Effect of Performance and Fouling Mechanisms of Thermo-Responsive Membranes on Treating Secondary Effluent Containing Added Sulfamethoxazole
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermo-Responsive Membrane Filtration Experiments
2.3. Analysis of Thermo-Responsive Membrane Performance
2.4. Anti-Fouling Properties of Thermo-Responsive Membranes
XDLVO Theory for Membrane Fouling Behavior
3. Results and Discussion
3.1. Performance of Thermo-Responsive Membranes
3.2. Identifying the Contaminant During Thermo-Responsive Membrane Filtration
3.3. The Anti-Fouling Properties of the Thermo-Responsive Membranes
3.4. XDLVO Theory for Membrane-Fouling Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohapatra, S.; Bhatia, S.; Senaratna, K.Y.K.; Jong, M.-C.; Lim, C.M.B.; Gangesh, G.R.; Lee, J.X.; Giek, G.S.; Cheung, C.; Yutao, L.; et al. Wastewater surveillance of SARS-CoV-2 and chemical markers in campus dormitories in an evolving COVID-19 pandemic. J. Hazard. Mater. 2023, 446, 130690. [Google Scholar] [CrossRef]
- Bungau, S.; Tit, D.M.; Behl, T.; Aleya, L.; Zaha, D.C. Aspects of excessive antibiotic consumption and environmental influences correlated with the occurrence of resistance to antimicrobial agents. Curr. Opin. Environ. Sci. 2021, 19, 100224. [Google Scholar] [CrossRef]
- Bilal, M.; Mehmood, S.; Rasheed, T.; Iqbal, H.M.N. Antibiotics traces in the aquatic environment: Persistence and adverse environmental impact. Curr. Opin. Environ. Sci. 2020, 13, 68–74. [Google Scholar] [CrossRef]
- Larcher, S.; Yargeau, V. Biodegradation of sulfamethoxazole: Current knowledge and perspectives. Appl. Microbiol. Biotechnol. 2012, 96, 309–318. [Google Scholar] [CrossRef]
- Duan, W.; Cui, H.; Jia, X.; Huang, X. Occurrence and ecotoxicity of sulfonamides in the aquatic environment: A review. Sci. Total Environ. 2022, 820, 153178. [Google Scholar] [CrossRef]
- Abegglen, C.; Joss, A.; McArdell, C.S.; Fink, G.; Schlüsener, M.P.; Ternes, T.A.; Siegrist, H. The fate of selected micropollutants in a single-house MBR. Water Res. 2009, 43, 2036–2046. [Google Scholar] [CrossRef]
- Murata, A.; Takada, H.; Mutoh, K.; Hosoda, H.; Harada, A.; Nakada, N. Nationwide monitoring of selected antibiotics: Distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers. Sci. Total Environ. 2011, 409, 5305–5312. [Google Scholar] [CrossRef]
- Batt, A.L.; Kincaid, T.M.; Kostich, M.S.; Lazorchak, J.M.; Olsen, A.R. Evaluating the extent of pharmaceuticals in surface waters of the United States using a National-scale Rivers and Streams Assessment survey. Environ. Toxicol. Chem. 2016, 35, 874–881. [Google Scholar] [CrossRef]
- Yang, L.; Wen, Q.; Zhao, Y.; Chen, Z.; Wang, Q.; Bürgmann, H. New insight into effect of antibiotics concentration and process configuration on the removal of antibiotics and relevant antibiotic resistance genes. J. Hazard. Mater. 2019, 373, 60–66. [Google Scholar] [CrossRef]
- Phoon, B.L.; Ong, C.C.; Mohamed Saheed, M.S.; Show, P.-L.; Chang, J.-S.; Ling, T.C.; Lam, S.S.; Juan, J.C. Conventional and emerging technologies for removal of antibiotics from wastewater. J. Hazard. Mater. 2020, 400, 122961. [Google Scholar] [CrossRef]
- Bartolomeu, M.; Neves, M.; Faustino, M.A.F.; Almeida, A. Wastewater chemical contaminants: Remediation by advanced oxidation processes. Photochem. Photobiol. Sci. 2018, 17, 1573–1598. [Google Scholar] [CrossRef]
- Gomes, D.; Cardoso, M.; Martins, R.C.; Quinta-Ferreira, R.M.; Gando-Ferreira, L.M. Removal of a mixture of pharmaceuticals sulfamethoxazole and diclofenac from water streams by a polyamide nanofiltration membrane. Water Sci. Technol. 2020, 81, 732–743. [Google Scholar] [CrossRef]
- Zhang, M.; Li, S.; Sun, J.; Sun, J.; Wang, L.; Zhao, R. Effect and degradation pathway of sulfamethoxazole removal in MBR by PVDF/DA modified membrane. Front. Environ. Sci. 2023, 11, 1111199. [Google Scholar] [CrossRef]
- Yang, L.; Qiu, H.; Liu, G.; Chang, J.; Yang, S.; Xiao, F. Effect of N-isopropylacrylamide and graphene oxide on the microstructure and performance of thermo-responsive membranes by Ce (IV)-induced redox radical polymerization. Colloids Surf. A 2024, 703, 135284. [Google Scholar] [CrossRef]
- Amirilargani, M.; Sabetghadam, A.; Mohammadi, T. Polyethersulfone/polyacrylonitrile blend ultrafiltration membranes with different molecular weight of polyethylene glycol: Preparation, morphology and antifouling properties. Polym. Adv. Technol. 2012, 23, 398–407. [Google Scholar] [CrossRef]
- Brant, J.A.; Childress, A.E. Assessing short-range membrane–colloid interactions using surface energetics. J. Membr. Sci. 2002, 203, 257–273. [Google Scholar] [CrossRef]
- Bai, Z.; Zhang, R.; Wang, S.; Gao, S.; Tian, J. Membrane fouling behaviors of ceramic hollow fiber microfiltration (MF) membranes by typical organic matters. Sep. Purif. Technol. 2021, 274, 118951. [Google Scholar] [CrossRef]
- Saadat, Y.; Tabatabaei, S.; Kim, K.; Foudazi, R. Thermoresponsive antifouling ultrafiltration membranes from mesophase templating. J. Membr. Sci. 2023, 684, 121861. [Google Scholar] [CrossRef]
- Ostuni, E.; Chapman, R.G.; Holmlin, R.E.; Takayama, S.; Whitesides, G.M. A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir 2001, 17, 5605–5620. [Google Scholar] [CrossRef]
- Maeda, T.; Akasaki, Y.; Yamamoto, K.; Aoyagi, T. Stimuli-Responsive Coacervate Induced in Binary Functionalized Poly(N-isopropylacrylamide) Aqueous System and Novel Method for Preparing Semi-IPN Microgel Using the Coacervate. Langmuir 2009, 25, 9510–9517. [Google Scholar] [CrossRef]
- Russo, F.; Santoro, S.; Galiano, F.; Ursino, C.; Avruscio, E.; Nicolo, E.; Desiderio, G.; Lombardo, G.; Criscuoli, A.; Figoli, A. A luminescent thermosensitive coating for a non-invasive and in-situ study of thermal polarization in hollow fiber membranes. J. Membr. Sci. 2023, 685, 121928. [Google Scholar] [CrossRef]
- Yang, D.; Guo, G.; Hu, J.; Wang, C.; Jiang, D. Hydrothermal treatment to prepare hydroxyl group modified multi-walled carbon nanotubes. J. Mater. Chem. 2008, 18, 350–354. [Google Scholar] [CrossRef]
- Uredat, S.; Gujare, A.; Runge, J.; Truzzolillo, D.; Oberdisse, J.; Hellweg, T. A review of stimuli-responsive polymer-based gating membranes. Phys. Chem. Chem. Phys. 2024, 26, 2732–2744. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Dong, X.; Wu, C.; Lichtfouse, E. Removal of antibiotics from black water by a membrane filtration-visible light photocatalytic system. J. Water Process Eng. 2023, 53, 103605. [Google Scholar] [CrossRef]
- Guo, X.; Jiang, S.; Wang, Y.; Wang, Y.; Wang, J.; Huang, T.; Liang, H.; Tang, X. Effects of pre-treatments on the filtration performance of ultra-low pressure gravity-driven membrane in treating the secondary effluent: Flux stabilization and removal improvement. Sep. Purif. Technol. 2022, 303, 122122. [Google Scholar] [CrossRef]
- Prasertkulsak, S.; Chiemchaisri, C.; Chiemchaisri, W.; Itonaga, T.; Yamamoto, K. Removals of pharmaceutical compounds from hospital wastewater in membrane bioreactor operated under short hydraulic retention time. Chemosphere 2016, 150, 624–631. [Google Scholar] [CrossRef]
- Mao, H.; Zhou, S.; Shi, S.; Xue, A.; Li, M.; Cai, J.; Zhao, Y.; Xing, W. Anti-fouling and easy-cleaning PVDF membranes blended with hydrophilic thermo-responsive nanofibers for efficient biological wastewater treatment. Sep. Purif. Technol. 2022, 281, 119881. [Google Scholar] [CrossRef]
- Schäfer, A.I.; Mauch, R.; Waite, T.D.; Fane, A.G. Charge Effects in the Fractionation of Natural Organics Using Ultrafiltration. Environ. Sci. Technol. 2002, 36, 2572–2580. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence Excitation—Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
- Jin, W.; Lin, Y.; Xu, Z.; Li, P.; Dai, J.; Tong, Y.; Zhang, X. Polyethersulfone membrane modified by zwitterionic groups for improving anti-fouling and antibacterial properties. J. Ind. Eng. Chem. 2023, 122, 274–284. [Google Scholar] [CrossRef]
- Ai, J.; Yang, L.; Liao, G.; Xia, H.; Xiao, F. Applications of graphene oxide blended poly (vinylidene fluoride) membranes for the treatment of organic matters and its membrane fouling investigation. Appl. Surf. Sci. 2018, 455, 502–512. [Google Scholar] [CrossRef]
- Lin, T.; Lu, Z.; Chen, W. Interaction mechanisms and predictions on membrane fouling in an ultrafiltration system, using the XDLVO approach. J. Membr. Sci. 2014, 461, 49–58. [Google Scholar] [CrossRef]
Membrane | Pure Water Flux (LMH) | Zeta Potential (mV) | Water Contact Angle (°) | Retention of Polyethylene Glycol with Different Molecular Weights (100%) | |||
---|---|---|---|---|---|---|---|
25 °C | 35 °C | 600 Da | 1000 Da | 2000 Da | |||
PNG0 | 13.80 | −6.29 | 71.90 | 68.74 | 7.70 | 14.54 | 28.59 |
PNG1 | 23.94 | −12.99 | 68.80 | 62.45 | 9.59 | 17.86 | 31.14 |
PNG2 | 17.77 | −19.03 | 66.77 | 61.21 | 12.47 | 19.76 | 40.59 |
PNG3 | 3.55 | −23.59 | 61.77 | 59.00 | 16.85 | 22.58 | 48.06 |
Water Quality Parameter | Raw Water |
---|---|
COD (mg/L) | 23.150 |
UV254 (cm−1) | 0.124 |
Soluble microbial products (EM/EX = 250 nm/340 nm) | 7723.400 |
Temperature (°C) | Sample | Soluble Microbial Products (EM/EX = 250 nm/340 nm) |
---|---|---|
25 | PGN0 | 3383.7 |
PGN1 | 3074.6 | |
PGN2 | 3476.2 | |
PGN3 | 3748.8 | |
35 | PGN0 | 3523.1 |
PGN1 | 7331.8 | |
PGN2 | 7165.6 | |
PGN3 | 7105.8 |
Temperature (°C) | Sample | Rr | Rir | FR |
---|---|---|---|---|
25 | PGN0 | 0.121 | 0.591 | 0.409 |
PGN1 | 0.271 | 0.301 | 0.699 | |
PGN2 | 0.235 | 0.565 | 0.435 | |
PGN3 | 0.118 | 0.588 | 0.412 | |
35 | PGN0 | 0.045 | 0.758 | 0.242 |
PGN1 | 0.105 | 0.415 | 0.585 | |
PGN2 | 0.082 | 0.694 | 0.306 | |
PGN3 | 0.059 | 0.706 | 0.294 |
Temperature (°C) | Sample | (mJ/m2) | (mJ/m2) | (mJ/m2) | (mJ/m2) |
---|---|---|---|---|---|
25 | PGN0 | −2.313 | −39.040 | 0.005 | −41.348 |
PGN1 | −2.179 | −40.747 | 0.005 | −42.921 | |
PGN2 | −1.873 | −37.067 | 0.005 | −38.935 | |
PGN3 | −1.630 | −30.577 | 0.005 | −32.202 | |
35 | PGN0 | −1.785 | −48.289 | 0.006 | −50.068 |
PGN1 | −4.608 | −50.053 | 0.008 | −54.653 | |
PGN2 | −2.893 | −42.233 | 0.007 | −45.119 | |
PGN3 | −1.939 | −35.698 | 0.007 | −37.630 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Qiu, H.; Yang, Y.; Zhao, L.; Xiao, P.; Liu, G.; Chang, J.; Yang, S.; Xiao, F. Effect of Performance and Fouling Mechanisms of Thermo-Responsive Membranes on Treating Secondary Effluent Containing Added Sulfamethoxazole. Separations 2025, 12, 218. https://doi.org/10.3390/separations12080218
Yang L, Qiu H, Yang Y, Zhao L, Xiao P, Liu G, Chang J, Yang S, Xiao F. Effect of Performance and Fouling Mechanisms of Thermo-Responsive Membranes on Treating Secondary Effluent Containing Added Sulfamethoxazole. Separations. 2025; 12(8):218. https://doi.org/10.3390/separations12080218
Chicago/Turabian StyleYang, Lian, Haoran Qiu, Yingjie Yang, Lijun Zhao, Ping Xiao, Guoliang Liu, Jiang Chang, Shaoxia Yang, and Feng Xiao. 2025. "Effect of Performance and Fouling Mechanisms of Thermo-Responsive Membranes on Treating Secondary Effluent Containing Added Sulfamethoxazole" Separations 12, no. 8: 218. https://doi.org/10.3390/separations12080218
APA StyleYang, L., Qiu, H., Yang, Y., Zhao, L., Xiao, P., Liu, G., Chang, J., Yang, S., & Xiao, F. (2025). Effect of Performance and Fouling Mechanisms of Thermo-Responsive Membranes on Treating Secondary Effluent Containing Added Sulfamethoxazole. Separations, 12(8), 218. https://doi.org/10.3390/separations12080218