Effective Liquid–Liquid Extraction for the Recovery of Grape Pomace Polyphenols from Natural Deep Eutectic Solvents (NaDES)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. NaDES Starting Samples (NaDES Extracts)
2.3. Recovery of Compounds from NaDES Extracts
2.3.1. Antisolvent Extraction Method
2.3.2. Liquid–Liquid Extraction Method
2.3.3. HPLC/MS
2.4. Statistical Analysis
3. Results
3.1. Antisolvent Extraction
3.2. Liquid–Liquid Extraction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.; Witkamp, G.J.; Verpoorte, R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, X.; Liu, Y.; Wu, K.; Zhu, Y.; Lu, H.; Liang, B. Insights into the relationships between physicochemical properties, solvent performance, and applications of deep eutectic solvents. Environ. Sci. Pollut. Res. 2021, 28, 35537–35563. [Google Scholar] [CrossRef] [PubMed]
- González-Laredo, R.F.; Sayago-Monreal, V.I.; Moreno-Jiménez, M.R.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Landeros-Macías, L.F.; Rosales-Castro, M. Natural deep eutectic solvents (NaDES) as an emerging technology for the valorisation of natural products and agro-food residues: A review. Int. J. Food Sci. Technol. 2023, 58, 6660–6673. [Google Scholar] [CrossRef]
- Mišan, A.; Nađpal, J.; Stupar, A.; Pojić, M.; Mandić, A.; Verpoorte, R.; Choi, Y.H. The perspectives of natural deep eutectic solvents in agri-food sector. Crit. Rev. Food Sci. Nutr. 2020, 60, 2564–2592. [Google Scholar] [CrossRef]
- Socas-Rodríguez, B.; Torres-Cornejo, M.V.; Álvarez-Rivera, G.; Mendiola, J.A. Deep eutectic solvents for the extraction of bioactive compounds from natural sources and agricultural by-products. Appl. Sci. 2021, 11, 4897. [Google Scholar] [CrossRef]
- Palos-Hernández, A.; Fernández, M.Y.G.; Burrieza, J.E.; Pérez-Iglesias, J.L.; González-Paramás, A.M. Obtaining green extracts rich in phenolic compounds from underexploited food by-products using natural deep eutectic solvents. Opportunities and challenges. Sustain. Chem. Pharm. 2022, 29, 100773. [Google Scholar] [CrossRef]
- Pereira, T.C.; Souza, V.P.; Padilha, A.P.F.; Duarte, F.A.; Flores, E.M. Trends and perspectives on the ultrasound-assisted extraction of bioactive compounds using natural deep eutectic solvents. Curr. Opin. Chem. Eng. 2025, 47, 101088. [Google Scholar] [CrossRef]
- Singh, N.; Panwar, D.; Kumar, G.; Kashyap, P. New horizons for the enhanced recovery of phenolic compounds by integration of Natural Deep Eutectic Solvents and microwave-assisted extraction. Food Biosci. 2024, 60, 104375. [Google Scholar] [CrossRef]
- Shahbaz, K.; Mjalli, F.S.; Vakili-Nezhaad, G.; AlNashef, I.M.; Asadov, A.; Farid, M.M. Thermogravimetric measurement of deep eutectic solvents vapor pressure. J. Mol. Liq. 2016, 222, 61–66. [Google Scholar] [CrossRef]
- El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and properties of deep eutectic solvents: A review. Environ. Chem. Lett. 2021, 19, 3397–3408. [Google Scholar] [CrossRef]
- Cannavacciuolo, C.; Pagliari, S.; Frigerio, J.; Giustra, C.M.; Labra, M.; Campone, L. Natural deep eutectic solvents (NADESs) combined with sustainable extraction techniques: A review of the green chemistry approach in food analysis. Foods 2022, 12, 56. [Google Scholar] [CrossRef]
- Ražić, S.; Arsenijević, J.; Mračević, S.Đ.; Mušović, J.; Trtić-Petrović, T. Greener chemistry in analytical sciences: From green solvents to applications in complex matrices. Current challenges and future perspectives: A critical review. Analyst 2023, 148, 3130–3152. [Google Scholar] [CrossRef]
- Ahmadi, R.; Hemmateenejad, B.; Safavi, A.; Shojaeifard, Z.; Mohabbati, M.; Firuzi, O. Assessment of cytotoxicity of choline chloride-based natural deep eutectic solvents against human HEK-293 cells: A QSAR analysis. Chemosphere 2018, 209, 831–838. [Google Scholar] [CrossRef]
- Radošević, K.; Bubalo, M.C.; Srček, V.G.; Grgas, D.; Dragičević, T.L.; Redovniković, I.R. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol. Environ. Saf. 2015, 112, 46–53. [Google Scholar] [CrossRef]
- Macário, I.P.E.; Oliveira, H.; Menezes, A.C.; Ventura, S.P.M.; Pereira, J.L.; Gonçalves, A.M.M.; Coutinho, J.A.P.; Gonçalves, F.J.M. Cytotoxicity profiling of deep eutectic solvents to human skin cells. Sci. Rep. 2019, 9, 3932. [Google Scholar] [CrossRef] [PubMed]
- Jangir, A.K.; Lad, B.; Dani, U.; Shah, N.; Kuperkar, K. In vitro toxicity assessment and enhanced drug solubility profile of green deep eutectic solvent derivatives (DESDs) combined with theoretical validation. RSC Adv. 2020, 10, 24063–24072. [Google Scholar] [CrossRef]
- Joarder, S.; Bansal, D.; Meena, H.; Kaushik, N.; Tomar, J.; Kumari, K.; Bahadur, I.; Choi, E.H.; Kaushik, N.K.; Singh, P. Bioinspired green deep eutectic solvents: Preparation, catalytic activity, and biocompatibility. J. Mol. Liq. 2023, 376, 121355. [Google Scholar] [CrossRef]
- Silva, J.M.; Silva, E.; Reis, R.L.; Duarte, A.R.C. A closer look in the antimicrobial properties of deep eutectic solvents based on fatty acids. Sustain. Chem. Pharm. 2019, 14, 100192. [Google Scholar] [CrossRef]
- Marchel, M.; Cieśliński, H.; Boczkaj, G. Thermal instability of choline chloride-based deep eutectic solvents and its influence on their toxicity—important limitations of DESs as sustainable materials. Ind. Eng. Chem. Res. 2022, 61, 11288–11300. [Google Scholar] [CrossRef]
- Rodriguez-Juan, E.; Lopez, S.; Abia, R.; Muriana, F.J.; Fernandez-Bolanos, J.; Garcia-Borrego, A. Antimicrobial activity on phytopathogenic bacteria and yeast, cytotoxicity and solubilizing capacity of deep eutectic solvents. J. Mol. Liq. 2021, 337, 116343. [Google Scholar] [CrossRef]
- Wen, Q.; Chen, J.X.; Tang, Y.L.; Wang, J.; Yang, Z. Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere 2015, 132, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Della Posta, S.; Gallo, V.; Gentili, A.; Fanali, C. Strategies for the recovery of bioactive molecules from deep eutectic solvents extracts. TrAC Trends Anal. Chem. 2022, 157, 116798. [Google Scholar] [CrossRef]
- Jaganmohanrao, L. Valorization of onion wastes and by-products using deep eutectic solvents as alternate green technology solvents for isolation of bioactive phytochemicals. Food Res. Int. 2025, 206, 115980. [Google Scholar] [CrossRef]
- Hang, N.T.; Uyen, T.T.T.; Van Phuong, N. Green extraction of apigenin and luteolin from celery seed using deep eutectic solvent. J. Pharm. Biomed. Anal. 2022, 207, 114406. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of deep eutectic solvents (DES) for phenolic compounds extraction: Overview, challenges, and opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef]
- Nam, M.W.; Zhao, J.; Lee, M.S.; Jeong, J.H.; Lee, J. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: Application to flavonoid extraction from Flos sophorae. Green Chem. 2015, 17, 1718–1727. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z.G. Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem. 2017, 221, 1400–1405. [Google Scholar] [CrossRef]
- Patil, S.S.; Pathak, A.; Rathod, V.K. Optimization and kinetic study of ultrasound assisted deep eutectic solvent based extraction: A greener route for extraction of curcuminoids from Curcuma longa. Ultrason. Sonochem. 2021, 70, 105267. [Google Scholar] [CrossRef]
- Pal, C.B.T.; Jadeja, G.C. Microwave-assisted deep eutectic solvent extraction of phenolic antioxidants from onion (Allium cepa L.) peel: A Box–Behnken design approach for optimization. J. Food Sci. Technol. 2019, 56, 4211–4223. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, M.; Fang, M.; Gu, Y.; Yi, L.; Ren, D. Simultaneous extraction and selective separation of catechins, caffeine and theanine from waste tea residue facilitated by citric acid-based deep eutectic solvent. Sep. Purif. Technol. 2025, 360, 130918. [Google Scholar] [CrossRef]
- de Sousa Bezerra, F.; Ramos, G.M.S.; de Oliveira Carvalho, M.G.; Carvalho, H.S.; de Souza, J.P.; de Carvalho Neto, S.L.; Guelli Ulson de Souza, S.M.A.; da Costa Ferrez, D.C.; Koblitz, M.G.B. Cytotoxic potential of sunflower meal NaDES and liquid-liquid extracts. Food Chem. 2025, 474, 143148. [Google Scholar] [CrossRef]
- Xu, M.; Ran, L.; Chen, N.; Fan, X.; Ren, D.; Yi, L. Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem. 2019, 297, 124970. [Google Scholar] [CrossRef]
- Pal, C.B.T.; Jadeja, G.C. Microwave-assisted extraction for recovery of polyphenolic antioxidants from ripe mango (Mangifera indica L.) peel using lactic acid/sodium acetate deep eutectic mixtures. Food Sci. Technol. Int. 2020, 26, 78–92. [Google Scholar] [CrossRef]
- Parris, P.; Duncan, J.N.; Fleetwood, A.; Beierschmitt, W.P. Calculation of a permitted daily exposure value for the solvent 2-methyltetrahydrofuran. Regul. Toxicol. Pharmacol. 2017, 87, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Pace, V.; Hoyos, P.; Castoldi, L.; Domínguez de María, P.; Alcántara, A.R. 2-Methyltetrahydrofuran (2-MeTHF): A biomass-derived solvent with broad application in organic chemistry. ChemSusChem 2012, 5, 1369–1379. [Google Scholar] [CrossRef]
- Cañadas, R.; González-Miquel, M.; González, E.J.; Díaz, I.; Rodríguez, M. Evaluation of bio-based solvents for phenolic acids extraction from aqueous matrices. J. Mol. Liq. 2021, 338, 116930. [Google Scholar] [CrossRef]
- Frontini, A.; Luvisi, A.; Negro, C.; Apollonio, M.; Accogli, R.; De Pascali, M.; De Bellis, L. Polyphenols Extraction from Different Grape Pomaces Using Natural Deep Eutectic Solvents. Separations 2024, 11, 241. [Google Scholar] [CrossRef]
- Negro, C.; Aprile, A.; Luvisi, A.; De Bellis, L.; Miceli, A. Antioxidant activity and polyphenols characterization of four monovarietal grape pomaces from Salento (Apulia, Italy). Antioxidants 2021, 10, 1406. [Google Scholar] [CrossRef]
- Sun, S.; Cao, X.; Li, H.; Zhu, Y.; Li, Y.; Jiang, W.; Wang, Y.; Sun, S. Simultaneous and efficient production of furfural and subsequent glucose in MTHF/H2O biphasic system via parameter regulation. Polymers 2020, 12, 557. [Google Scholar] [CrossRef]
- Alam, M.A.; Muhammad, G.; Khan, M.N.; Mofijur, M.; Lv, Y.; Xiong, W.; Xu, J. Choline chloride-based deep eutectic solvents as green extractants for the isolation of phenolic compounds from biomass. J. Clean. Prod. 2021, 309, 127445. [Google Scholar] [CrossRef]
- Cañadas, R.; Díaz, I.; Sánchez-Monedero, A.; González, E.J.; González-Miquel, M. Green extraction of natural antioxidants from white grape waste using bio-renewable solvents and ultrasonic process intensification. Chem. Eng. Process. Process. Intensif. 2024, 196, 109644. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2020. Available online: https://www.R-project.org/ (accessed on 10 January 2025).
- Isci, A.; Kaltschmitt, M. Recovery and recycling of deep eutectic solvents in biomass conversions: A review. Biomass Convers. Biorefin. 2022, 12, 197–226. [Google Scholar] [CrossRef]
- An, J.Y.; Wang, L.T.; Lv, M.J.; Wang, J.D.; Cai, Z.H.; Wang, Y.Q.; Zhang, S.; Yang, Q.; Fu, Y.J. An efficiency strategy for extraction and recovery of ellagic acid from waste chestnut shell and its biological activity evaluation. Microchem. J. 2021, 160, 105616. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, X.; Liu, P.; Huang, J.; Wang, C.; Pan, M.; Kuang, Z. Enhanced phenolic compounds extraction from Morus alba L. leaves by deep eutectic solvents combined with ultrasonic-assisted extraction. Ind. Crops Prod. 2018, 120, 147–154. [Google Scholar] [CrossRef]
- Koyu, H.; Demir, S.; Haznedaroglu, M.Z. Investigation of microwave extraction of red cabbage and its neurotherapeutic potential. J. Food Drug Anal. 2023, 31, 609. [Google Scholar] [CrossRef]
- Sun, L.L.; Li, Y.; Cao, X.F.; Yao, S.Q.; Sun, S.N. Insights on structure and antioxidant properties of lignin extracted from Eucalyptus by deep eutectic solvent/2-methyltetrahydrofuran biphasic system treatment. Ind. Crops Prod. 2023, 204, 117271. [Google Scholar] [CrossRef]
- Li, Q.; Wang, T.; Wu, D.; Guo, N.; Meng, H. Novel halogen-free deep eutectic solvents for efficient extraction of phenolic compounds from real coal tar. J. Mol. Liq. 2023, 382, 122002. [Google Scholar] [CrossRef]
- Tan, Z.; Yi, Y.; Wang, H.; Zhou, W.; Wang, C. Extraction, preconcentration and isolation of flavonoids from Apocynum venetum L. leaves using ionic liquid-based ultrasonic-assisted extraction coupled with an aqueous biphasic system. Molecules 2016, 21, 262. [Google Scholar] [CrossRef]
- Vom Stein, T.; Grande, P.M.; Kayser, H.; Sibilla, F.; Leitner, W.; de María, P.D. From biomass to feedstock: One-step fractionation of lignocellulose components by the selective organic acid-catalyzed depolymerization of hemicellulose in a biphasic system. Green Chem. 2011, 13, 1772–1777. [Google Scholar] [CrossRef]
- Grande, P.M.; Viell, J.; Theyssen, N.; Marquardt, W.; de María, P.D.; Leitner, W. Fractionation of lignocellulosic biomass using the OrganoCat process. Green Chem. 2015, 17, 3533–3539. [Google Scholar] [CrossRef]
- Li, S.X.; Li, M.F.; Bian, J.; Sun, S.N.; Peng, F.; Xue, Z.M. Biphasic 2-methyltetrahydrofuran/oxalic acid/water pretreatment to enhance cellulose enzymatic hydrolysis and lignin valorization. Bioresou. Technol. 2017, 243, 1105–1111. [Google Scholar] [CrossRef]
- Morone, A.; Pandey, R.A.; Chakrabarti, T. Evaluation of OrganoCat process as a pretreatment during bioconversion of rice straw. Ind. Crops Prod. 2017, 99, 7–18. [Google Scholar] [CrossRef]
- Stiefel, S.; Di Marino, D.; Eggert, A.; Kühnrich, I.R.; Schmidt, M.; Grande, P.M.; Leitner, W.; Jupke, A.; Wessling, M. Liquid/liquid extraction of biomass-derived lignin from lignocellulosic pretreatments. Green Chem. 2017, 19, 93–97. [Google Scholar] [CrossRef]
- Xue, B.; Yang, Y.; Zhu, M.; Sun, Y.; Li, X. Lewis acid-catalyzed biphasic 2-methyltetrahydrofuran/H2O pretreatment of lignocelluloses to enhance cellulose enzymatic hydrolysis and lignin valorization. Bioresour. Technol. 2018, 270, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.Z.; Zou, S.L.; Xiao, L.P.; Sun, R.C. Catechyl lignin extracted from candlenut by biphasic 2-methyltetrahydrofuran/water: Characterization and depolymerization. Chem. Engin. Sci. 2024, 288, 119828. [Google Scholar] [CrossRef]
- Martinović, M.; Krgović, N.; Nešić, I.; Žugić, A.; Tadić, V.M. Conventional vs. green extraction using natural deep eutectic solvents—Differences in the composition of soluble unbound phenolic compounds and antioxidant activity. Antioxidants 2022, 11, 2295. [Google Scholar] [CrossRef]
- Tena, N.; Asuero, A.G. Up-to-date analysis of the extraction methods for anthocyanins: Principles of the techniques, optimization, technical progress, and industrial application. Antioxidants 2022, 11, 286. [Google Scholar] [CrossRef]
- Luo, X.E.; Wang, R.; Wang, J.; Li, Y.; Luo, H.; Chen, S.; Zeng, X.; Han, Z. Acylation of anthocyanins and their applications in the food industry: Mechanisms and recent research advances. Foods 2022, 11, 2166. [Google Scholar] [CrossRef]
- Sicaire, A.G.; Vian, M.; Fine, F.; Joffre, F.; Carré, P.; Tostain, S.; Chemat, F. Alternative bio-based solvents for extraction of fat and oils: Solubility prediction, global yield, extraction kinetics, chemical composition and cost of manufacturing. Int. J. Mol. Sci. 2015, 16, 8430–8453. [Google Scholar] [CrossRef]
- Yara-Varon, E.; Fabiano-Tixier, A.S.; Balcells, M.; Canela-Garayoa, R.; Bily, A.; Chemat, F. Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study. RSC Adv. 2016, 6, 27750–27759. [Google Scholar] [CrossRef]
- Li, R.; Zheng, Y.; Zhao, X.; Yong, Q.; Meng, X.; Ragauskas, A.; Huang, C. Recent advances in biomass pretreatment using biphasic solvent systems. Green Chem. 2023, 25, 2505–2523. [Google Scholar] [CrossRef]
- Cañadas, R.; Díaz, I.; Rodríguez, M.; González, E.J.; González-Miquel, M. An integrated approach for sustainable valorization of winery wastewater using bio-based solvents for recovery of natural antioxidants. J. Clean. Prod. 2022, 334, 130181. [Google Scholar] [CrossRef]
NaDES Name | HBA | HBD | Molar Ratio | Water Content (v/v) | pH |
---|---|---|---|---|---|
NaDES-Lac | Choline chloride | Lactic acid | 1:1 | 50% | 1.47 |
NaDES-Tar | Choline chloride | Tartaric acid | 1:1 | 50% | 0.56 |
NaDES-Gly | Choline chloride | Glycerol | 1:1 | 50% | 2.76 |
Ethyl Acetate | Acetonitrile | 2-Chlorobutane | 2-Methyltetrahydrofuran | Ethyl Acetate |
---|---|---|---|---|
Boiling point (°C) | 77.1 | 82 | 70 | 78 |
Dielectric constant (20 °C) | 6.0 | 37.5 | 8.56 | 6.97 |
Density (g/mL) | 0.902 | 0.786 | 0.873 | 0.854 |
Solvent | NaDES-Lac | NaDES-Tar | NaDES-Gly | |||
---|---|---|---|---|---|---|
Immiscibility | R (%) | Immiscibility | R (%) | Immiscibility | R (%) | |
EtOAc | Yes | 1.3 ± 0.1 b | Yes | 1.5 ± 0.0 b | Yes | 2.2 ± 0.3 b |
ACN | Partial | / | Partial | / | Partial | / |
2-CB | Yes | 0.1 ± 0.0 c | Yes | 0.0 ± 0.0 c | Yes | 0.2 ± 0.0 c |
2-MeTHF | Yes | 6.7 ± 0.4 a | Yes | 4.8 0.3 a | Yes | 5.1 ± 0.4 a |
Recovery (%) | |||||
---|---|---|---|---|---|
LLE-A | LLE-B | ||||
Step 1 | Step 2 | Step 1 | Step 2 | ||
EtOAc | 2-MeTHF | 2-MeTHF | EtOAc | ||
Delphinidin 3-O-glucoside 1 | NaDES-Lac | 1.0 ± 0.1 b | 9.5 ± 1.4 a | 6.6 ± 0.7 a | 1.0 ± 0.2 b |
NaDES-Tar | 0.2 ± 0.0 b | 4.3 ± 0.5 a | 4.0 ± 1.7 a | 0.2 ± 0.0 b | |
NaDES-Gly | 1.5 ± 0.1 c | 36.3 ± 4.1 a | 20.5 ± 2.4 b | 0.2 ± 0.0 d | |
Cyanidin 3-O-glucoside 1 | NaDES-Lac | 5.8 ± 0.7 c | 37.6 ± 3.6 a | 11.9 ± 1.4 b | 8.6 ± 1.5 c |
NaDES-Tar | 0.5 ± 0.0 b | 8.7 ± 1.7 a | 7.6 ± 1.9 a | 0.5 ± 0.0 b | |
NaDES-Gly | 2.7 ± 0.2 b | 26.8 ± 1.9 a | 22.9 ± 2.2 a | 0.8 ± 0.1 c | |
Petunidin 3-O-glucoside 1 | NaDES-Lac | 0.2 ± 0.0 b | 9.4 ± 0.6 a | 8.2 ± 0.6 a | 0.2 ± 0.0 b |
NaDES-Tar | 0.3 ± 0.0 b | 5.4 ± 0.8 a | 4.3 ± 0.6 a | 0.1 ± 0.0 b | |
NaDES-Gly | 1.4 ± 0.4 c | 32.3 ± 3.5 a | 20.9 ± 2.2 b | 0.1 ± 0.0 d | |
Peonidin 3-O-glucoside 1 | NaDES-Lac | 1.6 ± 0.4 b | 19.2 ± 1.4 a | 16.8 ±1.6 a | 1.8 ± 0.1 b |
NaDES-Tar | 0.6 ± 0.1 b | 9.5 ± 1.2 a | 7.1 ± 0.6 a | 1.0 ± 0.1 b | |
NaDES-Gly | 3.8 ± 0.3 b | 27.7 ± 2.0 a | 26.1 ± 1.7 a | 2.9 ± 0.3 b | |
Malvidin 3-O-glucoside | NaDES-Lac | 0.9 ± 0.1 b | 13.4 ± 0.8 a | 10.8 ± 0.7 a | 1.3 ± 0.1 b |
NaDES-Tar | 0.3 ± 0.0 b | 6.3 ± 0.7 a | 4.7 ± 0.4 a | 0.6 ± 0.0 b | |
NaDES-Gly | 1.8 ± 0.2 c | 17.3 ± 0.4 a | 14.4 ± 0.7 b | 1.8 ± 0.2 c | |
Malvidin 3-O-(6′-acetyl)-glucoside 1 | NaDES-Lac | 5.4 ± 0.6 c | 40.3 ± 1.8 a | 32.8 ± 1.9 b | 4.6 ± 0.4 c |
NaDES-Tar | 2.9 ± 0.5 b | 26.0 ± 3.0 a | 20.7 ± 1.1 a | 3.1 ± 0.1 b | |
NaDES-Gly | 9.0 ± 1.0 b | 42.9 ± 1.8 a | 41.8 ± 2.3 a | 6.3 ± 0.5 c | |
Malvidin 3-O-(6′-caffeoyl)-glucoside 1 | NaDES-Lac | 7.2 ± 0.5 b | 64.2 ± 6.5 a | 69.9 ± 2.9 a | 1.4 ± 0.1 c |
NaDES-Tar | 2.5 ± 0.3 c | 44.1 ± 3.7 b | 55.9 ±2.7 a | 2.6 ± 0.1 c | |
NaDES-Gly | 13.4 ± 1.3 c | 54.0 ± 5.1 b | 72.2 ± 7.6 a | 1.4 ± 0.3 d | |
Malvidin 3-O-glucoside 4 vinylphenol 1 | NaDES-Lac | 14.9 ± 1.3 c | 64.9 ± 6.6 b | 87.6 ± 3.8 a | 4.8 ± 0.6 d |
NaDES-Tar | 10.0 ± 0.9 c | 61.9 ± 5.7 b | 77.7 ± 1.1 a | 4.8 ± 0.3 d | |
NaDES-Gly | 23.7 ± 2.7 c | 38.7 ± 2.5 b | 84.4 ± 5.1 a | 4.2 ± 0.5 d | |
Malvidin 3-O-glucoside 4 vinylguaiacol 1 | NaDES-Lac | 19.3 ± 2.1 c | 69.1 ± 5.1 b | 81.7 ± 3.0 a | 0.3 ± 0.0 d |
NaDES-Tar | 7.0 ± 0.5 c | 58.0 ± 2.3 b | 69.9 ± 2.6 a | 0.4 ± 0.0 d | |
NaDES-Gly | 28.7 ± 3.4 c | 45.1 ± 6.5 b | 80.1 ± 6.1 a | 3.4 ± 0.4 d |
Recovery (%) | |||||
---|---|---|---|---|---|
LLE-A | LLE-B | ||||
Step 1 | Step 2 | Step 1 | Step 2 | ||
EtOAc | 2-MeTHF | 2-MeTHF | EtOAc | ||
Catechin | NaDES-Lac | 60.9 ± 5.0 b | 35.1 ± 3.2 c | 94.6 ± 3.3 a | 5.4 ± 0.7 d |
NaDES-Tar | 44.8 ± 5.3 b | 51.2 ± 3.8 b | 95.5 ± 2.2 a | 3.4 ± 0.5 c | |
NaDES-Gly | 63.7 ± 2.9 b | 32.7 ± 1.0 c | 95.9 ± 1.9 a | 4.0 ± 0.7 d | |
Epicatechin 1 | NaDES-Lac | 44.4 ± 8.5 b | 44.6 ± 5.4 b | 77.6 ± 9.2 a | 10.5 ± 0.9 c |
NaDES-Tar | 38.8 ± 4.8 c | 54.0 ± 5.2 b | 90.0 ± 2.2 a | 3.0 ± 0.7 d | |
NaDES-Gly | 57.5 ± 3.9 b | 37.6 ± 2.2 c | 89.9 ± 2.9 a | 4.4 ± 0.8 d | |
Quercetin 3-O-hexuronide 2 | NaDES-Lac | 55.4 ± 1.3 b | 37.8 ± 2.1 c | 96.8 ± 2.1 a | 4.4 ± 0.5 d |
NaDES-Tar | 54.3 ± 2.7 b | 39.7 ± 4.0 c | 92.7 ± 4.7 a | 5.3 ± 0.7 d | |
NaDES-Gly | 42.7 ± 2.3 b | 43.0 ± 3.1 b | 85.7 ± 5.1 a | 7.1 ± 0.8 c | |
Quercetin 3-β-D-glucoside | NaDES-Lac | 61.0 ± 4.4 b | 40.6 ± 3.0 c | 85.9 ± 5.3 a | 6.2 ± 0.8 d |
NaDES-Tar | 56.4 ± 5.9 b | 45.4 ± 5.4 b | 94.6 ± 3.2 a | 5.2 ± 0.8 c | |
NaDES-Gly | 61.0 ± 6.5 b | 40.8 ± 3.3 c | 96.1 ± 2.4 a | 4.8 ± 0.3 d | |
Astilbin | NaDES-Lac | 79.4 ± 2.9 b | 15.7 ± 1.5 c | 96.4 ± 2.1 a | 3.1 ± 0.2 d |
NaDES-Tar | 77.2 ± 1.8 b | 19.7 ± 1.4 c | 95.7 ± 2.3 a | 4.1 ± 0.3 d | |
NaDES-Gly | 78.4 ± 2.1 b | 17.0 ± 1.5 c | 96.5 ± 1.6 a | 3.3 ± 0.2 d | |
Kaempferol 3-O-glucoside | NaDES-Lac | 77.3 ± 3.4 b | 20.4 ± 4.4 c | 95.3 ± 4.2 a | 4.4 ± 0.2 d |
NaDES-Tar | 73.1 ± 3.2 b | 23.8 ± 1.9 c | 95.0 ± 6.1 a | 4.7 ± 0.4 d | |
NaDES-Gly | 80.2 ± 5.8 b | 17.0 ± 5.4 c | 93.3 ± 2.2 a | 4.8 ± 0.4 d | |
Resveratrol | NaDES-Lac | 81.9 ± 7.4 a | 8.9 ± 0.9 c | 73.4 ± 6.7 a | 19.1 ± 1.7 b |
NaDES-Tar | 62.2 ± 4.6 a | 31.2 ± 3.1 b | 73.5 ± 8.4 a | 13.4 ± 0.9 c | |
NaDES-Gly | 63.1 ± 9.9 a | 5.5 ± 4.7 c | 79.6 ± 4.9 a | 17.9 ± 1.4 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frontini, A.; Tarentini, G.; Negro, C.; Luvisi, A.; Apollonio, M.; De Bellis, L. Effective Liquid–Liquid Extraction for the Recovery of Grape Pomace Polyphenols from Natural Deep Eutectic Solvents (NaDES). Separations 2025, 12, 148. https://doi.org/10.3390/separations12060148
Frontini A, Tarentini G, Negro C, Luvisi A, Apollonio M, De Bellis L. Effective Liquid–Liquid Extraction for the Recovery of Grape Pomace Polyphenols from Natural Deep Eutectic Solvents (NaDES). Separations. 2025; 12(6):148. https://doi.org/10.3390/separations12060148
Chicago/Turabian StyleFrontini, Alessandro, Giulio Tarentini, Carmine Negro, Andrea Luvisi, Massimiliano Apollonio, and Luigi De Bellis. 2025. "Effective Liquid–Liquid Extraction for the Recovery of Grape Pomace Polyphenols from Natural Deep Eutectic Solvents (NaDES)" Separations 12, no. 6: 148. https://doi.org/10.3390/separations12060148
APA StyleFrontini, A., Tarentini, G., Negro, C., Luvisi, A., Apollonio, M., & De Bellis, L. (2025). Effective Liquid–Liquid Extraction for the Recovery of Grape Pomace Polyphenols from Natural Deep Eutectic Solvents (NaDES). Separations, 12(6), 148. https://doi.org/10.3390/separations12060148