Comparison of Extraction Techniques for Wide Screening of 230 Pesticides in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Extraction Procedures
2.3. Field Study
2.4. Sample Analysis
2.5. Statistical Analysis
3. Results
3.1. Comparison of Pesticides Detected by SBSE and SPE
3.2. Spatial and Temporal Comparison of SBSE and SPE Performance
3.3. SBSE and SPE Performance on a Subset of Commonly Extracted Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [PubMed]
- FAO. Water Quality in Agriculture: Risks and Risk Mitigation; FAO &IWMI: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Bletsou, A.A.; Damalas, D.E.; Aalizadeh, R.; Alygizakis, N.A.; Singer, H.P.; Hollender, J.; Thomaidis, N.S. Wide-scope target screening of >2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J. Hazard. Mater. 2020, 387, 121712. [Google Scholar] [CrossRef] [PubMed]
- Sargazi, M.; Bücking, M.; Kaykhaii, M. Development of a solventless stir bar sorptive extraction/thermal desorption large volume injection capillary gas chromatographic-mass spectrometric method for ultra-trace determination of pyrethroids pesticides in river and tap water samples. Open Chem. 2020, 18, 1339–1348. [Google Scholar] [CrossRef]
- Campanale, C.; Massarelli, C.; Losacco, D.; Bisaccia, D.; Triozzi, M.; Uricchio, V.F. The monitoring of pesticides in water matrices and the analytical criticalities: A review. TrAC Trends Anal. Chem. 2021, 144, 116423. [Google Scholar] [CrossRef]
- Ochiai, N.; Ieda, T.; Sasamoto, K.; Takazawa, Y.; Hashimoto, S.; Fushimi, A.; Tanabe, K. Stir bar sorptive extraction and comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry for ultra-trace analysis of organochlorine pesticides in river water. J. Chromatogr. A 2011, 1218, 6851–6860. [Google Scholar] [CrossRef]
- David, F.; Ochiai, N.; Sandra, P. Two decades of stir bar sorptive extraction: A retrospective and future outlook. TrAC Trends Anal. Chem. 2019, 112, 102–111. [Google Scholar] [CrossRef]
- Serôdio, P.; Nogueira, J.M.F. Development of a stir-bar-sorptive extraction–liquid desorption–large-volume injection capillary gas chromatographic–mass spectrometric method for pyrethroid pesticides in water samples. Anal. Bioanal. Chem. 2005, 382, 1141–1151. [Google Scholar] [CrossRef]
- Aparicio, I.; Martín, J.; Santos, J.L.; Malvar, J.L.; Alonso, E. Stir bar sorptive extraction and liquid chromatography—Tandem mass spectrometry determination of polar and non-polar emerging and priority pollutants in environmental waters. J. Chromatogr. A 2017, 1500, 43–52. [Google Scholar] [CrossRef]
- Giordano, A.; Fernández-Franzón, M.; Ruiz, M.J.; Font, G.; Picó, Y. Pesticide residue determination in surface waters by stir bar sorptive extraction and liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 2009, 393, 1733–1743. [Google Scholar] [CrossRef]
- Prieto, A.; Basauri, O.; Rodil, R.; Usobiaga, A.; Fernández, L.A.; Etxebarria, N.; Zuloaga, O. Stir-bar sorptive extraction: A view on method optimisation, novel applications, limitations and potential solutions. J. Chromatogr. A 2010, 1217, 2642–2666. [Google Scholar] [CrossRef]
- Nasiri, M.; Ahmadzadeh, H.; Amiri, A. Sample preparation and extraction methods for pesticides in aquatic environments: A review. TrAC Trends Anal. Chem. 2020, 123, 115772. [Google Scholar] [CrossRef]
- Posada-Ureta, O.; Olivares, M.; Delgado, A.; Prieto, A.; Vallejo, A.; Irazola, M.; Paschke, A.; Etxebarria, N. Applicability of polydimethylsiloxane (PDMS) and polyethersulfone (PES) as passive samplers of more hydrophobic organic compounds in intertidal estuarine environments. Sci. Total Environ. 2016, 578, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Murrell, K.A.; Dorman, F.L. A suspect screening analysis for contaminants of emerging concern in municipal wastewater and surface water using liquid–liquid extraction and stir bar sorptive extraction. Anal. Methods 2020, 12, 4487–4495. [Google Scholar] [CrossRef] [PubMed]
- Suazo, F.; Vasquez, J.; Retamal, M.; Ascar, L.; Giordano, A. Pharmaceutical Compounds Determination in Water Samples: Comparison between Solid Phase Extraction and Stir Bar Sorptive Extraction. J. Chil. Chem. Soc. 2017, 62, 3597–3601. [Google Scholar] [CrossRef]
- FAO. Pesticides Use, Pesticides TRADE and pesticides Indicators—Global, Regional and Country Trends, 1990–2020; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Sharma, A.; Shukla, A.; Attri, K.; Kumar, M.; Kumar, P.; Suttee, A.; Singh, G.; Barnwal, R.P.; Singla, N. Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicol. Environ. Saf. 2020, 201, 110812. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; El-Nouby, M.A.M.; Kimani, P.K.; Lim, L.W.; Rabea, E.I. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Anal. Sci. 2022, 38, 1457–1487. [Google Scholar] [CrossRef]
- Zhu, F.; Yao, Z.; Ji, W.; Liu, D.; Zhang, H.; Li, A.; Huo, Z.; Zhou, Q. An efficient resin for solid-phase extraction and determination by UPLCMS/MS of 44 pharmaceutical personal care products in environmental waters. Front. Environ. Sci. Eng. 2020, 14, 51. [Google Scholar] [CrossRef]
- Li, Y.; Gan, Z.; Liu, Y.; Chen, S.; Su, S.; Ding, S.; Tran, N.H.; Chen, X.; Long, Z. Determination of 19 anthelmintics in environmental water and sediment using an optimized PLE and SPE method coupled with UHPLC-MS/MS. Sci. Total Environ. 2020, 719, 137516. [Google Scholar] [CrossRef]
- Gopal, C.M.; Bhat, K.; Praveenkumarreddy, Y.; Shailesh; Kumar, V.; Basu, H.; Joshua, D.I.; Singhal, R.K.; Balakrishna, K. Evaluation of selected pharmaceuticals and personal care products in water matrix using ion trap mass spectrometry: A simple weighted calibration curve approach. J. Pharm. Biomed. Anal. 2020, 185, 113214. [Google Scholar] [CrossRef]
- Moschet, C.; Lew, B.M.; Hasenbein, S.; Anumol, T.; Young, T.M. LC- and GC-QTOF-MS as Complementary Tools for a Comprehensive Micropollutant Analysis in Aquatic Systems. Environ. Sci. Technol. 2017, 51, 1553–1561. [Google Scholar] [CrossRef]
- Cacciatori, C.; Mariani, G.; Tavazzi, S.; Comero, S.; Gawlik, B.M. A Powerful Tool for the Wide-Screening of Organic Contaminants in Citizen Science Initiatives: Development and Validation of a SBSE GC-QToF-HRMS Method; Publications Office of the European Union: Luxembourg, 2025. [Google Scholar] [CrossRef]
- EPA. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2; Office of Water, United States Environmental Protection Agency (EPA): Washington, DC, USA, 2016. Available online: www.epa.gov (accessed on 17 December 2024).
- Ochiai, N.; Sasamoto, K.; David, F.; Sandra, P. Recent Developments of Stir Bar Sorptive Extraction for Food Applications: Extension to Polar Solutes. J. Agric. Food Chem. 2018, 66, 7249–7255. [Google Scholar] [CrossRef] [PubMed]
- Brigitte Niehus, G.P.; Popp, P.; Bauer, C.; Zwanziger, H.W. Comparison of Stir Bar Sorptive Extraction and Solid Phase Extraction as Enrichment Techniques in Combination with Column Liquid Chromatography for the Determination of Polycyclic Aromatic Hydrocarbons in Water Samples. Int. J. Environ. Anal. Chem. 2002, 82, 669–676. [Google Scholar] [CrossRef]
- Cacciatori, C.; Mariani, G.; Comero, S.; Marin, D.; Cabrera, M.; Bon-Tavarnese, J.; Gaggstatter, J.; Myers, J.; Pettigrove, V.; Gawlik, B.M. Stir bar sorptive extraction TDU-GC-QToF-HRMS for screening 230 pesticides in waters surrounding banana plantations in Costa Rica through community engagement. Chemosphere 2025, 376, 144251. [Google Scholar] [CrossRef] [PubMed]
- Cacciatori, C.; Mariani, G.; Comero, S.; Marin, D.; Cabrera, M.; Bon-Tavarnese, J.; Gaggstatter, J.; Tavazzi, S.; Maffettone, R.; Myers, J.; et al. “The Gems of Water”: A co-created scientist-citizen approach for water quality monitoring. Front. Water 2024, 6, 1358959. [Google Scholar] [CrossRef]
Parameters | Method | |
---|---|---|
SBSE | SPE | |
Total compounds detected | 62 | 51 |
Compounds detected below LODs | 18 | 6 |
Fungicides | 20 | 18 |
Herbicides | 9 | 11 |
Insecticides | 20 | 11 |
Other | 13 | 11 |
Log KOW of compounds detected | ||
Range | 2.2–6.6 | 1.6–6.5 |
Average | 4.3 | 3.8 |
Median | 4.1 | 3.8 |
Compounds unique to method | 26 | 15 |
Log KOW of compounds unique to the method | ||
Range | 2.3–6.6 | 1.6–4.1 |
Average | 4.5 | 3.5 |
Median | 4.4 | 3.8 |
LODs (ng/L) of detected compounds (27) | ||
Range | 0.6–10.9 | 0.3–2.2 |
Average | 2.7 | 0.8 |
Median | 2.2 | 0.5 |
Recoveries of detected compounds (27) | ||
Range | 97.6–101 | 86–98.7 |
Average | 98.9 | 97.1 |
Median | 99 | 97.6 |
Site | Site A | Site B | Site C | Overall | ||||
---|---|---|---|---|---|---|---|---|
Method | SBSE | SPE | SBSE | SPE | SBSE | SPE | SBSE | SPE |
Total compounds detected | 49 | 41 | 52 | 32 | 29 | 39 | 62 | 51 |
Fungicides | 17 | 16 | 16 | 9 | 14 | 15 | 20 | 18 |
Herbicides | 6 | 9 | 9 | 8 | 3 | 8 | 9 | 11 |
Insecticides | 15 | 7 | 17 | 7 | 7 | 9 | 20 | 11 |
No. of pesticides detected temporally | ||||||||
Range | 36–45 | 29–32 | 43–48 | 26–29 | 17–25 | 12–25 | 17–48 | 12–32 |
Median | 43 | 30 | 44 | 22 | 19 | 13 | 43 | 28 |
No. pesticides occurring in all samples | 32 | 21 | 35 | 24 | 13 | 13 | 11 | 8 |
Pesticides detected: | ||||||||
in concentrations > 10 ng/L | 11 | 17 | 17 | 15 | 10 | 15 | 27 | 30 |
in concentrations > 50 ng/L | 2 | 6 | 4 | 9 | 1 | 8 | 10 | 12 |
Total concentrations [ng/L] | ||||||||
Range | 203.6–432.6 | 463.8–1412.3 | 330.4–791.5 | 808.9–2718.4 | 67.3–276.6 | 178.8–1072.2 | 67.3–791.5 | 178.8–2718.4 |
Average | 285 | 806 | 534.8 | 1763.4 | 132.5 | 447.3 | 317.4 | 1265.4 |
Median | 246.5 | 647.8 | 550.4 | 1671.5 | 110 | 344.5 | 276.6 | 1072.2 |
Selected measured pesticides | Anthraquinone | Fipronil | Fluopyram | Iprodione | Oxadiazon | Tebuconazole | |||||||
Log Kow | 3.4 | 3.8 | 4.8 | 3 | 5.3 | 3.7 | |||||||
Extraction method | SBSE | SPE | SBSE | SPE | SBSE | SPE | SBSE | SPE | SBSE | SPE | SBSE | SPE | |
LOD [ng/L] | 2.1 | 1.1 | 3.7 | 0.7 | 1.8 | 1.9 | 3.3 | 0.8 | 0.7 | 0.6 | 2.5 | 0.8 | |
Sampling location | Week No. | Concentrations [ng/L] | |||||||||||
Site A | 0 | 13.5 | 35.8 | 62.7 | 116.4 | <LOD | <10 | <LOD | 736.7 | <10 | <10 | 39.1 | 131.9 |
1 | 14.6 | 26.4 | 43.7 | 57.6 | <10 | <LOD | <LOD | 35.3 | <10 | <10 | 28.5 | 77.6 | |
2 | 20.6 | 31.5 | 58.8 | 80.4 | <LOD | <LOD | 32.8 | 48.1 | <10 | <10 | 41.8 | 97.9 | |
3 | 15.5 | 41.7 | 51.4 | 97.5 | <LOD | <10 | <LOD | 62 | <LOD | <10 | 33.9 | 123.4 | |
4 | 11.5 | 20.6 | 77.1 | 69.2 | <10 | <LOD | <LOD | 63.1 | <10 | 26.4 | 71.7 | 97.1 | |
Site B | 0 | 52.9 | 88.9 | 34.9 | 47.2 | <10 | <LOD | 53.6 | 82.6 | <10 | <10 | 49.2 | 124.1 |
1 | 29.8 | 45.9 | 55.7 | 44.9 | <10 | <LOD | <LOD | 43.5 | <10 | <10 | 54.5 | 70.9 | |
2 | 12.5 | 87.3 | 30.8 | 64 | <10 | <LOD | <LOD | 92 | 11.6 | 27.5 | 40.8 | 132.5 | |
3 | 14.2 | <LOD | 77.3 | 217.4 | <10 | <LOD | 27.7 | 91.9 | <10 | 15.8 | 44 | 175.8 | |
4 | 23.8 | <LOD | 146.2 | 381.5 | <LOD | <LOD | 55.2 | 153.1 | <10 | 17.6 | 53.8 | 237.2 | |
Site C | 0 | <LOD | <LOD | <LOD | <LOD | 16.2 | 33.2 | <LOD | 9.79 | 13.1 | 18.4 | <LOD | <10 |
1 | <LOD | <LOD | <LOD | <LOD | 15.6 | 52.2 | <LOD | 4.99 | 12.7 | 24.3 | <LOD | <LOD | |
2 | <LOD | <LOD | <LOD | <LOD | 10.8 | 83.8 | <LOD | 24.94 | <10 | 27.4 | <LOD | <10 | |
3 | <LOD | <LOD | <LOD | <LOD | 12 | 21.6 | <LOD | 76.2 | 10 | 45.6 | <10 | <LOD | |
4 | <10 | 22.7 | <LOD | 78.5 | 20.8 | 35.7 | 29.6 | 55.2 | 24 | 27.4 | <LOD | 20.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacciatori, C.; Myers, J.; Mariani, G.; Vu, H.; Gawlik, B.M.; Pettigrove, V. Comparison of Extraction Techniques for Wide Screening of 230 Pesticides in Water. Separations 2025, 12, 158. https://doi.org/10.3390/separations12060158
Cacciatori C, Myers J, Mariani G, Vu H, Gawlik BM, Pettigrove V. Comparison of Extraction Techniques for Wide Screening of 230 Pesticides in Water. Separations. 2025; 12(6):158. https://doi.org/10.3390/separations12060158
Chicago/Turabian StyleCacciatori, Caterina, Jackie Myers, Giulio Mariani, Hung Vu, Bernd Manfred Gawlik, and Vincent Pettigrove. 2025. "Comparison of Extraction Techniques for Wide Screening of 230 Pesticides in Water" Separations 12, no. 6: 158. https://doi.org/10.3390/separations12060158
APA StyleCacciatori, C., Myers, J., Mariani, G., Vu, H., Gawlik, B. M., & Pettigrove, V. (2025). Comparison of Extraction Techniques for Wide Screening of 230 Pesticides in Water. Separations, 12(6), 158. https://doi.org/10.3390/separations12060158