.; Lenancker, G.; Guillaume, Y.C. Non-covalent functionalisation of monolithic silica for the development of carbon nanotube hplc stationary phases. Talanta 2012, 99, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Mayadunne, E.; El Rassi, Z. Facile preparation of octadecyl monoliths with incorporated carbon nanotubes and neutral monoliths with coated carbon nanotubes stationary phases for HPLC of small and large molecules by hydrophobic and π–π interactions. Talanta 2014, 129, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Chambers, S.D.; Svec, F.; Fréchet, J.M. Incorporation of carbon nanotubes in porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. J. Chromatogr. A 2011, 1218, 2546–2552. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Du, Z.; Li, G.; Zhang, Y.; Cai, Z. Oligomers matrix-assisted dispersion of high content of carbon nanotubes into monolithic column for online separation and enrichment of proteins from complex biological samples. Analyst 2013, 138, 5783–5790. [Google Scholar] [CrossRef] [PubMed]
- André, C.; Agiovlasileti, D.; Guillaume, Y.C. Peculiarities of a novel bioenzymatic reactor using carbon nanotubes as enzyme activity enhancers: Application to arginase. Talanta 2011, 85, 2703–2706. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Shi, J.; Jiang, G. Application of graphene in analytical sample preparation. TrAC Trends Anal. Chem. 2012, 37, 1–11. [Google Scholar] [CrossRef]
- Barber, A.H.; Cohen, S.R.; Wagner, H.D. Static and dynamic wetting measurements of single carbon nanotubes. Phys. Rev. Lett. 2004, 92, 186103. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Song, C.; Pehrsson, P.E. Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J. Am. Chem. Soc. 2002, 124, 12418–12419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-S.; Gao, S.-P.; Huang, Y.-P.; Liu, Z.-S. Green synthesis of polymer monoliths incorporated with carbon nanotubes in room temperature ionic liquid and deep eutectic solvents. Talanta 2016, 154, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Guo, Y.; Xiong, C.; Liu, S.; Liu, X.; Jiang, S. Nanoparticle-based monoliths for chromatographic separations. Analyst 2014, 139, 4103–4117. [Google Scholar] [CrossRef] [PubMed]
- Kubo, T.; Murakami, Y.; Tsuzuki, M.; Kobayashi, H.; Naito, T.; Sano, T.; Yan, M.; Otsuka, K. Unique separation behavior of a C60 fullerene-bonded silica monolith prepared by an effective thermal coupling agent. Chemistry 2015, 21, 18095–18098. [Google Scholar] [CrossRef] [PubMed]
- Hong, T.; Yang, X.; Xu, Y.; Ji, Y. Recent advances in the preparation and application of monolithic capillary columns in separation science. Anal. Chim. Acta 2016, 931, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.; Liu, Q.; Li, Y.; Zhou, W.; Jia, Q.; Duan, T. Preparation of porous polymer monolithic column incorporated with graphene nanosheets for solid phase microextraction and enrichment of glucocorticoids. J. Chromatogr. A 2012, 1253, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-M.; Yan, X.-P. Fabrication of graphene oxide nanosheets incorporated monolithic column via one-step room temperature polymerization for capillary electrochromatography. Anal. Chem. 2011, 84, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Liang, Q.; Zhang, X.; Yang, L.; Ding, M. Graphene aerogel based monolith for effective solid-phase extraction of trace environmental pollutants from water samples. J. Chromatogr. A 2016, 1447, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hu, C.; Hu, Y.; Cheng, H.; Shi, G.; Qu, L. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. 2012, 124, 11533–11537. [Google Scholar] [CrossRef]
- Das, R.; Ghosh, S.; Chowdhury, I.H.; Naskar, M.K. Biogenic silver nanoparticle impregnated hollow mesoporous silicalite-1: An efficient catalyst for p-nitrophenol reduction. New J. Chem. 2016, 40, 50–53. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385. [Google Scholar] [PubMed]
- Zhu, Y.; Morisato, K.; Li, W.; Kanamori, K.; Nakanishi, K. Synthesis of silver nanoparticles confined in hierarchically porous monolithic silica: A new function in aromatic hydrocarbon separations. ACS Appl. Mater. Interfaces 2013, 5, 2118–2125. [Google Scholar] [CrossRef] [PubMed]
- Hashemi-Nasab, R.; Mirabedini, S. Effect of silica nanoparticles surface treatment on in situ polymerization of styrene–butyl acrylate latex. Prog. Org. Coat. 2013, 76, 1016–1023. [Google Scholar] [CrossRef]
- Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N. Biosynthesis of silver and gold nanoparticles by novel sundried cinnamomum camphora leaf. Nanotechnology 2007, 18, 105104. [Google Scholar] [CrossRef]
- Zhu, Y.; Morisato, K.; Hasegawa, G.; Moitra, N.; Kiyomura, T.; Kurata, H.; Kanamori, K.; Nakanishi, K. High-performance liquid chromatography separation of unsaturated organic compounds by a monolithic silica column embedded with silver nanoparticles. J. Sep. Sci. 2015, 38, 2841–2847. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhu, Y.; Yang, H.; Nakanishi, K.; Kanamori, K.; Guo, X. Facile preparation of silver nanoparticles homogeneously immobilized in hierarchically monolithic silica using ethylene glycol as reductant. Dalton Trans. 2014, 43, 12648–12656. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; White, I.; DeVoe, D.L. Nanoparticle-functionalized porous polymer monolith detection elements for surface-enhanced raman scattering. Anal. Chem. 2011, 83, 2119–2124. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Guo, X.; Zhu, J.; Wang, X.; Zhang, H.; Kang, Y.; Wu, T.; Du, Y. A new sers substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides. Microchim. Acta 2015, 182, 1775–1782. [Google Scholar] [CrossRef]
- Aydoğan, C.; El Rassi, Z. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography. J. Chromatogr. A 2016, 1445, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Aydoğan, C.; El Rassi, Z. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part II. Polymethacrylate-based monolithic column with “covalently” incorporated modified octadecyl fumed silica nanoparticles for reversed-phase chromatography. J. Chromatogr. A 2016, 1445, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Cao, Q.; Svec, F.; Frechet, J.M. Porous polymer monolithic column with surface-bound gold nanoparticles for the capture and separation of cysteine-containing peptides. Anal. Chem. 2010, 82, 3352–3358. [Google Scholar] [CrossRef] [PubMed]
- Ngo, Y.H.; Then, W.L.; Shen, W.; Garnier, G. Gold nanoparticles paper as a sers bio-diagnostic platform. J. Colloid Interface Sci. 2013, 409, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Truong, P.L.; Anh, N.H.; Sim, S.J. Single gold nanoplasmonic sensor for clinical cancer diagnosis based on specific interaction between nucleic acids and protein. Biosens. Bioelectron. 2015, 67, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Oo, S.Z.; Silva, G.; Carpignano, F.; Noual, A.; Pechstedt, K.; Mateos, L.; Grant-Jacob, J.A.; Brocklesby, B.; Horak, P.; Charlton, M. A nanoporous gold membrane for sensing applications. Sens. Bio-Sens. Res. 2016, 7, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Nazirov, A.; Pestov, A.; Privar, Y.; Ustinov, A.; Modin, E.; Bratskaya, S. One-pot green synthesis of luminescent gold nanoparticles using imidazole derivative of chitosan. Carbohydr. Polym. 2016, 151, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Leung, K. Polyethylene glycol–coated gold nanoshells conjugated with anti-VCAM-1 antibody. Available online: https://www.ncbi.nlm.nih.gov/books/NBK137861/ (accessed on 16 May 2013).
- Connolly, D.; Twamley, B.; Paull, B. High-capacity gold nanoparticle functionalised polymer monoliths. Chem. Commun. 2010, 46, 2109–2111. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Li, X.-F.; Le, X.C. Aptamer-modified monolithic capillary chromatography for protein separation and detection. Anal. Chem. 2008, 80, 3915–3920. [Google Scholar] [CrossRef] [PubMed]
- Deng, N.; Liang, Z.; Liang, Y.; Sui, Z.; Zhang, L.; Wu, Q.; Yang, K.; Zhang, L.; Zhang, Y. Aptamer modified organic-inorganic hybrid silica monolithic capillary columns for highly selective recognition of thrombin. Anal. Chem. 2012, 84, 10186–10190. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Barberán, M.; Lerma-García, M.J.; Simó-Alfonso, E.F.; Herrero-Martínez, J.M. Solid-phase extraction based on ground methacrylate monolith modified with gold nanoparticles for isolation of proteins. Anal. Chim. Acta 2016, 917, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, G.; Tian, M.; Li, R.; Quan, X.; Jia, Q. A novel organic–inorganic hybrid monolithic column prepared in-situ in a microchip and its application for the determination of 2-amino-4-chlorophenol in chlorzoxazone tablets. Talanta 2013, 115, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-J.; Zhou, X.; Tong, S.-S.; Jia, Q. Poly(N-isopropylacrylamide-co-N,N′-methylene bisacrylamide) monolithic column embedded with γ-alumina nanoparticles microextraction coupled with high-performance liquid chromatography for the determination of synthetic food dyes in soft drink samples. Talanta 2013, 105, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Sakwa-Novak, M.A.; Yoo, C.J.; Tan, S.; Rashidi, F.; Jones, C.W. Poly(ethylenimine)-functionalized monolithic alumina honeycomb adsorbents for CO2 capture from air. ChemSusChem 2016, 9, 1859–1868. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhou, X.; Ye, J.; Jia, Q. Development of a γ-alumina-nanoparticle-functionalized porous polymer monolith for the enrichment of sudan dyes in red wine samples. J. Sep. Sci. 2013, 36, 3330–3337. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Fan, J.; Zheng, M.M.; Feng, Y.Q. Combining poly(methacrylic acid-co-ethylene glycol dimethacrylate) monolith microextraction and octadecyl phosphonic acid-modified zirconia-coated CEC with field-enhanced sample injection for analysis of antidepressants in human plasma and urine. Electrophoresis 2010, 31, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Schafer, W.A.; Carr, P.W.; Funkenbusch, E.; Parson, K. Physical and chemical characterization of a porous phosphate-modified zirconia substrate. J. Chromatogr. A 1991, 587, 137–147. [Google Scholar] [CrossRef]
- Hoth, D.C.; Rivera, J.G.; Colón, L.A. Metal oxide monolithic columns. J. Chromatogr. A 2005, 1079, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Randon, J.; Huguet, S.; Piram, A.; Puy, G.; Demesmay, C.; Rocca, J.-L. Synthesis of zirconia monoliths for chromatographic separations. J. Chromatogr. A 2006, 1109, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.P.; Park, J.H. Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography. J. Chromatogr. A 2010, 1217, 4494–4500. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.P.; Park, J.H. Chiral separation of basic compounds on a cellulose 3,5-dimethylphenylcarbamate-coated zirconia monolithin basic eluents by capillary electrochromatography. J. Chromatogr. A 2011, 1218, 6548–6553. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-M.; Park, J.H. Enantiomer separations of basic chiral compounds by capillary electrochromatography on a phosphated β-cyclodextrin-modified zirconia monolith. J. Chromatogr. A 2014, 1339, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Sui, R.; Rizkalla, A.S.; Charpentier, P.A. Direct synthesis of zirconia aerogel nanoarchitecture in supercritical CO2. Langmuir ACS J. Surf. Colloids 2006, 22, 4390–4396. [Google Scholar] [CrossRef] [PubMed]
- Randon, J.; Huguet, S.; Demesmay, C.; Berthod, A. Zirconia based monoliths used in hydrophilic-interaction chromatography for original selectivity of xanthines. J. Chromatogr. A 2010, 1217, 1496–1500. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.N.; Park, J.H. Enantiomer separation of acidic chiral compounds on a quinine-silica/zirconia hybrid monolith by capillary electrochromatography. J. Chromatogr. A 2015, 1396, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.N.; Dixit, S.; Park, J.H. Enantioseparation of basic chiral compounds on a clindamycin phosphate-silica/zirconia hybrid monolith by capillary electrochromatography. J. Chromatogr. A 2014, 1356, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Pan, D.; Nie, W.; Ji, X. Two-phase synthesis of shape-controlled colloidal zirconia nanocrystals and their characterization. J. Am. Chem. Soc. 2006, 128, 10118–10124. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.; Yu, T.; Kim, Y.W.; Park, H.M.; Wu, F.; Zhang, J.Z.; Hyeon, T. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J. Am. Chem. Soc. 2003, 125, 6553–6557. [Google Scholar] [CrossRef] [PubMed]
- Pinna, N.; Garnweitner, G.; Antonietti, M.; Niederberger, M. Non-aqueous synthesis of high-purity metal oxide nanopowders using an ether elimination process. Adv. Mater. 2004, 16, 2196–2200. [Google Scholar] [CrossRef]
- Liu, C.; Hajagos, T.J.; Chen, D.; Chen, Y.; Kishpaugh, D.; Pei, Q. Efficient one-pot synthesis of colloidal zirconium oxide nanoparticles for high-refractive-index nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 4795–4802. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Ma, J.; Tao, D.; Shan, Y.; Liang, Z.; Zhang, L.; Zhang, Y. Organic-inorganic hybrid silica monolith based immobilized titanium ion affinity chromatography column for analysis of mitochondrial phosphoproteome. J. Proteome Res. 2010, 9, 4093–4101. [Google Scholar] [CrossRef] [PubMed]
- Krenkova, J.; Foret, F. Nanoparticle-modified monolithic pipette tips for phosphopeptide enrichment. Anal. Bioanal. Chem. 2013, 405, 2175–2183. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, K.N.; Dyatchkov, I.A.; Telnov, M.V.; Pirogov, A.V.; Shpigun, O.A. Effect of monomer mixture composition on structure and chromatographic properties of poly(divinylbenzene-co-ethylvinylbenzene-co-2-hydroxyethyl methacrylate) monolithic rod columns for separation of small molecules. J. Chromatogr. A 2011, 1218, 5010–5019. [Google Scholar] [CrossRef] [PubMed]
- Černigoj, U.; Gašperšič, J.; Fichtenbaum, A.; Lendero Krajnc, N.; Vidič, J.; Mitulović, G.; Štrancar, A. Titanium dioxide nanoparticle coating of polymethacrylate-based chromatographic monoliths for phosphopetides enrichment. Anal. Chim. Acta 2016, 942, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Sang, L.; Zhao, Y.; Burda, C. TiO2 nanoparticles as functional building blocks. Chem. Rev. 2014, 114, 9283–9318. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yi, Y.; Brennan, J.D.; Brook, M.A. Development of macroporous titania monoliths using a biocompatible method. Part 1: Material fabrication and characterization. Chem. Mater. 2006, 18, 5326–5335. [Google Scholar] [CrossRef]
- Long, T.; Xu, L.; Zhang, T.; Wang, Y. Facile synthesis of titania monolith and the investigation of its photocatalytic activity. Mater. Manuf. Process. 2014, 29, 743–747. [Google Scholar] [CrossRef]
- Yao, B.; Zhang, L. Preparation and characterization of mesoporous titania gel-monolith. J. Mater. Sci. 1999, 34, 5983–5987. [Google Scholar] [CrossRef]
- Konishi, J.; Fujita, K.; Nakanishi, K.; Hirao, K. Phase-separation-induced titania monoliths with well-defined macropores and mesostructured framework from colloid-derived sol-gel systems. Chem. Mater. 2006, 18, 864–866. [Google Scholar] [CrossRef]
- Konishi, J.; Fujita, K.; Nakanishi, K.; Hirao, K. Monolithic TiO2 with controlled multiscale porosity via a template-free sol-gel process accompanied by phase separation. Chem. Mater. 2006, 18, 6069–6074. [Google Scholar] [CrossRef]
- Ren, J.; Du, Z.J.; Zhang, C.; Li, H.Q. Macroporous titania monolith prepared via sol-gel process with polymer foam as the template. Chin. J. Chem. 2006, 24, 955–960. [Google Scholar] [CrossRef]
- Asri, R.; Harun, W.; Hassan, M.; Ghani, S.; Buyong, Z. A review of hydroxyapatite-based coating techniques: Sol–gel and electrochemical depositions on biocompatible metals. J. Mech. Behav. Biomed. Mater. 2016, 57, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Geng, J.; Zhou, P.; Wang, J.; Chen, X.; Hu, J. New hydroxyapatite monolithic column for DNA extraction and its application in the purification of bacillus subtilis crude lysate. J. Chromatogr. A 2008, 1183, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Krenkova, J.; Lacher, N.A.; Svec, F. Control of selectivity via nanochemistry: Monolithic capillary column containing hydroxyapatite nanoparticles for separation of proteins and enrichment of phosphopeptides. Anal. Chem. 2010, 82, 8335–8341. [Google Scholar] [CrossRef] [PubMed]
- Armatas, G.; Kanatzidis, M. Mesostructured germanium with cubic pore symmetry. Nature 2006, 441, 1122–1125. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Conradsson, T.; Klingstedt, M.; Dadachov, M.S.; O’Keeffe, M. A mesoporous germanium oxide with crystalline pore walls and its chiral derivative. Nature 2005, 437, 716–719. [Google Scholar] [CrossRef] [PubMed]
- Peskov, M.; Schwingenschlögl, U. Photophysical properties of open-framework germanates templated by nickel complexes. Phys. Chem. Chem. Phys. 2014, 16, 10891–10896. [Google Scholar] [CrossRef] [PubMed]
- Akama, Y.; Kanno, H. Liquid chromatographie separation of polycyclic aromatic hydrocarbons with cerium (IV) oxide as packing material. Anal. Chim. Acta 1995, 309, 153–156. [Google Scholar] [CrossRef]
- Akama, Y. Use of cerium oxide (CeO2) as a packing material for the chromatographic separation of C60 and C70 fullerenes. Talanta 1995, 42, 1943–1946. [Google Scholar] [CrossRef]
- Caputo, F.; De Nicola, M.; Sienkiewicz, A.; Giovanetti, A.; Bejarano, I.; Licoccia, S.; Traversa, E.; Ghibelli, L. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis. Nanoscale 2015, 7, 15643–15656. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Gokulakrishnan, N.; Kumar, R.; Krishna, V.M.; Saravanan, A.; Supriya, S.; Somanathan, T. Can be a bimetal oxide ZnO-MgO nanoparticles anticancer drug carrier and deliver? Doxorubicin adsorption/release study. J. Nanosci. Nanotechnol. 2015, 15, 1543–1553. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, D.; Lin, Y.; Evans, D.G.; Duan, X. Influence of nano-mgo particle size on bactericidal action againstbacillus subtilis var. Niger. Chin. Sci. Bull. 2005, 50, 514–519. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Koper, O.; Decker, S.; Klabunde, K.J. Nanocrystalline metal oxides as destructive adsorbents for organophosphorus compounds at ambient temperatures. Chem. A 2002, 8, 2602–2607. [Google Scholar] [CrossRef]
- Moussavi, G.; Mahmoudi, M. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using mgo nanoparticles. J. Hazard. Mater. 2009, 168, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Zine, N.; Baraket, A.; Zabala, M.; Campabadal, F.; Caruso, R.; Trivella, M.G.; Jaffrezic-Renault, N.; Errachid, A. A novel biosensor based on hafnium oxide: Application for early stage detection of human interleukin-10. Sens. Actuators B 2012, 175, 201–207. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Tiwari, S.; Augustine, S.; Srivastava, S.; Yadav, B.K.; Malhotra, B.D. Highly sensitive protein functionalized nanostructured hafnium oxide based biosensing platform for non-invasive oral cancer detection. Sens. Actuators B 2016, 235, 1–10. [Google Scholar] [CrossRef]
Materials | Separation Application | Technique | Reference(s) |
---|---|---|---|
Organic | |||
Methacrylate-based | Polycyclic aromatic hydrocarbons, caffeine and several analgesics | CEC | [11] |
Methacrylate-based | Plasmid DNA | AEC | [36] |
Methacrylate-based | Ibuprofen and naproxen enantiomers | CEC | [37] |
Zwitterionic Polymethacrylate-based | Polar analytes | CEC HILIC | [38,39] |
Poly(dimethylsiloxane)-based | — | Microfluidic bioseparation | [17,40] |
Copolymers of glycidyl methacrylate and ethylene dimethacrylate | Chiral separation | HPAC | [41] |
Copolymers of butyl methacrylate, ethylene dimethacrylate, and 2-acrylamido-2-methyl-1-propanesulfonic acid | Carbohydrates | IEC | [42] |
Inorganic | |||
Silica-based | Chiral phosphinic acid pseudodipeptides | CEC | [43] |
Silica-based | Chiral separation | LC | [44] |
Silica-based | Enantioseparation of dansyl amino acids | Ligand Exchange-CEC | [45] |
Zwitterionic silica-based | Nucleic acid bases, nucleosides, and 2-deoxynucleosides. | HILIC | [46] |
Hybrid | |||
Fused-Silica-Methacrylate-based | Separation of derivatized amines and green fluorescent proteins | Microfluidic CEC | [47] |
Fused-Silica-Polyacrylamide-based | Enantiomer separation | CEC | [48] |
Fused-vinylbenzyl trimethylammonium-cyclodextin-based | Acidic compound screening | CEC | [49] |
β-Cyclodextrin-silica based | Enantioseparation | LC | [50] |
Zwitterionic Organic-Silica-based | Polar compounds | HILIC | [51] |
Nano-Particles | Properties | Remark | Reference(s) |
---|---|---|---|
Cerium oxide (CeO2) | Have a high surface area-to-volume ratio, reactive sites, possess free radicals, have a shielding activity and serve as effective antioxidants. | Utilised as chromatographic packing materials for normal phase separation of polycyclic aromatic hydrocarbons as well as C60 and C70 fullerenes. Have promising features over silica-based nanoparticles. | [154,155,156] |
ZnO-MgO | Have a high density, surface area-to-volume ratio, adsorptivity. | Bimetal nanoparticle was successfully applied for the adsorption and release of doxorubicin in cancer study and biomarker detection. | [157] |
Magnesium oxide (MgO) | Have high adsorptivity, devoid of toxicity, and limited hydrophilic capacity. | For the adsorption of organophosphorus compounds, fluorides, azo and anthraquinone reactive dyes, as well as having bactericidal activity. | [158,159,160] |
Hafnium oxide (HfO2) | High surface area-to-volume ratio, thermal resilience, chemically inert, Isoelectric point of 7.0, nontoxic particles, bioactive materials. | In the construction of biosensors for the detection of biomarkers such as interleukin-10 and CYFRA-21-1. | [161,162] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acquah, C.; Obeng, E.M.; Agyei, D.; Ongkudon, C.M.; Moy, C.K.S.; Danquah, M.K. Nano-Doped Monolithic Materials for Molecular Separation. Separations 2017, 4, 2. https://doi.org/10.3390/separations4010002
Acquah C, Obeng EM, Agyei D, Ongkudon CM, Moy CKS, Danquah MK. Nano-Doped Monolithic Materials for Molecular Separation. Separations. 2017; 4(1):2. https://doi.org/10.3390/separations4010002
Chicago/Turabian StyleAcquah, Caleb, Eugene Marfo Obeng, Dominic Agyei, Clarence M. Ongkudon, Charles K. S. Moy, and Michael K. Danquah. 2017. "Nano-Doped Monolithic Materials for Molecular Separation" Separations 4, no. 1: 2. https://doi.org/10.3390/separations4010002
APA StyleAcquah, C., Obeng, E. M., Agyei, D., Ongkudon, C. M., Moy, C. K. S., & Danquah, M. K. (2017). Nano-Doped Monolithic Materials for Molecular Separation. Separations, 4(1), 2. https://doi.org/10.3390/separations4010002