Development and Validation of a Sensitive LC-MS/MS Method for the Determination of N-Nitroso-Atenolol in Atenolol-Based Pharmaceuticals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagent
2.2. HPLC Conditions
2.3. Mass Spectrometer Conditions
2.4. Preparation of Standard Solution
2.5. Sample Preparation
2.5.1. Drug Substance Preparation
2.5.2. Drug Product Preparation
2.6. Method Validation
2.7. Measurement Uncertainty
2.8. Specification Limit
3. Results and Discussion
3.1. Method Development
3.2. Validation Studies
3.2.1. Linearity, Limit of Detection (LOD) and Limit of Quantification (LOQ)
3.2.2. Selectivity and Specificity
3.2.3. Accuracy and Precision
3.2.4. Robustness
3.2.5. System Suitability
3.3. Uncertainty Evaluation
3.4. Application of the Method for Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sörgel, F.; Kinzig, M.; Abdel-Tawab, M.; Bidmon, C.; Schreiber, A.; Ermel, S.; Wohlfart, J.; Besa, A.; Scherf-Clavel, O.; Holzgrabe, U. The contamination of valsartan and other sartans, part 1: New findings. J. Pharm. Biomed. Anal. 2019, 172, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Tuesuwan, B.; Vongsutilers, V. Nitrosamine Contamination in Pharmaceuticals: Threat, Impact, and Control. J. Pharm. Sci. 2021, 110, 3118–3128. [Google Scholar] [CrossRef] [PubMed]
- EMA 2021. CHAMPIX (Varenicline)-Lots to Be Recalled Due to Presence of Impurity N-Nitroso-Varenicline. Available online: https://www.ema.europa.eu/en/documents/dhpc/direct-healthcare-professional-communication-dhpc-champix-varenicline-lots-be-recalled-due-presence_en.pdf (accessed on 23 November 2022).
- Bharate, S.S. Critical Analysis of Drug Product Recalls due to Nitrosamine Impurities. J. Med. Chem. 2021, 64, 2923–2936. [Google Scholar] [CrossRef] [PubMed]
- FDA. Pfizer Expands Voluntary Nationwide Recall to include All Lots of CHANTIX® (Varenicline) Tablets Due to N-Nitroso Vare-nicline Content. U.S. Food and Drug Administration. 16 September 2021. Available online: https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/pfizer-expands-voluntary-nationwide-recall-include-all-lots-chantixr-varenicline-tablets-due-n (accessed on 9 May 2025).
- FDA. Pfizer Voluntary Nationwide Recall of Lots of ACCUPRIL® (Quinapril HCl) Due to N-Nitroso-Quinapril Content, U.S. Food and Drug Administration. 22 April 2022. Available online: https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/pfizer-voluntary-nationwide-recall-lots-accuprilr-quinapril-hcl-due-n-nitroso-quinapril-content (accessed on 9 May 2025).
- Snodin, D.J. Mutagenic impurities in pharmaceuticals: A critical assessment of the cohort of concern with a focus on N-nitrosamines. Regul. Toxicol. Pharmacol. 2023, 141, 105403. [Google Scholar] [CrossRef]
- Schlingemann, J.; Burns, M.J.; Ponting, D.J.; Martins Avila, C.; Romero, N.E.; Jaywant, M.A.; Smith, G.F.; Ashworth, I.W.; Simon, S.; Saal, C.; et al. The Landscape of Potential Small and Drug Substance Related Nitrosamines in Pharmaceuticals. J. Pharm. Sci. 2023, 112, 1287–1304. [Google Scholar] [CrossRef]
- Boetzel, R.; Schlingemann, J.; Hickert, S.; Korn, C.; Kocks, G.; Luck, B.; Blom, G.; Harrison, M.; François, M.; Allain, L.; et al. A Nitrite Excipient Database: A Useful Tool to Support N-Nitrosamine Risk Assessments for Drug Products. J. Pharm. Sci. 2023, 112, 1615–1624. [Google Scholar] [CrossRef]
- Holzgrabe, U. Nitrosated Active Pharmaceutical Ingredients–Lessons Learned? J. Pharm. Sci. 2023, 112, 1210–1215. [Google Scholar] [CrossRef]
- Sharma, N.; Patel, R.; Bothara, T.; Jain, S.; Shah, R.P. Modified NAP test: A simple and Responsive Nitrosating Methodology for Risk Evaluation of NDSRIs. J. Pharm. Sci. 2023, 112, 1333–1340. [Google Scholar] [CrossRef]
- Wadworth, A.N.; Murdoch, D.; Brogden, R.N. Atenolol. Drugs 1991, 42, 468–510. [Google Scholar] [CrossRef]
- Cruickshank, J.M. The Role of Beta-Blockers in the Treatment of Hypertension. In Hypertension: From Basic Research to Clinical Practice; Islam, M.S., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 149–166. [Google Scholar]
- EMA. EMA recommendations on nitrosamine impurities in sartans. React. Wkly. 2020, 1832, 4. [Google Scholar] [CrossRef]
- Shaik, K.M.; Bhaskar, S.; Suresh, W.G.; Kumar, P. Regulatory Updates and Analytical Methodologies for Nitrosamine Impurities Detection in Sartans, Ranitidine, Nizatidine, and Metformin along with Sample Preparation Techniques. Crit. Rev. Anal. Chem. 2022, 52, 53–71. [Google Scholar] [CrossRef]
- EMA. Questions and Answers for Marketing Authorisation Holders/Applicants on the CHMP Opinion for the Article 5 (3) of Regulation (EC) No 726/2004 Referral on Nitrosamine Impurities in Human Medicinal Products. European Medicines Agency. 2020. Available online: https://www.ema.europa.eu/en/documents/opinion-any-scientific-matter/nitrosamines-emea-h-a53-1490-questions-answers-marketing-authorisation-holders-applicants-chmp-opinion-article-53-regulation-ec-no-726-2004-referral-nitrosamine-impurities-human-medicinal-products_en.pdf (accessed on 9 May 2025).
- U.S. Food and Drug Administration. Recommended Acceptable Intake Limits for Nitrosamine Drug Substance-Related Impurities (NDSRIs)-Guidance for Industry; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2023. [Google Scholar]
- Kruhlak, N.L.; Schmidt, M.; Froetschl, R.; Graber, S.; Haas, B.; Horne, I.; Horne, S.; King, S.T.; Koval, I.A.; Kumaran, G.; et al. Determining recommended acceptable intake limits for N-nitrosamine impurities in pharmaceuticals: Development and application of the Carcinogenic Potency Categorization Approach (CPCA). Regul. Toxicol. Pharmacol. 2024, 150, 105640. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, X.; Wang, Z.; Qing, Z.; Qiang, M.; Lv, Q. Research progress of N-nitrosamine detection methods: A review. Bioanalysis 2022, 14, 1123–1135. [Google Scholar] [CrossRef] [PubMed]
- Kalauz, A.; Tiringer, K.V.; Horváth, V.; Kapui, I. Simultaneous determination of low molecular weight nitrosamines in pharmaceutical products by fast gas chromatography mass spectrometry. J. Chromatogr. A 2023, 1708, 464323. [Google Scholar] [CrossRef] [PubMed]
- Sieira, B.J.; Carpinteiro, I.; Rodil, R.; Quintana, J.B.; Cela, R. Determination of N-Nitrosamines by Gas Chromatography Coupled to Quadrupole–Time-of-Flight Mass Spectrometry in Water Samples. Separations 2020, 7, 3. [Google Scholar] [CrossRef]
- Vogel, M.; Norwig, J. Analysis of genotoxic N-nitrosamines in active pharmaceutical ingredients and market authorized products in low abundance by means of liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2022, 219, 114910. [Google Scholar] [CrossRef]
- Lim, Y.; Kim, A.; Lee, Y.-M.; Cho, H. Development of a sensitive LC-MS/MS method for determination of N-nitrosopiperazine in levocetirizine. Anal. Methods 2024, 16, 6494–6500. [Google Scholar] [CrossRef]
- Vogel, M.; Escher, S.E.; Weiler, E.; Londenberg, A.; Deppenmeier, U.; Whomsley, R. Quantitative Investigation of Nitrosamine Drug Substance-Related Impurities (NDSRIs) Under Artificial Gastric Conditions by Liquid Chromatography–Tandem Mass Spectrometry and Structure–Activity Relationship Analysis. Drug Test. Anal. 2025. ahead of print. [Google Scholar] [CrossRef]
- Parfant, T.P.; Roškar, R. A comprehensive approach for N-nitrosamine determination in pharmaceuticals using a novel HILIC-based solid phase extraction and LC-HRMS. Talanta 2025, 282, 126752. [Google Scholar] [CrossRef]
- Ngongang, A.D.; Duy, S.V.; Sauvé, S. Analysis of nine N-nitrosamines using liquid chromatography-accurate mass high resolution-mass spectrometry on a Q-Exactive instrument. Anal. Methods 2015, 7, 5748–5759. [Google Scholar] [CrossRef]
- Zhang, J.; Raghavachari, R.; Kirkpatrick, D.C.; Keire, D.A.; Xu, X.; Faustino, P.J. Analytical Procedure Development and Proposed Established Conditions: A Case Study of a Mass Spectrometry Based NDSRI Analytical Procedure. J. Pharm. Sci. 2024, 113, 3028–3033. [Google Scholar] [CrossRef]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). Validation of Analytical Procedures Q2 (R2); ICH: Geneva, Switzerland, 2023. [Google Scholar]
- Joint Committee for Guides in Metrology. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; Joint Committee for Guides in Metrology: Geneva, Switzerland, 2008. [Google Scholar]
- Eurachem. Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement, 3rd ed.; Eurachem: Teddington, UK, 2012. [Google Scholar]
Linearity Range | LOQ | LOD | |||||||
---|---|---|---|---|---|---|---|---|---|
ng/mL | ng/mg | Equation | R2 | ng/mL | ng/mg | S/N | ng/mL | ng/mg | S/N |
0.5–80 | 0.75–120 | Y = 0.0515x + 0.0026 | 0.9993 | 0.5 | 0.75 | 30.8 | 0.2 | 0.30 | 13.3 |
Sample Type | Nominal Concentration (ng/mL) | Intra-Day | Inter-Day | ||||
---|---|---|---|---|---|---|---|
Measured Concentration (ng/mL) | RSD (%) | Recovery (%) | Measured Concentration (ng/mL) | RSD (%) | Recovery (%) | ||
API | 0 | 0.30 ± 0.01 | - | - | 0.31 ± 0.01 | - | - |
0.5 | 0.84 ± 0.02 | 4.60 | 107.33 | 0.83 ± 0.02 | 3.11 | 104.13 | |
10 | 10.45 ± 0.17 | 1.72 | 101.47 | 10.31 ± 0.09 | 0.86 | 99.98 | |
40 | 40.31 ± 0.64 | 1.59 | 100.01 | 40.19 ± 0.86 | 2.15 | 99.69 | |
Drug product | 0 | 1.12 ± 0.01 | - | - | 1.14 ± 0.00 | - | - |
0.5 | 1.67 ± 0.03 | 4.82 | 109.13 | 1.69 ± 0.03 | 5.19 | 109.80 | |
10 | 11.02 ± 0.07 | 0.68 | 99.21 | 10.97 ± 0.07 | 0.68 | 106.61 | |
40 | 41.79 ± 0.23 | 0.68 | 100.22 | 40.90 ± 0.82 | 2.06 | 99.41 |
Robustness (RSD%, n = 9) | |||
---|---|---|---|
Column Temperature (40 ± 4 °C) | Flow Rate (0.33 ± 0.03 mL/min) | ||
Area | RT | Area | RT |
3.14 | 0.88 | 5.28 | 5.01 |
Parameter | Value | |
---|---|---|
Retention time (RT, min) | 4.55 | |
Plate number (N) | 17,095 | |
HETP (mm) | 0.0029 | |
Retention factor (k’) | 9.1 | |
Symmetry factor (S) | 1.28 | |
System precision (%RSD, N = 6) | Peak area ratio | 1.08 |
Retention time | 0.09 |
Parameters of Uncertainty | Result | Unit |
---|---|---|
Certified Concentration | 63.11 | mg/kg |
The result of uncertainty | 63.11 ± 3.86 (k = 2, 95% confidence level) | mg/kg |
Expanded uncertainty (U) | 3.86 | mg/kg |
Coverage factor (k) | 2 | dimensionless unit |
degrees of freedom, (veff) | 4281 | dimensionless unit |
Combined Standard Uncertainty (uc) | 1.9 | mg/kg |
Combined relative Standard Uncertainty (ur/r) | 0.031 | dimensionless unit |
Drug Product No. * | Manufacturer | Strength | N-Nitroso-Atenolol Contents | |
---|---|---|---|---|
ng/mL | ng/mg | |||
1 | Imported API | - | 0.65 | 0.98 |
2 | Manufacturer A | 50 mg | 0.51 | 0.77 |
3 | Manufacturer A | 50 mg | 0.40 | 0.60 |
4 | Manufacturer A | 50 mg | 0.84 | 1.26 |
5 | Manufacturer A | 50 mg | 1.64 | 2.47 |
6 | Manufacturer B | 50 mg | 1.40 | 2.09 |
7 | Manufacturer B | 50 mg | 0.56 | 0.84 |
8 | Manufacturer B | 50 mg | 0.94 | 1.41 |
9 | Manufacturer B | 50 mg | 1.49 | 2.23 |
10 | Manufacturer C | 50 mg | 0.69 | 1.03 |
11 | Manufacturer C | 50 mg | 0.75 | 1.13 |
12 | Manufacturer C | 50 mg | 0.78 | 1.16 |
Specification limit | N-nitroso-atenolol ≤ 15 ppm (ng/mg) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.; Ahn, S.-H.; Chang, Y.; Park, J.-S.; Cho, H.; Kim, J.-B. Development and Validation of a Sensitive LC-MS/MS Method for the Determination of N-Nitroso-Atenolol in Atenolol-Based Pharmaceuticals. Separations 2025, 12, 122. https://doi.org/10.3390/separations12050122
Kwon S, Ahn S-H, Chang Y, Park J-S, Cho H, Kim J-B. Development and Validation of a Sensitive LC-MS/MS Method for the Determination of N-Nitroso-Atenolol in Atenolol-Based Pharmaceuticals. Separations. 2025; 12(5):122. https://doi.org/10.3390/separations12050122
Chicago/Turabian StyleKwon, Soonho, Sang-Hyun Ahn, Yongha Chang, Joon-Sang Park, Hwangeui Cho, and Jung-Bok Kim. 2025. "Development and Validation of a Sensitive LC-MS/MS Method for the Determination of N-Nitroso-Atenolol in Atenolol-Based Pharmaceuticals" Separations 12, no. 5: 122. https://doi.org/10.3390/separations12050122
APA StyleKwon, S., Ahn, S.-H., Chang, Y., Park, J.-S., Cho, H., & Kim, J.-B. (2025). Development and Validation of a Sensitive LC-MS/MS Method for the Determination of N-Nitroso-Atenolol in Atenolol-Based Pharmaceuticals. Separations, 12(5), 122. https://doi.org/10.3390/separations12050122