Optimization of Ultra-High-Pressure Extraction and Comparative Evaluation of Antioxidant Activity and Flavonoid Composition in Guanxiang Leaves
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Yield of Flavonoids in Guangxiang Leaves
- W is the flavonoid yield of the sample (%),
- C is calculated based on the standard curve regression equation to determine the flavonoid content in the sample solution (mg·mL−1),
- V2 is the total volume of ethanol used during extraction (mL),
- V3 is the final constant volume after volumetric preparation for measurement (mL),
- d is the dilution factor of the ultra-high-pressure extraction solution,
- V1 is the volume of ultra-high-pressure extraction solution taken during the measurement process (mL), and
- m is the mass of the sample (g).
2.3. Optimization of UHPE
2.4. Solvent Extraction Method
2.5. Antioxidant Activity
2.5.1. DPPH Radical-Scavenging Activity
2.5.2. ABTS Radical-Scavenging Activity
2.5.3. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.6. HPLC-MS/MS Condition
2.7. Statistical Analysis
3. Results and Discussion
3.1. Extraction of Flavonoids from Guanxiang Leaves During UHPE
3.1.1. Effect of Ethanol Concentration on Flavonoid Yield During UHPE



3.1.2. Effect of Solid–Liquid Ratio on Flavonoid Yield During UHPE
3.1.3. Effect of Pressure on Flavonoid Recovery
3.1.4. Effect of Pressure-Holding Time on Flavonoid Recovery
3.2. Process Optimization Using Response Surface
3.3. Comparison of the Flavonoid Yields of Different Extraction Methods
3.4. Antioxidant Capacity
3.5. LC-MS Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| UHPE | Ultra-high-pressure extraction |
| BBD | Box–Behnken design |
| RSM | Response surface methodology |
| FRAP | Ferric-reducing antioxidant power |
| ANOVA | Analysis of variance |
References
- Rauf, A.; Jehan, N. Natural Products as a Potential Enzyme Inhibitors from Medicinal Plants; IntechOpen Ltd.: London, UK, 2017; pp. 165–177. [Google Scholar]
- Aware, C.B.; Patil, D.N.; Suryawanshi, S.S.; Mali, P.R.; Rane, M.R.; Gurav, R.G.; Jadhav, J.P. Natural bioactive products as promising therapeutics: A review of natural product-based drug development. S. Afr. J. Bot. 2022, 151, 512–528. [Google Scholar] [CrossRef]
- Liga, S.; Paul, C.; Peter, F. Flavonoids: Overview of Biosynthesis, Biological Activity, and Current Extraction Techniques. Plants 2023, 12, 2732. [Google Scholar] [CrossRef]
- Jafari, S.M.; Mahdavee, K.K.; Assadpour, E. Production of a natural color through microwave-assisted extraction of saffron tepal’s anthocyanins. Food Sci. Nutr. 2019, 7, 1438–1445. [Google Scholar] [CrossRef]
- Sampatrao, D.; Manjare, K.D. Supercritical fluids in separation and purification: A review. Mater. Sci. Energy Technol. 2019, 2, 463–484. [Google Scholar] [CrossRef]
- Shin, J.; Ahn, S.; Choi, S.; Lee, D.; Kim, B. Ultrahigh pressure extraction (UHPE) of Ginsenosides from Korean panax sinseng powder. Food Sci. Biotechnol. 2010, 19, 743–748. [Google Scholar] [CrossRef]
- Chen, R.Z.; Jin, C.G.; Li, H.P.; Liu, Z.Q.; Lu, J.; Li, S.Z.; Yang, S.M. Ultrahigh pressure extraction of polysaccharides from Cordyceps militaris and evaluation of antioxidant activity. Sep. Purif. Technol. 2014, 134, 90–99. [Google Scholar] [CrossRef]
- Chen, Z.L.; Ma, J.; Li, P.; Wen, B.; Wang, Y.; Ma, Y.H.; Huang, W.Y. Preparation of hypoglycemic anthocyanins from mulberry (Fructus mori) fruits by ultrahigh pressure extraction. Innov. Food Sci. Emerg. Technol. 2023, 84, 103255. [Google Scholar] [CrossRef]
- Tang, L.Q.; Liu, H.C.; Wen, J.; Xu, Y.J.; Tian, W.N.; Li, L.; Yu, Y.S.; Lin, X.; Fu, M.Q. Study on ultrahigh-pressure extraction technology on properties of yellow extract from gardenia fruit. J. Food Compos. Anal. 2021, 104, 104186. [Google Scholar] [CrossRef]
- Lin, Y.H.; Huang, H.W.; Wang, C.Y. Effects of high pressure-assisted extraction on yield, antioxidant, antimicrobial, and anti-diabetic properties of chlorogenic acid and caffeine extracted from green coffee beans. Food Bioprocess Technol. 2022, 15, 1529–1538. [Google Scholar] [CrossRef]
- Zhao, J.M.; Su, T.T.; Sun, Q.Z.; Chen, F.L.; Jiang, Y.M.; Bi, Y.; Wei, J. Ultrahigh pressure enhances the extraction efficiency, antioxidant potential, and hypoglycemic activity of flavonoids from Chinese sea buckthorn leaves. LWT 2024, 207, 116671. [Google Scholar] [CrossRef]
- Zhang, S.N.; Yi, W.N.; Wang, Z.H.; Fu, C.; Fan, X.P.; Du, B.; Chen, L.N.; Lu, W.W.; Jiang, Z. Ultrahigh pressure extraction of polysaccharide from Morinda officinalis and effect on the polysaccharide structure. Sep. Sci. Technol. 2021, 56, 1741–1751. [Google Scholar] [CrossRef]
- Yan, Z.M.; Feng, X.P.; Li, X.N.; Guo, Z.P.; Wang, Z.L.; Ren, G.X.; Long, F.Y. Sea Buckthorn Flavonoid Extracted by High Hydrostatic Pressure Inhibited IgE-Stimulated Mast Cell Activation through the Mitogen-Activated Protein Kinase Signaling Pathway. Foods 2024, 13, 560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.D.; Xue, Q.W.; Zhao, T.R.; Khan, A.; Wang, Y.F.; Liu, Y.P.; Cao, J.X.; Cheng, G.G. The effect of ultra-high pretreatment on free, esterified and insoluble-bound phenolics from mango leaves and their antioxidant and cytoprotective activities. Food Chem. 2022, 368, 130864. [Google Scholar] [CrossRef]
- Fu, C.C.; Huang, B.X.; Zhang, X.H.; Zhou, J.L.; Mao, S.Y.; Fan, T.P.; Zhang, J.H.; Wang, S.S.; Chen, M.X.; Zhu, F.Y. Biosynthesis and Medicinal Value of Flavonoids and Chromones in Agarwood. J. Agric. Food Chem. 2025, 73, 26. [Google Scholar] [CrossRef]
- Adam, A.Z.; Lee, S.Y.; Mohamed, R. Pharmacological properties of agarwood tea derived from Aquilaria (Thymelaeaceae) leaves: An emerging contemporary herbal drink. J. Herb. Med. 2017, 10, 37–44. [Google Scholar] [CrossRef]
- Zheng, D.; Li, X.M.; He, J.; Lei, J.D. Optimization of extraction process for total flavonoids from leaves of Aquilaria sinensis by response surface method and purification technology. Beijing Linye Daxue Xuebao 2017, 39, 104–110. [Google Scholar]
- Tian, Y.X. Study on the Preparation and Biological Activity of Tetrastigma hemsleyanum Flavone Extract Nanoparticles. Master’s Thesis, Zhejiang University, Hangzhou, China, 2024. [Google Scholar]
- Zhang, Z.J.; Tian, Y.L.; Xia, J.X.; Ma, A.J. Stractural characterization and antioxidant activity of walnut peptides. Shipin Kexue 2024, 45, 1–8. [Google Scholar]
- Chen, Z.L. Study on Ultra-High Pressure Extraction and Biological Activities of Anthocyanins from Blueberry Pomace. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2022. [Google Scholar]
- Zhang, L.; Liu, P.Z.; Li, L.L.; Huang, Y.; Pu, Y.F.; Hou, X.J.; Song, L.J. Identification and Antioxidant Activity of flavonoids extracted from xinjiang jujube (Ziziphus jujube mill.) leaves with ultra-high pressure extraction technology. Molecules 2018, 24, 122. [Google Scholar] [CrossRef]
- Li, Q.; Qin, J.Y.; Liu, L.L.; Chen, X.Y. Extraction technology and functional activity of flavonoids from bitter wattle tea. Shipin Keji. 2025, 50, 214–222. [Google Scholar]
- Li, J.Y.; Huang, X.; Wu, M.Y.; Huang, Q.F.; Ni, S.Y.; Chen, L.L.; Wu, D.W.; Wang, W.B.; Lin, Z.L. Optimization of extraction process of flavonoids from leaves of Aquilaria sinensis by central composite design response surface methodology. Xiandai Shipin 2023, 29, 214–219. [Google Scholar]
- Sun, X.J.; Li, X.X.; Feng, Y.B.; Zhang, L.H. Optimization of extracting technique assisted by ultrahigh pressure extraction (UHPE) of flavonoids from hawthorn. Shipin Gongye Keji 2015, 36, 291–295+312. [Google Scholar]
- Khumpook, T.; Saenphet, S.; Tragoolpua, Y.; Saenphet, K. Anti-inflammatory and antioxidant activity of Thai mango (Mangifera indica Linn.) leaf extracts. Comp. Clin. Pathol. 2019, 28, 157–164. [Google Scholar] [CrossRef]
- Kempuraj, D.; Thangavel, D.; Kempuraj, D.D.; Ahmed, M.E.; Selvakumar, G.P.; Raikwar, S.P.; Zaheer, S.A.; Lyer, S.S.; Govindarajan, R.; Chandrasekaran, P.N. ChandraNeuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. BioFactors 2021, 47, 190–197. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, S.K.; Rani, R.; Mishra, S.; Sharma, R.A. Kaempferol-7-O-glucoside and their antimicrobial screening isolate from Cassia renigera Wall. Int. J. Pharm. Clin. Res. 2011, 3, 30–34. [Google Scholar]




| Code | Factor | |||
|---|---|---|---|---|
| (A) Ethanol Concentration (%) | (B) Solid-to-Liquid Ratio (g/mL) | (C) Pressure (Mpa) | (D) Pressure-Holding Time (min) | |
| −1 | 40 | 1:50 | 200 | 1 |
| 0 | 50 | 1:60 | 300 | 3 |
| 1 | 60 | 1:70 | 400 | 5 |
| Number | (A) Ethanol Concentration | (B) Solid-to-Liquid Ratio | (C) Pressure | (D) Pressure-Holding Time | Flavonoid Yield (%) |
|---|---|---|---|---|---|
| 1 | 40 | 1:50 | 300 | 3 | 2.02 |
| 2 | 60 | 1:50 | 300 | 3 | 1.88 |
| 3 | 40 | 1:70 | 300 | 3 | 2.16 |
| 4 | 60 | 1:70 | 300 | 3 | 1.89 |
| 5 | 50 | 1:60 | 200 | 1 | 1.95 |
| 6 | 50 | 1:60 | 400 | 1 | 2.01 |
| 7 | 50 | 1:60 | 200 | 5 | 1.99 |
| 8 | 50 | 1:60 | 400 | 5 | 2.00 |
| 9 | 40 | 1:60 | 300 | 1 | 2.07 |
| 10 | 60 | 1:60 | 300 | 1 | 1.81 |
| 11 | 40 | 1:60 | 300 | 5 | 2.04 |
| 12 | 60 | 1:60 | 300 | 5 | 1.85 |
| 13 | 50 | 1:50 | 200 | 3 | 1.93 |
| 14 | 50 | 1:50 | 200 | 3 | 2.01 |
| 15 | 50 | 1:50 | 400 | 3 | 1.99 |
| 16 | 50 | 1:70 | 400 | 3 | 2.05 |
| 17 | 40 | 1:60 | 200 | 3 | 2.06 |
| 18 | 60 | 1:60 | 200 | 3 | 1.81 |
| 19 | 40 | 1:60 | 400 | 3 | 2.13 |
| 20 | 60 | 1:60 | 400 | 3 | 1.89 |
| 21 | 50 | 1:50 | 300 | 1 | 1.95 |
| 22 | 50 | 1:70 | 300 | 1 | 2.07 |
| 23 | 50 | 1:50 | 300 | 5 | 1.96 |
| 24 | 50 | 1:70 | 300 | 5 | 2.05 |
| 25 | 50 | 1:60 | 300 | 3 | 2.20 |
| 26 | 50 | 1:60 | 300 | 3 | 2.23 |
| 27 | 50 | 1:60 | 300 | 3 | 2.20 |
| Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
|---|---|---|---|---|---|---|
| Model | 0.3342 | 14 | 0.0239 | 54.28 | <0.0001 | ** |
| A | 0.1495 | 1 | 0.1495 | 339.96 | <0.0001 | ** |
| B | 0.0203 | 1 | 0.0203 | 46.23 | <0.0001 | ** |
| C | 0.0094 | 1 | 0.0094 | 21.43 | 0.0006 | ** |
| D | 0.0000 | 1 | 0.0000 | 0.09 | 0.7711 | |
| AB | 0.0047 | 1 | 0.0047 | 10.71 | 0.0067 | ** |
| AC | 0.0001 | 1 | 0.0001 | 0.14 | 0.7172 | |
| AD | 0.0013 | 1 | 0.0013 | 2.85 | 0.1170 | |
| BC | 0.0001 | 1 | 0.0001 | 0.20 | 0.6589 | |
| BD | 0.0002 | 1 | 0.0002 | 0.36 | 0.5601 | |
| CD | 0.0008 | 1 | 0.0008 | 1.75 | 0.2100 | |
| A2 | 0.0992 | 1 | 0.0992 | 225.48 | <0.0001 | ** |
| B2 | 0.0444 | 1 | 0.0444 | 101.04 | <0.0001 | ** |
| C2 | 0.0644 | 1 | 0.0644 | 146.54 | <0.0001 | ** |
| D2 | 0.0763 | 1 | 0.0763 | 173.46 | <0.0001 | ** |
| Residual | 0.0053 | 12 | 0.0004 | |||
| Lack of Fit | 0.0048 | 10 | 0.0005 | 1.98 | 0.3813 | Not significant |
| Pure Error | 0.0005 | 2 | 0.0002 | |||
| Cor Total | 0.3394 | 26 | ||||
| R2 = 0.9845 R2Adj = 0.9663 | ||||||
| Number | RT (min) | Compounds | [M+H]+ (m/z) | Error/ppm | Molecular Formula |
|---|---|---|---|---|---|
| 1 | 6.25 | Mangiferin | 423.0919 | −0.63 | C19H18O11 |
| 2 | 6.27 | Vicenin-2 | 595.16547 | −0.52 | C27H30O15 |
| 3 | 10.26 | Spiraeoside | 465.1028 | 0.07 | C21H20O12 |
| 4 | 10.90 | Scutellarin | 463.0873 | 0.32 | C21H18O12 |
| 5 | 13.18 | Luteolin | 287.0550 | 0.03 | C15H10O6 |
| 6 | 13.20 | Nepetin | 317.0656 | −0.09 | C16H12O7 |
| 7 | 15.66 | Apigenin | 271.0601 | −0.04 | C15H10O5 |
| 8 | 16.01 | Jaceosidin | 331.0813 | 0.30 | C17H14O7 |
| 9 | 16.03 | Diosmetin | 301.0707 | 0.25 | C16H12O6 |
| 10 | 21.77 | Glycitein | 285.0757 | −0.34 | C16H12O5 |
| 11 | 26.05 | 7,4′-Di-O-methylapigenin | 299.09137 | −0.10 | C17H14O5 |
| Number | RT (min) | Compounds | [M + H]+ (m/z) | Error/ppm | Molecular Formula |
|---|---|---|---|---|---|
| 1 | 6.24 | Mangiferin | 423.0920 | −0.40 | C19H18O11 |
| 2 | 6.26 | Vicenin-2 | 595.1655 | −0.39 | C27H30O15 |
| 3 | 7.83 | Isovitexin(4) | 433.1127 | −0.44 | C21H20O10 |
| 4 | 8.22 | Dracocephaloside | 449.1077 | −0.25 | C21H20O11 |
| 5 | 8.74 | 5-Hydroxy-2-[2-hydroxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]-7-methoxychromen-4-one | 463.1234 | −0.29 | C22H22O11 |
| 6 | 10.10 | Prunetrin | 447.1285 | −0.21 | C22H22O10 |
| 7 | 10.63 | Kaempferol-7-O-glucoside | 449.1076 | −0.45 | C21H20O11 |
| 8 | 15.57 | Apigenin | 271.0599 | −0.61 | C15H10O5 |
| 9 | 16.06 | Diosmetin | 301.0706 | −0.26 | C16H12O6 |
| 10 | 22.06 | Glycitein | 285.0757 | −0.02 | C16H12O5 |
| 11 | 25.95 | 7,4′-Di-O-methylapigenin | 299.0913 | −0.20 | C17H14O5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, J.; Kang, J.; Yan, H.; Zhang, Y.; Guo, Z.; Liu, L.; Zhang, G.; Zhang, Y. Optimization of Ultra-High-Pressure Extraction and Comparative Evaluation of Antioxidant Activity and Flavonoid Composition in Guanxiang Leaves. Separations 2026, 13, 20. https://doi.org/10.3390/separations13010020
Zhang J, Kang J, Yan H, Zhang Y, Guo Z, Liu L, Zhang G, Zhang Y. Optimization of Ultra-High-Pressure Extraction and Comparative Evaluation of Antioxidant Activity and Flavonoid Composition in Guanxiang Leaves. Separations. 2026; 13(1):20. https://doi.org/10.3390/separations13010020
Chicago/Turabian StyleZhang, Jinyan, Jiyao Kang, Haoqian Yan, Yang Zhang, Zhenhu Guo, Lihui Liu, Guifeng Zhang, and Yu Zhang. 2026. "Optimization of Ultra-High-Pressure Extraction and Comparative Evaluation of Antioxidant Activity and Flavonoid Composition in Guanxiang Leaves" Separations 13, no. 1: 20. https://doi.org/10.3390/separations13010020
APA StyleZhang, J., Kang, J., Yan, H., Zhang, Y., Guo, Z., Liu, L., Zhang, G., & Zhang, Y. (2026). Optimization of Ultra-High-Pressure Extraction and Comparative Evaluation of Antioxidant Activity and Flavonoid Composition in Guanxiang Leaves. Separations, 13(1), 20. https://doi.org/10.3390/separations13010020
