Phytochemical and Nutritional Profile of Apricot, Plum-Apricot, and Plum Stones
Abstract
1. Introduction
2. Materials and Methods
2.1. Stone Samples
2.2. Protein Analysis
2.3. Lipid Analysis
2.4. Carbohydrate Analysis
2.4.1. Sugars
2.4.2. Fibers
2.5. Mineral Composition
2.6. Nutritional Data
2.7. Total Phenolic Content (TPC), Total Flavonoid Content (TFC), Total Monomeric Anthocyanins (TMAs)
2.8. Antioxidant Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Biological Value of Studied Samples
3.2. Nutritional Value of Studied Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ordoudi, S.A.; Bakirtzi, C.; Tsimidou, M.Z. The Potential of Tree Fruit Stone and Seed Wastes in Greece as Sources of Bioactive Ingredients. Recycling 2018, 3, 9. [Google Scholar] [CrossRef]
- Abdel-Raouf, M.E. Fruit Stones as Green Materials for Wastewater Remediation. In Emerging Techniques for Treatment of Toxic Metals from Wastewater; Elsevier: Amsterdam, Netherlands, 2023; pp. 83–101. [Google Scholar] [CrossRef]
- Wadhwa, M.; Bakshi, M.P.S.; Makkar, H.P.S. Wastes to Worth: Value Added Products from Fruit and Vegetable Wastes. In CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources; CABI Reviews: Wallingford, UK, 2015; Volume 10. [Google Scholar] [CrossRef]
- Argun, M.E.; Argun, M.Ş.; Ates, H. Zero Waste Principle for the Fruit Processing Industry: Recovery, Advanced Conversion and Revalorization Approaches. J. Water Process Eng. 2025, 71, 107243. [Google Scholar] [CrossRef]
- Ariwaodo, C.A.; Olaniyan, O.F. Fleshy Fruit Waste and the Green Chemistry of Its Conversion to Valuable Products for Humans and Animals. Food Chem. Adv. 2024, 4, 100634. [Google Scholar] [CrossRef]
- Vignesh, A.; Amal, T.C.; Sarvalingam, A.; Vasanth, K. A Review on the Influence of Nutraceuticals and Functional Foods on Health. Food Chem. Adv. 2024, 5, 100749. [Google Scholar] [CrossRef]
- Essa, M.M.; Bishir, M.; Bhat, A.; Chidambaram, S.B.; Al-Balushi, B.; Hamdan, H.; Govindarajan, N.; Freidland, R.P.; Qoronfleh, M.W. Functional Foods and Their Impact on Health. J. Food Sci. Technol. 2021, 60, 820. [Google Scholar] [CrossRef]
- Soares Mateus, A.R.; Pena, A.; Sendón, R.; Almeida, C.; Nieto, G.A.; Khwaldia, K.; Sanches Silva, A. By-Products of Dates, Cherries, Plums and Artichokes: A Source of Valuable Bioactive Compounds. Trends Food Sci. Technol. 2023, 131, 220–243. [Google Scholar] [CrossRef]
- Grubeša, I.N.; Marković, B.; Nyarko, M.H.; Krstić, H.; Brdarić, J.; Filipović, N.; Szenti, I.; Kukovecz, Á. Potential of Fruit Pits as Aggregate in Concrete. Constr. Build. Mater. 2022, 345, 128366. [Google Scholar] [CrossRef]
- Andrade, M.A.; Lima, V.; Sanches Silva, A.; Vilarinho, F.; Castilho, M.C.; Khwaldia, K.; Ramos, F. Pomegranate and Grape By-Products and Their Active Compounds: Are They a Valuable Source for Food Applications? Trends Food Sci. Technol. 2019, 86, 68–84. [Google Scholar] [CrossRef]
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M.; et al. Application of Agri-Food By-Products in the Food Industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Trigo, J.P.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M.E. High Value-Added Compounds from Fruit and Vegetable by-Products—Characterization, Bioactivities, and Application in the Development of Novel Food Products. Crit. Rev. Food Sci. Nutr. 2022, 60, 1388–1416. [Google Scholar] [CrossRef]
- Sánchez, M.; Laca, A.; Laca, A.; Díaz, M. Value-Added Products from Fruit and Vegetable Wastes: A Review. Clean 2021, 49, 2000376. [Google Scholar] [CrossRef]
- Ojha, P.; Xia, T.; Liangfu, Z.; Qinghai, S.; Chitrakar, B.; Karki, R.; Jianxin, T.; Jielin, L. Unlocking the Nutritional Profile of Apricot (Prunus armeniaca L.) Kernel as a Valuable by-Product for Future Exploration. Future Foods 2025, 11, 100632. [Google Scholar] [CrossRef]
- ISO 1871:2009; Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 2009. Available online: https://www.iso.org/standard/41320.html (accessed on 6 November 2024).
- Mihaylova, D.; Popova, A.; Desseva, I.; Manolov, I.; Petkova, N.; Vrancheva, R.; Peltekov, A.; Slavov, A.; Zhivondov, A. Comprehensive Evaluation of Late Season Peach Varieties (Prunus persica L.): Fruit Nutritional Quality and Phytochemicals. Molecules 2021, 26, 2818. [Google Scholar] [CrossRef] [PubMed]
- Hadjikinova, R.; Petkova, N.; Hadjikinov, D.; Denev, P.; Hrusavov, D. Development and Validation of HPLC-RID Method for Determination of Sugars and Polyols. J. Pharm. Sci. Res. 2017, 9, 1263–1269. [Google Scholar]
- AOAC Official Method 991.43; Total, Soluble, and Insoluble Dietary Fiber in Foods Enzymatic-Gravimetric Method, MES-TRIS Buffer. AOAC International: Rockville, MD, USA, 1998; Available online: https://yiqi-oss.oss-cn-hangzhou.aliyuncs.com/aliyun/900101244/technical_file/file_222487.pdf (accessed on 6 November 2024).
- EN 14082:2003; Foodstuffs-Determination of Trace Elements-Determination of Lead, Cadmium, Zinc, Copper, Iron and Chromium by Atomic Absorption Spectrometry (AAS) After Dry Ashing. iTeh, Inc.: Newark, DE, USA, 2003. Available online: https://standards.iteh.ai/catalog/standards/cen/5a1ec234-434f-42a0-8447-b5c00aee9bae/en-14082-2003 (accessed on 6 November 2024).
- EN 1134:1994; Fruit and Vegetable Juices-Determination of Sodium, Potassium, Calcium and Magnesium Content by Atomic Absorption Spectrometry (AAS). iTeh, Inc.: Newark, DE, USA, 1994. Available online: https://standards.iteh.ai/catalog/standards/cen/502534c9-697e-40dc-8e5b-4c8e9ccb259e/en-1134-1994 (accessed on 6 November 2024).
- Ding, Y.; Morozova, K.; Scampicchio, M.; Ferrentino, G. Non-Extractable Polyphenols from Food By-Products: Current Knowledge on Recovery, Characterisation, and Potential Applications. Processes 2020, 8, 925. [Google Scholar] [CrossRef]
- Mihaylova, D.; Popova, A.; Desseva, I.; Dincheva, I.; Tumbarski, Y. Valorization of Peels of Eight Peach Varieties: GC–MS Profile, Free and Bound Phenolics and Corresponding Biological Activities. Antioxidants 2023, 12, 205. [Google Scholar] [CrossRef]
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Pihlaja, K. Phenolics and Betacyanins in Red Beetroot (Beta vulgaris) Root: Distribution and Effect of Cold Storage on the Content of Total Phenolics and Three Individual Compounds. J. Agric. Food Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef]
- Kivrak, I.; Kivrak, S. Antioxidant Properties, Phenolic Profile and Nutritional Value for Sorbus Fruits from Turkey. J. Nutr. Food Sci. 2014, 2, 1043. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Barnes, K.W.; Eisele, T.; Giusti, M.M.; Haché, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; et al. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Assaad, H.I.; Zhou, L.; Carroll, R.J.; Wu, G. Rapid Publication-Ready MS-Word Tables for One-Way ANOVA. SpringerPlus 2014, 3, 474. [Google Scholar] [CrossRef]
- Shahidi, F.; Hossain, A. Importance of Insoluble-Bound Phenolics to the Antioxidant Potential Is Dictated by Source Material. Antioxidants 2023, 12, 203. [Google Scholar] [CrossRef]
- Korekar, G.; Stobdan, T.; Arora, R.; Yadav, A.; Singh, S.B. Antioxidant Capacity and Phenolics Content of Apricot (Prunus armeniaca L.) Kernel as a Function of Genotype. Plant Foods Hum. Nutr. 2011, 66, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef] [PubMed]
- Makrygiannis, I.; Athanasiadis, V.; Bozinou, E.; Chatzimitakos, T.; Makris, D.P.; Lalas, S.I. Combined Effects of Deep Eutectic Solvents and Pulsed Electric Field Improve Polyphenol-Rich Extracts from Apricot Kernel Biomass. Biomass 2023, 3, 66–77. [Google Scholar] [CrossRef]
- Rampáčková, E.; Göttingerová, M.; Gála, P.; Kiss, T.; Ercişli, S.; Nečas, T. Evaluation of Protein and Antioxidant Content in Apricot Kernels as a Sustainable Additional Source of Nutrition. Sustainability 2021, 13, 4742. [Google Scholar] [CrossRef]
- Zhang, Q.A.; Wei, C.X.; Fan, X.H.; Shi, F.F. Chemical Compositions and Antioxidant Capacity of By-Products Generated during the Apricot Kernels Processing. CyTA-J. Food 2018, 16, 422–428. [Google Scholar] [CrossRef]
- Gangopadhyay, N.; Hossain, M.B.; Rai, D.K.; Brunton, N.P. A Review of Extraction and Analysis of Bioactives in Oat and Barley and Scope for Use of Novel Food Processing Technologies. Molecules 2015, 20, 10884–10909. [Google Scholar] [CrossRef]
- Lara, M.V.; Bonghi, C.; Famiani, F.; Vizzotto, G.; Walker, R.P.; Drincovich, M.F. Stone Fruit as Biofactories of Phytochemicals with Potential Roles in Human Nutrition and Health. Front. Plant Sci. 2020, 11, 562252. [Google Scholar] [CrossRef]
- Burkhead, J.L.; Collins, J.F. Nutrition Information Brief—Copper. Adv. Nutr. 2021, 13, 681. [Google Scholar] [CrossRef]
- DeLoughery, T.G. Iron Deficiency Anemia. Med. Clin. N. Am. 2017, 101, 319–332. [Google Scholar] [CrossRef]
- Wessels, I.; Maywald, M.; Rink, L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef]
- Alemu, A.; Tegegne, A. Assessment of Chromium Contamination in the Soil and Khat Leaves (Catha edulis Forsk) and Its Health Risks Located in the Vicinity of Tannery Industries; A Case Study in Bahir Dar City, Ethiopia. Heliyon 2022, 8, e11914. [Google Scholar] [CrossRef]
- Weaver, C.M. Potassium and Health. Adv. Nutr. 2013, 4, 368S–377S. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; MacGregor, G.A. Beneficial Effects of Potassium on Human Health. Physiol. Plant 2008, 133, 725–735. [Google Scholar] [CrossRef] [PubMed]
- McRae, M.P. Dietary Fiber Is Beneficial for the Prevention of Cardiovascular Disease: An Umbrella Review of Meta-Analyses. J. Chiropr. Med. 2017, 16, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, O.; Menkovska, M. Dietary Fibers-Classification, Properties, Analysis and Function: A Review. Adv. Biosci. Biotechnol. 2022, 13, 527–544. [Google Scholar] [CrossRef]
- Kosmala, M.; Milala, J.; Kołodziejczyk, K.; Markowski, J.; Zbrzeźniak, M.; Renard, C.M.G.C. Dietary Fiber and Cell Wall Polysaccharides from Plum (Prunus domestica L.) Fruit, Juice and Pomace: Comparison of Composition and Functional Properties for Three Plum Varieties. Food Res. Int. 2013, 54, 1787–1794. [Google Scholar] [CrossRef]
- Khorasaniha, R.; Olof, H.; Voisin, A.; Armstrong, K.; Wine, E.; Vasanthan, T.; Armstrong, H. Diversity of Fibers in Common Foods: Key to Advancing Dietary Research. Food Hydrocoll. 2023, 139, 108495. [Google Scholar] [CrossRef]
- Fu, J.; Zheng, Y.; Gao, Y.; Xu, W. Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms 2022, 10, 2507. [Google Scholar] [CrossRef]
Samples/Analyses | TPC | TFC | TMAs |
---|---|---|---|
“Stendesto” | |||
Free phenolics | 2.15 ± 0.07 c | 71.0 ± 6.1 b | N.D. |
Alkaline hydrolysis (bound phenolics) | 0.99 ± 0.01 e | 16.7 ± 3.8 d | N.D. |
Acid hydrolysis (bound phenolics) | 1.16 ± 0.02 e | 46.9 ± 4.3 c | N.D. |
“Stanley” | |||
Free phenolics | 2.17 ± 0.02 c | 76.09 ± 3.82 b | N.D. |
Alkaline hydrolysis (bound phenolics) | 0.94 ± 0.03 e | 14.80 ± 0.87 d | N.D. |
Acid hydrolysis (bound phenolics) | 18.25 ± 0.22 a | 274.27 ± 6.31 a | N.D. |
“Modesto” | |||
Free phenolics | 2.14 ± 0.12 c | 0 | N.D. |
Alkaline hydrolysis (bound phenolics) | 1.56 ± 0.13 d | 0 | N.D. |
Acid hydrolysis (bound phenolics) | 9.64 ± 0.21 b | 0 | N.D. |
Samples/Analyses | DPPH | ABTS | FRAP | CUPRAC |
---|---|---|---|---|
“Stendesto” | ||||
Free phenolics | 3.13 ± 0.10 d | 27.70 ± 0.53 cd | 13.09 ± 0.61 d | 13.23 ± 0.52 f |
Alkaline hydrolysis (bound phenolics) | 1.76 ± 0.01 f | 20.60 ± 1.56 de | 8.48 ± 0.12 e | 9.49 ± 0.05 g |
Acid hydrolysis (bound phenolics) | 2.51 ± 0.02 e | 26.80 ± 0.49 cd | 4.23 ± 0.04 f | 14.97 ± 0.12 ef |
“Stanley” | ||||
Free phenolics | 5.56 ± 0.04 c | 31.77 ± 0.91 c | 15.68 ± 0.46 c | 16.94 ± 0.17 e |
Alkaline hydrolysis (bound phenolics) | 1.54 ± 0.03 f | 18.11 ± 1.11 e | 7.88 ± 0.25 e | 8.24 ± 0.05 g |
Acid hydrolysis (bound phenolics) | 44.70 ± 0.39 a | 318.98 ± 7.91 a | 174.24 ± 1.05 a | 190.50 ± 3.02 a |
“Modesto” | ||||
Free phenolics | 5.12 ± 0.04 c | 34.75 ± 0.84 c | 15.49 ± 0.32 cd | 20.76 ± 0.53 d |
Alkaline hydrolysis (bound phenolics) | 3.27 ± 0.19 d | 29.71 ± 0.63 c | 17.71 ± 0.53 c | 28.83 ± 0.57 c |
Acid hydrolysis (bound phenolics) | 26.86 ± 0.14 b | 234.76 ± 2.57 b | 131.66 ± 2.20 b | 108.13 ± 1.54 b |
Samples | K | Ca | Mg | Na | Fe | Cu | Zn | Mn | Co | Ni | Cr |
---|---|---|---|---|---|---|---|---|---|---|---|
“Stendesto” | 3197 ± 195 b | 1013 ± 75 a | 575 ± 30 c | 47.7 ± 3.8 a | 5.4 ± 0.35 b | 5.28 ± 0.31 c | 8.74 ± 0.43 c | 4.97 ± 0.15 c | 0.65 ± 0.03 b | 4.1 ± 0.3 a | 0.63 ± 0.05 ab |
“Stanley” | 3175 ± 214 b | 1003 ± 72 a | 701 ± 50 b | 39.7 ± 2.5 a | 3.33 ± 0.25 c | 6.15 ± 0.29 b | 12.5 ± 0.82 b | 12.8 ± 0.53 a | 0.53 ± 0.03 c | 2.19 ± 0.14 c | 0.55 ± 0.05 b |
“Modesto” | 6450 ± 370 a | 776 ± 47 b | 997 ± 54 a | 43.5 ± 3.0 a | 6.56 ± 0.5 a | 7.04 ± 0.35 a | 17.1 ± 1.1 a | 5.99 ± 0.18 b | 0.96 ± 0.05 a | 2.92 ± 0.2 b | 0.74 ± 0.04 a |
Parameter/Samples | “Stendesto” | “Stanley” | “Modesto” |
---|---|---|---|
Sucrose | 0.15 ± 0.08 a | 0.07 ± 0.02 a | 0.14 ± 0.01 a |
Glucose | 1.12 ± 0.01 a | 0.65 ± 0.05 b | 0.47 ± 0.02 c |
Fructose | 0.52 ± 0.03 a | 0.30 ± 0.02 b | 0.21 ± 0.01 c |
Sorbitol | N.D. | 0.40 ± 0.04 a | 0.02 ± 0.01 b |
Total sugars | 1.79 ± 0.07 a | 1.02 ± 0.03 b | 0.82 ± 0.02 c |
Total carbohydrates | 75.17 ± 0.30 c | 81.11 ± 1.20 b | 85.52 ± 0.15 a |
Total lipids | 2.96 ± 0.18 c | 4.84 ± 0.05 b | 8.03 ± 0.07 a |
Total protein | 8.41 ± 0.21 a | 5.50 ± 0.35 b | 8.84 ± 0.04 a |
Sample/Parameter | Total Dietary Fibers, % | Insoluble Dietary Fibers, % | Soluble Dietary Fibers, % |
---|---|---|---|
“Stendesto” | 78.83 ± 1.63 a | 76.86 ± 1.44 a | 1.97 ± 1.38 a |
“Stanley” | 81.51 ± 1.36 a | 79.97 ± 1.84 a | 1.54 ± 1.08 a |
“Modesto” | 81.61 ± 1.05 a | 80.21 ± 1.69 a | 1.40 ± 1.10 a |
Sample | “Stendesto” | “Stanley” | “Modesto” |
---|---|---|---|
Energy value, kcal/100 g | 360.96 | 390.00 | 449.71 |
Proteins, g/100 g | 8.41 ± 0.21 | 5.50 ± 0.35 | 8.84 ± 0.04 |
Fats, g/100 g | 2.96 ± 0.18 | 4.84 ± 0.05 | 8.03 ± 0.07 |
Carbohydrates, g/100 g | 75.17 ± 0.30 | 81.11 ± 1.20 | 85.52 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihaylova, D.; Gentscheva, G.; Petkova-Ognyanova, N.; Slavov, A.; Popova, A. Phytochemical and Nutritional Profile of Apricot, Plum-Apricot, and Plum Stones. Separations 2025, 12, 216. https://doi.org/10.3390/separations12080216
Mihaylova D, Gentscheva G, Petkova-Ognyanova N, Slavov A, Popova A. Phytochemical and Nutritional Profile of Apricot, Plum-Apricot, and Plum Stones. Separations. 2025; 12(8):216. https://doi.org/10.3390/separations12080216
Chicago/Turabian StyleMihaylova, Dasha, Galia Gentscheva, Nadezhda Petkova-Ognyanova, Anton Slavov, and Aneta Popova. 2025. "Phytochemical and Nutritional Profile of Apricot, Plum-Apricot, and Plum Stones" Separations 12, no. 8: 216. https://doi.org/10.3390/separations12080216
APA StyleMihaylova, D., Gentscheva, G., Petkova-Ognyanova, N., Slavov, A., & Popova, A. (2025). Phytochemical and Nutritional Profile of Apricot, Plum-Apricot, and Plum Stones. Separations, 12(8), 216. https://doi.org/10.3390/separations12080216