Novel Microwave-Assisted Cloud Point Extraction Prior to Gas Chromatography–Mass Spectrometry for the Extraction of Organochlorine and Organophosphorus Pesticides from Fruit Juices
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation, Apparatus and Software
2.3. Other Equipment
2.4. Microwave-Assisted Cloud Point Extraction in Combination with Re-Extraction in an Organic Solvent for the Pesticide Analysis in Fruit Juices
3. Results and Discussion
3.1. Optimization of Cloud Point Extraction in Combination with Re-Extraction in Organic Solvent
3.1.1. Optimization of the Extraction Step
- Microwave-assisted cloud point extraction (MW-CPE).
- Salting out effect
3.1.2. Re-Extraction Optimization
- Decreasing the surfactant-rich phase viscosity
- Minimization of the organic solvent volume for re-extraction.
3.2. The “Greenness” Assessment of the MW-CPE-GC-MS/MS Method—AGREEprep
3.3. Analysis of Food Samples Using the Developed MW-CPE-GC-MS/MS Method
3.3.1. Analysis of Lemon Juice (Concentrate)
3.3.2. Analysis of Red Apple Juice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CCD | Central composite design |
CPE | Cloud point extraction |
DF | Dilution factor |
EI | Electron impact |
ER | Extraction recovery |
GC-MS | Gas chromatography mass spectrometry |
GC-MS/MS | Gas chromatography tandem mass spectrometry |
ID | Internal diameter |
LOQ | Limit of quantification |
MW | Microwave |
MRL | Maximum residue level |
MW-CPE | Microwave-assisted cloud point extraction |
MW-CPE-GC-MS/MS | Gas chromatography mass spectrometry |
OCPs | Organochlorine pesticides |
OD | Outer diameter |
OPPs | Organophosphorus pesticides |
PTV | Programmable temperature vaporizer |
RSD | Relative standard deviation |
SD | Standard deviation |
USABE | Ultrasound-assisted re-extraction |
VABE | Vortex-assisted re-extraction |
References
- Ahmad, M.F.; Ahmad, F.A.; Alsayegh, A.A.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Saati, A.A.; Wahab, S.; Elbendary, E.Y.; Kambal, N.; et al. Pesticides Impacts on Human Health and the Environment with Their Mechanisms of Action and Possible Countermeasures. Heliyon 2024, 10, e29128. [Google Scholar] [CrossRef]
- Kaur, R.; Mavi, G.K.; Raghav, S.; Khan, I. Pesticides Classification and Its Impact on Environment. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1889–1897. [Google Scholar] [CrossRef]
- Hernández, A.F. Food Safety: Pesticides. In Encyclopedia of Human Nutrition; Elsevier: Amsterdam, The Netherlands, 2023; Volume 2–4, pp. 375–388. [Google Scholar]
- Cech, R.; Zaller, J.G.; Lyssimachou, A.; Clausing, P.; Hertoge, K.; Linhart, C. Pesticide Drift Mitigation Measures Appear to Reduce Contamination of Non-Agricultural Areas, but Hazards to Humans and the Environment Remain. Sci. Total Environ. 2023, 854, 158814. [Google Scholar] [CrossRef] [PubMed]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An Extensive Review on the Consequences of Chemical Pesticides on Human Health and Environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Sparling, D.W. Organochlorine Pesticides. In Ecotoxicology Essentials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 69–107. [Google Scholar]
- Organochlorine Pesticides—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/organochlorine-pesticides (accessed on 14 August 2025).
- Lim, L.; Bolstad, H.M. Organophosphate Insecticides: Neurodevelopmental Effects. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 785–791. [Google Scholar]
- Mahajan, R.; Verma, S.; Chandel, S.; Chatterjee, S. Organophosphate Pesticide: Usage, Environmental Exposure, Health Effects, and Microbial Bioremediation. In Microbial Biodegradation and Bioremediation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 473–490. [Google Scholar]
- The Stockholm Convention on Persistent Organic Pollutants. 2001. Available online: https://chm.pops.int/TheConvention/Overview/tabid/3351/Default.aspx (accessed on 17 July 2025).
- Stockholm Convention. 2009. Available online: https://chm.pops.int/Implementation/PublicAwareness/PressReleases/COP4Geneva,9May2009/tabid/542/Default.aspx (accessed on 7 July 2025).
- Stockholm Convention. 2011. Available online: https://chm.pops.int/Implementation/PesticidePOPs/Endosulfan/Overview/tabid/5362/Default.aspx (accessed on 7 July 2025).
- Manousi, N.; Ferracane, A.; Kalogiouri, N.P.; Kabir, A.; Furton, K.G.; Tranchida, P.Q.; Zachariadis, G.A.; Mondello, L.; Samanidou, V.F.; Rosenberg, E. Design and Development of Second-Generation Fabric Phase Sorptive Extraction Membranes: Proof-of-Concept for the Extraction of Organophosphorus Pesticides from Apple Juice Prior to GC–MS Analysis. Food Chem. 2023, 424, 136423. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC. Available online: https://publications.europa.eu/resource/cellar/dbb0741d-b722-11ef-91ed-01aa75ed71a1.0002.02/DOC_1 (accessed on 27 July 2025).
- Codex Alimentarius (Food and Agriculture Organization of the United Nations and World Health Organization). Available online: https://www.fao.org/fao-who-codexalimentarius/about-codex/en/ (accessed on 14 August 2025).
- Fernandes, V.C.; Domingues, V.F.; Delerue-Matos, C.; Mateus, N. Determination of Pesticides in Fruit and Fruit Juices by Chromatographic Methods. J. Chromatogr. Sci. 2011, 49, 715–730. [Google Scholar] [CrossRef]
- Kanu, A.B. Recent Developments in Sample Preparation Techniques Combined with High-Performance Liquid Chromatography: A Critical Review. J. Chromatogr. A 2021, 1654, 462444. [Google Scholar] [CrossRef]
- Notardonato, I.; Avino, P. Dispersive Liquid–Liquid Micro Extraction: An Analytical Technique Undergoing Continuous Evolution and Development—A Review of the Last 5 Years. Separations 2024, 11, 203. [Google Scholar] [CrossRef]
- Tesfaye, B.; Gure, A.; Asere, T.G.; Molole, G.J. Deep Eutectic Solvent-Based Dispersive Liquid–Liquid Microextraction for Determination of Organochlorine Pesticides in Water and Apple Juice Samples. Microchem. J. 2023, 195, 109428. [Google Scholar] [CrossRef]
- Yamini, Y.; Ghambarian, M. Environmental Applications of Cloud-Point Extraction. In Comprehensive Sampling and Sample Preparation; Elsevier: Amsterdam, The Netherlands, 2012; Volume 3, pp. 657–680. [Google Scholar]
- Halko, R.; Hagarová, I.; Andruch, V. Innovative Approaches in Cloud-Point Extraction. J. Chromatogr. A 2023, 1701, 464053. [Google Scholar] [CrossRef]
- Filik, H.; Demirci, S. Cloud Point Extraction of Pesticide Residues. In Pesticides in the Modern World—Trends in Pesticides Analysis; InTech: London, UK, 2011. [Google Scholar]
- Mortada, W.I. Recent Developments and Applications of Cloud Point Extraction: A Critical Review. Microchem. J. 2020, 157, 105055. [Google Scholar] [CrossRef]
- Kori, S. Cloud Point Extraction Coupled with Back Extraction: A Green Methodology in Analytical Chemistry. Forensic Sci. Res. 2021, 6, 19–33. [Google Scholar] [CrossRef]
- Snigur, D.; Azooz, E.A.; Zhukovetska, O.; Guzenko, O.; Mortada, W. Recent Innovations in Cloud Point Extraction Towards a More Efficient and Environmentally Friendly Procedure. TrAC Trends Anal. Chem. 2023, 164, 117113. [Google Scholar] [CrossRef]
- Arya, S.S.; Kaimal, A.M.; Chib, M.; Sonawane, S.K.; Show, P.L. Novel, Energy Efficient and Green Cloud Point Extraction: Technology and Applications in Food Processing. J. Food Sci. Technol. 2019, 56, 524–534. [Google Scholar] [CrossRef]
- Faria, A.M.; Dardengo, R.P.; Lima, C.F.; Neves, A.A.; Queiroz, M.E.L.R. Determination of Disulfoton in Surface Water Samples by Cloud-Point Extraction and Gas Chromatography. Int. J. Environ. Anal. Chem. 2007, 87, 249–258. [Google Scholar] [CrossRef]
- Ohashi, A.; Ogiwara, M.; Ikeda, R.; Okada, H.; Ohashi, K. Cloud Point Extraction and Preconcentration for the Gas Chromatography of Phenothiazine Tranquilizers in Spiked Human Serum. Anal. Sci. 2004, 20, 1353–1357. [Google Scholar] [CrossRef]
- Shen, J.; Shao, X. Determination of Tobacco Alkaloids by Gas Chromatography-Mass Spectrometry Using Cloud Point Extraction as a Preconcentration Step. Anal. Chim. Acta 2006, 561, 83–87. [Google Scholar] [CrossRef]
- Sikalos, T.I.; Paleologos, E.K. Cloud Point Extraction Coupled with Microwave or Ultrasonic Assisted Back Extraction as a Preconcentration Step Prior to Gas Chromatography. Anal. Chem. 2005, 77, 2544–2549. [Google Scholar] [CrossRef]
- Takagai, Y.; Hinze, W.L. Cloud Point Extraction with Surfactant Derivatization as an Enrichment Step Prior to Gas Chromatographic or Gas Chromatography−Mass Spectrometric Analysis. Anal. Chem. 2009, 81, 7113–7122. [Google Scholar] [CrossRef]
- Cacho, J.I.; Campillo, N.; Viñas, P.; Hernández-Córdoba, M. Cloud Point Extraction and Gas Chromatography with Direct Microvial Insert Thermal Desorption for the Determination of Haloanisoles in Alcoholic Beverages. Talanta 2016, 160, 282–288. [Google Scholar] [CrossRef]
- Zygoura, P.D.; Paleologos, E.K.; Riganakos, K.A.; Kontominas, M.G. Determination of Diethylhexyladipate and Acetyltributylcitrate in Aqueous Extracts after Cloud Point Extraction Coupled with Microwave Assisted Back Extraction and Gas Chromatographic Separation. J. Chromatogr. A 2005, 1093, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Fontana, A.R.; Silva, M.F.; Martínez, L.D.; Wuilloud, R.G.; Altamirano, J.C. Determination of Polybrominated Diphenyl Ethers in Water and Soil Samples by Cloud Point Extraction-Ultrasound-Assisted Back-Extraction-Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2009, 1216, 4339–4346. [Google Scholar] [CrossRef]
- Zhao, W.; Sun, X.; Deng, X.; Huang, L.; Yang, M.; Zhou, Z. Cloud Point Extraction Coupled with Ultrasonic-Assisted Back-Extraction for the Determination of Organophosphorus Pesticides in Concentrated Fruit Juice by Gas Chromatography with Flame Photometric Detection. Food Chem. 2011, 127, 683–688. [Google Scholar] [CrossRef]
- Makarchuk, I.S.; Klovak, V.O.; Levchyk, V.M.; Doroschuk, V.O. Cloud Point Extraction Coupled with Ultrasonic-Assisted Back-Extraction for the Determination of Metalaxyl, Fludioxonil and Fenarimol in Fruits by Gas Chromatography with Flame Ionization Detection. Chem. Pap. 2022, 76, 7575–7584. [Google Scholar] [CrossRef]
- Jia, G.F.; Lv, C.G.; Zhu, W.T.; Qiu, J.; Wang, X.Q.; Zhou, Z.Q. Applicability of Cloud Point Extraction Coupled with Microwave-Assisted Back-Extraction to the Determination of Organophosphorous Pesticides in Human Urine by Gas Chromatography with Flame Photometry Detection. J. Hazard. Mater. 2008, 159, 300–305. [Google Scholar] [CrossRef]
- Hristozova, A.D.; Simitchiev, K.K.; Kmetov, V.J.; Rosenberg, E. Compatibility of Cloud Point Extraction with Gas Chromatography: Matrix Effects of Triton X-100 on GC-MS and GC-MS/MS Analysis of Organochlorine and Organophosphorus Pesticides. Talanta 2024, 269, 125445. [Google Scholar] [CrossRef]
- Hristozova, A.; Vidal, L.; Aguirre, M.Á.; Simitchiev, K.; Canals, A. Natural Deep Eutectic Solvent-Based Dispersive Liquid-Liquid Microextraction of Pesticides in Drinking Waters Combined with GC-MS/MS Detection. Talanta 2025, 282, 126967. [Google Scholar] [CrossRef]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep—Analytical Greenness Metric for Sample Preparation. TrAC Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
- Anderson, M.J.; Whitcomb, P.J. Design of Experiments. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 1–22. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 9781118146927. [Google Scholar]
- Özcan, S.; Levent, S.; Can, N.Ö. Quality by Design Approach with Design of Experiment for Sample Preparation Techniques. Adv. Sample Prep. 2023, 7, 100079. [Google Scholar] [CrossRef]
- López-Lorente, Á.I.; Pena-Pereira, F.; Pedersen-Bjergaard, S.; Zuin, V.G.; Ozkan, S.A.; Psillakis, E. The Ten Principles of Green Sample Preparation. TrAC Trends Anal. Chem. 2022, 148, 116530. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 Principles of Green Analytical Chemistry and the SIGNIFICANCE Mnemonic of Green Analytical Practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef] [PubMed]
Time (min) | Energy (W) | Tempering Time (min) |
---|---|---|
Start | 600 | 4 |
4 | 0 | 1 |
5 | 300 | 5 |
10 | 0 | 1 |
11 | 300 | 5 |
16 | 0 | 1 |
17 | 300 | 5 |
22 | 0 | 1 |
23 | 300 | 5 |
28 | 0 | 1 |
29 | 300 | 5 |
34 | 0 | 1 |
39 | 300 | 5 |
Analyte | ER (%) | RSD (%) |
---|---|---|
Pentachlorobenzene | 81 | 3 |
alpha-HCH | 78 | 5 |
Hexachlorobenzene | 90 | 3 |
Beta and gamma-HCH | 59 | 4 |
Chlorpyrifos-methyl | 82 | 9 |
Heptachlor | 98 | 2 |
Aldrin | 88 | 3 |
Chlorpyrifos | 97 | 3 |
Heptachlor-endo-epoxide A | 89 | 1 |
o,p-DDE | 90 | 5 |
alpha-Endosulfan | 89 | 4 |
Dieldrin | 94 | 6 |
p,p-DDE | 100 | 2 |
o,p-DDD | 93 | 3 |
Endrin | 94 | 4 |
p,p-DDD | 94 | 3 |
o,p-DDT and p,p-DDT | 104 | 4 |
0.5 mL Hexane | 0.25 mL Hexane | |||||||
---|---|---|---|---|---|---|---|---|
Analyte | ER (%) | RSD (%) | LOD (µg L−1) | LOQ (µg L−1) | ER (%) | RSD (%) | LOD (µg L−1) | LOQ (µg L−1) |
Pentachlorobenzene | 87 | 9 | 0.003 | 0.009 | 81 | 9 | 0.002 | 0.005 |
alpha-HCH | 56 | 4 | 0.005 | 0.017 | 41 | 8 | 0.004 | 0.012 |
Hexachlorobenzene | 92 | 5 | 0.003 | 0.009 | 82 | 13 | 0.002 | 0.005 |
beta-HCH and gamma-HCH | 46 | 2 | 0.003 | 0.011 | 38 | 7 | 0.002 | 0.007 |
Chlorpyrifos-methyl | 66 | 2 | 0.020 | 0.067 | 47 | 11 | 0.014 | 0.047 |
Heptachlor | 89 | 2 | 0.003 | 0.011 | 74 | 14 | 0.002 | 0.007 |
Aldrin | 94 | 2 | 0.004 | 0.013 | 83 | 14 | 0.002 | 0.007 |
Chlorpyrifos | 86 | 2 | 0.006 | 0.019 | 67 | 13 | 0.004 | 0.012 |
Heptachlor-endo-epoxide A | 66 | 5 | 0.005 | 0.018 | 47 | 10 | 0.004 | 0.012 |
o,p-DDE | 81 | 3 | 0.003 | 0.009 | 64 | 13 | 0.002 | 0.006 |
alpha-Endosulfan | 83 | 2 | 0.005 | 0.016 | 66 | 13 | 0.003 | 0.010 |
Dieldrin | 74 | 3 | 0.007 | 0.024 | 52 | 12 | 0.005 | 0.017 |
p,p-DDE | 92 | 2 | 0.004 | 0.014 | 74 | 14 | 0.002 | 0.008 |
o,p-DDD | 59 | 5 | 0.003 | 0.011 | 40 | 10 | 0.002 | 0.008 |
Endrin | 78 | 6 | 0.006 | 0.019 | 58 | 12 | 0.004 | 0.013 |
p,p-DDD and o,p-DDT | 62 | 4 | 0.016 | 0.052 | 42 | 11 | 0.012 | 0.039 |
p,p-DDT | 80 | 4 | 0.006 | 0.021 | 62 | 13 | 0.004 | 0.013 |
Analyte | ER (%) | RSD (%) | Methodological LOQs (µg L−1) | MRL * (µg L−1) |
---|---|---|---|---|
Pentachlorobenzene | 114 | 5 | 0.025 | 10 |
Hexachlorobenzene | 91 | 15 | 0.025 | 10 |
alpha-HCH | 72 | 11 | 0.060 | 10 |
beta and gamma-HCH | 62 | 10 | 0.035 | 10 |
Chlorpyrifos | 88 | 14 | 0.060 | 10 |
Chlorpyrifos-methyl | 74 | 14 | 0.235 | 10 |
Heptachlor | 76 | 22 | 0.035 | Sum of 10 |
Heptachlor-endo-epoxide A | 65 | 12 | 0.060 | |
Aldrin | 78 | 22 | 0.035 | Sum of 10 |
Dieldrin | 78 | 15 | 0.085 | |
Endrin | 86 | 17 | 0.065 | 10 |
alpha-Endosulfan | 87 | 13 | 0.050 | 50 |
o,p-DDE | 77 | 16 | 0.030 | Sum of 50 |
p,p-DDE | 87 | 20 | 0.040 | |
o,p-DDD | 76 | 26 | 0.040 | |
p,p-DDD and o,p-DDT | 78 | 26 | 0.195 | |
p,p-DDT | 95 | 26 | 0.065 |
Analyte | ER (%) | RSD (%) | Methodological LOQs (µg L−1) |
---|---|---|---|
Pentachlorobenzene | 88 | 8 | 0.006 |
alpha-HCH | 51 | 8 | 0.015 |
Hexachlorobenzene | 83 | 6 | 0.006 |
beta and gamma-HCH | 41 | 9 | 0.009 |
Chlorpyrifos-methyl | 60 | 6 | 0.059 |
Heptachlor | 79 | 9 | 0.009 |
Aldrin | 87 | 5 | 0.009 |
Chlorpyrifos | 82 | 9 | 0.015 |
Heptachlor-endo-epoxide A | 64 | 10 | 0.015 |
o,p-DDE | 73 | 9 | 0.008 |
alpha-Endosulfan | 76 | 7 | 0.013 |
Dieldrin | 71 | 8 | 0.021 |
p,p-DDE | 83 | 8 | 0.010 |
o,p-DDD | 57 | 7 | 0.010 |
Endrin | 74 | 9 | 0.016 |
p,p-DDD and o,p-DDT | 58 | 8 | 0.049 |
p,p-DDT | 66 | 4 | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hristozova, A.; Simitchiev, K. Novel Microwave-Assisted Cloud Point Extraction Prior to Gas Chromatography–Mass Spectrometry for the Extraction of Organochlorine and Organophosphorus Pesticides from Fruit Juices. Separations 2025, 12, 231. https://doi.org/10.3390/separations12090231
Hristozova A, Simitchiev K. Novel Microwave-Assisted Cloud Point Extraction Prior to Gas Chromatography–Mass Spectrometry for the Extraction of Organochlorine and Organophosphorus Pesticides from Fruit Juices. Separations. 2025; 12(9):231. https://doi.org/10.3390/separations12090231
Chicago/Turabian StyleHristozova, Asya, and Kiril Simitchiev. 2025. "Novel Microwave-Assisted Cloud Point Extraction Prior to Gas Chromatography–Mass Spectrometry for the Extraction of Organochlorine and Organophosphorus Pesticides from Fruit Juices" Separations 12, no. 9: 231. https://doi.org/10.3390/separations12090231
APA StyleHristozova, A., & Simitchiev, K. (2025). Novel Microwave-Assisted Cloud Point Extraction Prior to Gas Chromatography–Mass Spectrometry for the Extraction of Organochlorine and Organophosphorus Pesticides from Fruit Juices. Separations, 12(9), 231. https://doi.org/10.3390/separations12090231