Microwave Extraction of Antioxidant Polysaccharides from Plantago depressa and Their Effects on SOD and GSH-Px in Drosophila melanogaster Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus
2.3. Extraction Method
2.3.1. Microwave Extraction
2.3.2. Heating Extraction
2.3.3. Determination of Sample Volume
2.4. Qualitative and Quantitative Analyses of Polysaccharides
2.4.1. Phenol-Sulfuric Acid Method
2.4.2. Molisch’s Test
2.4.3. IR Spectroscopy
2.5. Radical Scavenging Activity Assay
2.5.1. DPPH• Assay
2.5.2. ABTS•+ Assay
2.6. Drosophila melanogasterhow Experiment
2.6.1. Pretreatment and Treatment of Fruit Fly
2.6.2. SOD Assay
2.6.3. GSH-Px Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Microwave Extraction Condition
3.1.1. Single Factor Experiments of Microwave Extraction
3.1.2. Orthogonal Test of Microwave Extraction
3.1.3. Comparison with Heating Extraction
3.2. Molisch’s Test and IR Spectroscopy
3.3. Antioxidant Capacities In Vitro
3.4. Effects of Polysaccharides on SOD and GSH-Px in Drosophila melanogaster
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, G.; Ma, Z.; Wen, J.; Zhao, X.; Deng, Y.; Sun, L.; Ren, X. Chemical fingerprints combined with chemometric analysis to evaluate and distinguish between Plantago asiatica L. and Plantago depressa Willd. J. AOAC Int. 2025, 108, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Fierascu, R.C.; Fierascu, I.; Ortan, A.; Paunescu, A. Plantago media L.-explored and potential applications of an underutilized plant. Plants 2021, 10, 265. [Google Scholar] [CrossRef]
- Zhakipbekov, K.; Turgumbayeva, A.; Issayeva, R.; Kipchakbayeva, A.; Kadyrbayeva, G.; Tleubayeva, M.; Akhayeva, T.; Tastambek, K.; Sainova, G.; Serikbayeva, E.; et al. Antimicrobial and other biomedical properties of extracts from Plantago major, Plantaginaceae. Pharmaceuticals 2023, 16, 1092. [Google Scholar] [CrossRef]
- Pensantes-Sangay, S.J.; Calla-Poma, R.D.; Requena-Mendizabal, M.F.; Alvino-Vales, M.I.; Millones-Gómez, P.A. Chemical composition and antibacterial effect of Plantago major extract on periodontal pathogens. Pesqui. Bras. Em Odontopediatr. Clín. Integr. 2020, 20, e0012. [Google Scholar] [CrossRef]
- Samuelsen, A.B. The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J. Ethnopharmacol. 2000, 71, 1–21. [Google Scholar] [CrossRef]
- Özaslan, M.S.; Sağlamtaş, R.; Demir, Y.; Genç, Y.; Saraçoğlu, İ.; Gülçin, İ. Isolation of some phenolic compounds from Plantago subulata L. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity. Chem. Biodivers. 2022, 19, e202200280. [Google Scholar] [CrossRef] [PubMed]
- Nikaeen, G.; Yousefinejad, S.; Rahmdel, S.; Samari, F.; Mahdavinia, S. Central composite design for optimizing the biosynthesis of silver nanoparticles using Plantago major extract and investigating antibacterial, antifungal and antioxidant activity. Sci. Rep. 2020, 10, 9642. [Google Scholar] [CrossRef]
- Waleed, M.; Saeed, F.; Afzaal, M.; Niaz, B.; Raza, M.A.; Hussain, M.; Tufail, T.; Rasheed, A.; Ateeq, H.; Al Jbawi, E. Structural and nutritional properties of psyllium husk arabinoxylans with special reference to their antioxidant potential. Int. J. Food Prop. 2022, 25, 2505–2513. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, J.; Gao, J.; Zhang, D.; Lin, D.; Lin, J. Polysaccharides of Plantago asiatica enhance antitumor activity via regulating macrophages to M1-like phenotype. Biomed. Pharmacother. 2023, 3, 159. [Google Scholar] [CrossRef] [PubMed]
- Dash, U.C.; Bhol, N.K.; Swain, S.K.; Samal, R.R.; Nayak, P.K.; Raina, V.; Panda, S.K.; Kerry, R.G.; Duttaroy, A.K.; Jena, A.B. Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharm. Sin. 2025, 15, 15–34. [Google Scholar] [CrossRef]
- Zhang, H.F.; Niu, L.L.; Yang, X.H.; Li, L. Analysis of water-soluble polysaccharides in an edible medicinal plant Epimedium: Method development, validation, and application. J. AOAC Int. 2014, 97, 784–790. [Google Scholar] [CrossRef]
- Al-Ajalein, A.A.S.; Shafie, M.H.; Yap, P.G.; Kassim, M.A.; Naharudin, I.; Wong, T.W.; Gan, C.Y. Microwave-assisted extraction of polysaccharide from Cinnamomum cassia with anti-hyperpigmentation properties: Optimization and characterization studies. Int. J. Biol. Macromol. 2023, 226, 321–335. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, H.F.; Cao, X.Y.; Yang, X.H.; Wang, F.Z.; Guo, Q.; Sun, C.Q. Enzymatic water extraction of polysaccharides from Epimedium brevicornu and their antioxidant activity and protective effect against DNA damage. J. Food Biochem. 2017, 41, e12298. [Google Scholar] [CrossRef]
- Zhang, H.F.; Yang, X.H.; Wang, Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends Food Sci. Technol. 2011, 22, 672–688. [Google Scholar] [CrossRef]
- Quan, N.; Wang, Y.D.; Li, G.R.; Liu, Z.Q.; Feng, J.; Qiao, C.L.; Zhang, H.F. Ultrasound-microwave combined extraction of novel polysaccharide fractions from Lycium barbarum leaves and their in vitro hypoglycemic and antioxidant activities. Molecules 2023, 28, 3880. [Google Scholar] [CrossRef]
- Long, X.; Yan, Q.; Cai, L.; Li, G.; Luo, X. Box-Behnken design-based optimization for deproteinization of crude polysaccharides in Lycium barbarum berry residue using the Sevag method. Heliyon 2020, 6, e03888. [Google Scholar] [CrossRef] [PubMed]
- Widayanti, A.; Jufri, M.; Surini, S.; Ellya, B. Antioxidant activity of the active fraction of mangosteen rind extract (Garcinia mangostana). Int. J. Appl. Pharm. 2024, 16, 145–148. [Google Scholar] [CrossRef]
- Wu, L.; Gao, Y.; Ren, W.C.; Su, Y.; Li, J.; Du, Y.Q.; Wang, Q.H.; Kuang, H.X. Rapid determination and origin identification of total polysaccharides contents in Schisandra chinensis by near-infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 264, 120327. [Google Scholar] [CrossRef] [PubMed]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef]
- Zhang, H.F.; Zhang, X.; Yang, X.H.; Qiu, N.X.; Wang, Y.; Wang, Z.Z. Microwave assisted extraction of flavonoids from cultivated Epimedium sagittatum: Extraction yield and mechanism, antioxidant activity and chemical composition. Ind. Crops Prod. 2013, 50, 857–865. [Google Scholar] [CrossRef]
- Shang, X.L.; Liu, C.Y.; Dong, H.Y.; Peng, H.H.; Zhu, Z.Y. Extraction, purification, structural characterization, and antioxidant activity of polysaccharides from Wheat Bran. J. Mol. Struct. 2021, 1233, 130096. [Google Scholar] [CrossRef]
- Sun, C.Q.; Wang, Z.Q.; Yao, M.; Zhang, H.F. Chemical composition of Zanthoxylum bungeanum leaf, and in vitro antioxidant activity of leaf extracts and its effect on antioxidant enzyme activity in Drosophila melanogaster. J. Plant Resour. Environ. 2015, 24, 38–44. [Google Scholar]
- Zhou, X.X.; Liu, Z.Q.; Yang, X.H.; Feng, J.; Gins, M.S.; Yan, T.Y.; Han, L.; Zhang, H.F. The mechanism underlying the hypoglycemic effect of epimedin C on mice with type 2 diabetes mellitus based on proteomic analysis. Nutrients 2024, 16, 25. [Google Scholar] [CrossRef]
- Tang, R.; Chen, X.; Dang, T.; Deng, Y.; Zou, Z.; Liu, Q.; Gong, G.; Song, S.; Ma, F.; Huang, L.; et al. Lycium barbarum polysaccharides extend the mean lifespan of Drosophila melanogaster. Food Funct. 2019, 10, 4231–4241. [Google Scholar] [CrossRef]
- Hafeez, E.; Du, D.; Ni, H.; Zhu, K.; Hu, F.; Zhou, J.; Chen, D. Regulation and mechanism of Bletilla striata polysaccharide on delaying aging in Drosophila melanogaster. Int. J. Biol. Macromol. 2025, 310, 143382. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.P.; Ye, J.H.; Liu, Y.Y.; Su, L.Q.; Wei, X.W.; Tang, Y.L.; Tang, H.Q.; Fu, P. Effects of plantago-thistle compatibility on blood glucose and intestinal flora in diabetic mice. Chin. J. Hosp. Pharm. 2024, 44, 530–536. [Google Scholar]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
Level | Factors | ||
---|---|---|---|
A Duration of Microwave Radiation (min) | B Extraction Temperature (°C) | C Ratio of Liquid to Solid (mL/g) | |
1 | 25 | 60 | 80 |
2 | 30 | 70 | 100 |
3 | 35 | 80 | 120 |
Run | Factor | Extraction Yield (%) | ||
---|---|---|---|---|
(A) Duration of Microwave Radiation (min) | (B) Extraction Temperature (°C) | (C) Ratio of Liquid to Solid (mL/g) | ||
1 | A1 (25) | B1 (60) | C1 (80) | 10.50 |
2 | A1 (25) | B2 (70) | C2 (100) | 9.44 |
3 | A1 (25) | B3 (80) | C3 (120) | 9.68 |
4 | A2 (30) | B1 (60) | C2 (100) | 10.29 |
5 | A2 (30) | B2 (70) | C3 (120) | 9.49 |
6 | A2 (30) | B3 (80) | C1 (80) | 12.05 |
7 | A3 (35) | B1 (60) | C3 (120) | 9.30 |
8 | A3 (35) | B2 (70) | C1 (80) | 11.80 |
9 | A3 (35) | B3 (80) | C2 (100) | 10.96 |
T1 | 29.62 | 30.09 | 34.35 | |
T2 | 31.83 | 30.73 | 30.70 | |
T3 | 32.06 | 32.70 | 28.47 | |
k1 | 9.87 | 10.03 | 11.45 | |
k2 | 10.61 | 10.24 | 10.23 | |
k3 | 10.69 | 10.90 | 9.49 | |
Range * | 0.81 b | 0.87 b | 1.96 a |
Source of Variation | Quadratic Sum | Degree of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
(A) Duration of microwave radiation | 0.0001 | 2 | 0.0001 | 6.6695 | p > 0.05 |
(B) Extraction temperature | 0.0001 | 2 | 0.0001 | 6.7652 | p > 0.05 |
(C) Ratio of liquid to solid | 0.0006 | 2 | 0.0003 | 32.3174 | p < 0.05 |
Error | 0.0000 | 2 | 0.0000 | ||
Sum | 0.0009 |
Free Radical | Sample | Fitting Equation | R2 | EC50/(mg/mL) * |
---|---|---|---|---|
DPPH• | Ascorbic acid | y = 32.088 ln(x) + 226.000 | 0.9964 | 4.15 × 10−3 b |
P. depressa polysaccharides | y = 265.994 x1.027 | 0.9437 | 0.20 a | |
ABTS•+ | Ascorbic acid | y = 35.791 ln(x) + 164.370 | 0.9044 | 4.09 × 10−2 b |
P. depressa polysaccharides | y = 683.321 x1.135 | 0.9908 | 0.10 a |
Enzyme Activity (U/mg Protein) | Male | Female | ||
---|---|---|---|---|
Polysaccharides Group | Blank Group | Polysaccharides Group | Blank Group | |
SOD * | 108.30 ± 6.04 a | 80.87 ± 18.48 b | 93.20 ± 7.08 a | 74.64 ± 1.41 b |
GSH-Px * | 348.84 ± 22.71 a | 226.30 ± 12.18 b | 191.33 ± 15.87 a | 186.05 ± 8.25 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Liu, Q.; Yang, X.; Li, L.; Wang, Y.; Xu, K.; Zhang, H. Microwave Extraction of Antioxidant Polysaccharides from Plantago depressa and Their Effects on SOD and GSH-Px in Drosophila melanogaster Model. Separations 2025, 12, 221. https://doi.org/10.3390/separations12080221
Sun C, Liu Q, Yang X, Li L, Wang Y, Xu K, Zhang H. Microwave Extraction of Antioxidant Polysaccharides from Plantago depressa and Their Effects on SOD and GSH-Px in Drosophila melanogaster Model. Separations. 2025; 12(8):221. https://doi.org/10.3390/separations12080221
Chicago/Turabian StyleSun, Chenqian, Qian Liu, Xiaohua Yang, Lu Li, Yubin Wang, Keran Xu, and Huafeng Zhang. 2025. "Microwave Extraction of Antioxidant Polysaccharides from Plantago depressa and Their Effects on SOD and GSH-Px in Drosophila melanogaster Model" Separations 12, no. 8: 221. https://doi.org/10.3390/separations12080221
APA StyleSun, C., Liu, Q., Yang, X., Li, L., Wang, Y., Xu, K., & Zhang, H. (2025). Microwave Extraction of Antioxidant Polysaccharides from Plantago depressa and Their Effects on SOD and GSH-Px in Drosophila melanogaster Model. Separations, 12(8), 221. https://doi.org/10.3390/separations12080221