Study on Floatation Separation of Molybdenite and Talc Based on Crystal Surface Anisotropy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Cutting and Surface Treatments [20,21]
2.3. AFM Measurements
2.4. Calculation of the DLVO Theoretical Model
2.4.1. Van Der Waals Forces
2.4.2. Electrostatic Forces
- Electrostatic energy between spherical particles with radius R and heterogeneous mineral plate particles:
- Electrostatic energy of heterogeneous spherical particles with radii R1 and R2:The electrostatic force is:
2.5. Calculation of Adsorption Energy
2.6. Floatation Experiment
3. Results and Discussion
3.1. Adsorption Energy of Water Molecules on Different Crystal Planes of Molybdenite and Talc [28,29,30,31]
3.2. The Calculated Stern Potential of Different Crystal Planes
3.2.1. The Surface Potential Values of Silicon Nitride
3.2.2. AFM Force Curves [34,35]
3.2.3. The Calculated Zeta Potential Values of Different Crystal Planes
3.3. The Force Profiles Between Different Crystal Planes
3.4. Effect of Crystal Surface Anisotropy on Floatation Behavior
4. Conclusions
- Density functional theory (DFT) calculations revealed that the basal planes of both molybdenite and talc exhibit strong hydrophobicity, while their edge surfaces are hydrophilic. The adsorption energy of water molecules on the basal planes was significantly lower than on edge surfaces, confirming the intrinsic hydrophobic nature of these planes. Notably, talc demonstrated even greater hydrophobicity than molybdenite, which complicates their separation during floatation.
- Atomic force microscopy (AFM) and DLVO theory analyses demonstrated that the surface potential of the non-polar basal planes remains relatively constant and negative across a wide pH range, attributed to lattice defects or substitutions. In contrast, the polar edge surfaces exhibited pH-dependent behavior, with the point of zero charge (PZC) occurring at pH 3.8 for molybdenite and pH 7.6 for talc. This divergence in surface charge under varying pH conditions critically influences interparticle interactions.
- This study identified that hetero-aggregation between molybdenite and talc is prevalent in neutral or acidic conditions due to electrostatic attraction between oppositely charged surfaces. However, under alkaline conditions (pH > 8.5), strong repulsive forces between negatively charged surfaces promote particle dispersion. This pH-mediated behavior is pivotal for achieving selective floatation.
- Floatation experiments validated these theoretical insights, showing that alkaline conditions (pH ~ 9.0) significantly reduce talc recovery while enhancing molybdenite recovery. The dispersion of particles at high pH minimizes unwanted hetero-aggregation, enabling efficient separation. SEM-EDS analysis further corroborated these results, revealing a clear reduction in talc–molybdenite aggregation at an alkaline pH.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, Z.L.; Li, Y.B. Anisotropy of molybdenite surface and its effects on flotation mechanism. Conserv. Util. Miner. Resour. 2018, 215, 37–42. [Google Scholar] [CrossRef]
- Zhang, Q.D.; Yuan, Z.T.; Liu, J.T.; Li, X.L.; Lu, J.W.; Lu, S.S. Effect of glucan on flotation separation of molybdenite and talc. Chin. J. Nonferrous Met. 2016, 26, 884–890. [Google Scholar] [CrossRef]
- Liu, G.Y.; Lu, Y.P.; Zhong, H.; Cao, Z.F.; Xu, Z.H. A novel approach for preferential flotation recovery of molybdenite from a porphyry copper–molybdenum ore. Miner. Eng. 2012, 36/38, 37–44. [Google Scholar] [CrossRef]
- Chander, S.; Fuerstenau, D.W. The effect of potassium diethyldithiophosphate on the electrochemical properties of platinum, copper and copper sulfide in aqueous solutions. J. Electroanal. Chem. 1974, 56, 217–247. [Google Scholar] [CrossRef]
- Cheng, G.; Peng, Y.J.; Lu, Y.; Zhang, M.N. Adsorption of multi-collector on long-flame coal surface via density functional theory calculation and molecular dynamics simulation. Processes 2023, 11, 2775. [Google Scholar] [CrossRef]
- He, C.Z.; Zhang, Y.X.; Wang, J.; Fu, L. Anchor single atom in h-BN assist NO synthesis NH3: A computational view. Rare Met. 2022, 41, 3456–3465. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, W.B. Mechanism of Hydrophobic-Floceulation of Ultra Fine Copper-NickelSulfide Containing Platinum and Palladium during Flotation. Chin. J. Rare Met. 2008, 4, 506–512. [Google Scholar] [CrossRef]
- Cheng, G.; Li, Y.L.; Zhang, M.N. Research progress on desulfurization technology of high-sulfur bauxite. Trans. Nonferrous Met. Soc. China 2022, 32, 3374–3387. [Google Scholar] [CrossRef]
- Ayat, Z.; Boukraa, A.; Ouahab, A.; Daoudi, B. Electronic structure of the rare-earth superstoichiometric dihydride GdH 2.25. Rare Met. 2022, 41, 2794–2799. [Google Scholar] [CrossRef]
- Ansari, A.; Pawlik, M. Floatability of chalcopyrite and molybdenite in the presence of lignosulfonates. Part II. Hallimond tube flotation. Miner. Eng. 2007, 20, 609–616. [Google Scholar] [CrossRef]
- Shi, Z.T.; Zhao, H.B.; Chen, X.Q.; Wu, G.M.; Wei, F.; Tu, H.L. Chemical vapor deposition growth and transport properties of MoS2-2H thin layers using molybdenum and sulfur as precursors. Rare Met. 2022, 41, 3574–3578. [Google Scholar] [CrossRef]
- Eduardo, G.; Michele, F.; Eva, S.; Libero, L.; Francesca, R. Effect of silica nanoparticles on the interfacial properties of a canonical lipid mixture. Colloids Surf. B Biointerfaces 2015, 136, 971–980. [Google Scholar] [CrossRef]
- Song, K.; Song, Y.S.; Zhang, Q.D.; Li, W.J.; Le, G. Flotation separation of chalcopyrite and molybdenite by externally controlled potential method. Chin. J. Eng. 2019, 41, 857–863. [Google Scholar] [CrossRef]
- Yan, L.J.; Masliyah, J.H.; Xu, Z.H. Interaction of divalent cations with basal planes and edge surfaces of phyllosilicate minerals: Muscovite and talc. J. Colloid Interface Sci. 2013, 404, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Kelebek, S.; Yoruk, S.; Smith, W.G. Wetting behavior of molybdenite and talc in lignosulphonate/MIBC solutions and their separation by flotation. Sep. Sci. Technol. 2006, 36, 145–157. [Google Scholar] [CrossRef]
- Lotter, N.O.; Bradshaw, D.J.; Becker, M. A discussion of the occurrence and undesirable flotation behaviour of orthopyroxene and talc in the processing of mafic deposits. Miner. Eng. 2008, 21, 905–912. [Google Scholar] [CrossRef]
- Liu, G.; Feng, Q.; Ou, L. Adsorption of polysaccharide onto talc. Miner. Eng. 2006, 19, 147–153. [Google Scholar] [CrossRef]
- Beattie, D.A.; Le, H.; Kaggwa, G.B. Influence of adsorbed polysaccharides and polyacrylamides on talc flotation. Int. J. Miner. Process. 2006, 78, 238–249. [Google Scholar] [CrossRef]
- Yuan, Z.T.; Zhang, Q.D.; Liu, J.T. Influence and mechanism of metal ions on flotation of molybdenite. J. Northeast. Univ. 2016, 7, 1013–1016. [Google Scholar] [CrossRef]
- Li, W.J.; Zhou, H.; Bai, A.P.; Song, Y.S.; Cai, L.L.; Zheng, S.L.; Zhang, Q.D.; Cao, S. Electrochemical adsorption and passivation on gold surface in alkaline thiourea solutions. Rare Met. 2020, 39, 951–958. [Google Scholar] [CrossRef]
- Lu, Z.Z.; Liu, Q.X.; Xu, Z.H.; Zeng, H.B. Probing anisotropic surface properties of molybdenite by direct force measurements. Langmuir 2015, 31, 11409–11418. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Bhattacharjee, S.; Chow, R.; Wallace, D.; Xu, Z.H. Probing surface charge potentials of clay basal planes and edges by direct force measurements. Langmuir Acs J. Surf. Colloids 2008, 24, 12899–12910. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.J.; Englert, A.H.; Masliyah, J.H.; Xu, Z.H. Determination of anisotropic surface characteristics of different phyllosilicates by direct force measurements. Langmuir 2011, 27, 12996–13007. [Google Scholar] [CrossRef]
- Hu, Y.H.; Gao, Z.Y.; Sun, W.; Liu, X.W. Probing Anisotropic surface energies and adsorption behaviors of scheelite crystal. Colloids Surf. A Physicochem. Eng. Asp. 2012, 415, 439–448. [Google Scholar] [CrossRef]
- Novich, B.E. Colloid stability of clays using photon correlation spectroscopy. Clays Clay Miner. 1984, 32, 400–406. [Google Scholar] [CrossRef]
- Moshfegh, A.; Farhadi, M.; Shams, M. Numerical simulation of particle dispersion and deposition in channel flow over two square cylinders in tandem. J. Dispers. Sci. Technol. 2010, 31, 852–859. [Google Scholar] [CrossRef]
- Lu, S.S.; Li, Z.; Hu, Z.C.; Yang, F.; Zhu, Y.G. A CFD study of the flow field characteristics in XFG microflotation cell and XFD flotation cell. Nonferrous Met. Eng. 2018, 8, 45–49. [Google Scholar] [CrossRef]
- Yin, X.; Drelich, J. Surface charge microscopy: Novel technique for mapping charge-mosaic surfaces in electrolyte solutions. Langmuir 2008, 24, 8013–8020. [Google Scholar] [CrossRef]
- Derjaguin, B.; Landau, L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog. Surf. Sci. 1993, 43, 30–59. [Google Scholar] [CrossRef]
- Gregory, J. Approximate expressions for retarded van der waals interaction. J. Colloid Interface Sci. 1981, 83, 138–145. [Google Scholar] [CrossRef]
- Barringer, E.A.; Novich, B.E.; Ring, T.A. Determination of colloid stability using photon correlation spectroscopy. J. Colloid Interface Sci. 1984, 100, 584–586. [Google Scholar] [CrossRef]
- Yan, L.J.; Masliyah, J.H.; Xu, Z.H. Understanding suspension rheology of anisotropically-charged platy minerals from direct interaction force measurement using AFM. Curr. Opin. Colloid Interface Sci. 2013, 18, 149–156. [Google Scholar] [CrossRef]
- Zhang, Q.D.; Li, X.L.; Li, W.J.; Shang, H. Anisotropic surface characteristics of talc by direct force measurement. Met. Mine 2020, 526, 66–71. [Google Scholar] [CrossRef]
- Luo, X.P.; Zhang, Y.B.; Zhou, H.P.; Xie, F.X.; Yang, Z.Z.; Zhang, B.Y.; Luo, C.G. Flotation separation of spodumene and albite with activation of calcium ion hydrolysate components. Rare Met. 2022, 41, 3919–3931. [Google Scholar] [CrossRef]
- Zou, L.R.; Sang, D.D.; Yao, Y.; Wang, X.T.; Zheng, Y.Y.; Wang, N.Z.; Wang, C.; Wang, Q.L. Research progress of optoelectronic devices based on two-dimensional MoS2 materials. Rare Met. 2022, 8, 455. [Google Scholar] [CrossRef]
Mineral | Mass Fraction/% | |||||||
---|---|---|---|---|---|---|---|---|
Mo | S | SiO2 | MgO | Fe | CaO | Al2O3 | P | |
Molybdenite | 57.09 | 38.14 | 4.32 | - | 0.12 | 0.10 | 0.22 | - |
Talc | - | - | 67.03 | 31.73 | 0.59 | 0.47 | 0.12 | 0.024 |
Materials | Water | Silicon Nitride | Silicon | Talc | Molybdenite |
---|---|---|---|---|---|
Hamaker constant/(×10−20 J) | 3.28 | 16.7 | 13.6 | 9.1 | 9.1 |
Mineral | d0 (=r0 + re)/Å | dads/Å | ∆d (=dads − d0)/Å |
---|---|---|---|
Molybdenite | 2.05 | 3.962 | 1.912 |
Talc | 2.10 | 3.276 | 1.176 |
Minerals | Crystal Surface | Adsorption Energy/(kJ/mol) | ||
---|---|---|---|---|
EH2O-mineral | EH2O-H2O | ∆E = EH2O-mineral − EH2O-H2O | ||
Molybdenite | (001) | −10.59 | −21.94 | 11.35 |
(100) | −14.14 | −21.94 | 7.80 | |
(010) | −12.13 | −21.94 | 9.81 | |
(101) | −17.65 | −21.94 | 4.29 | |
(103) | −24.42 | −21.94 | −2.48 | |
(112) | −14.54 | −21.94 | 7.40 | |
(110) | −15.88 | −21.94 | 6.06 | |
Talc | (001) | −0.20 | −21.94 | 21.74 |
(100) | −3.46 | −21.94 | 18.48 | |
(010) | −1.48 | −21.94 | 20.46 | |
(101) | −2.27 | −21.94 | 19.67 | |
(103) | −0.78 | −21.94 | 21.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Li, X.; Hu, Z.; Gao, B.; Liu, C. Study on Floatation Separation of Molybdenite and Talc Based on Crystal Surface Anisotropy. Separations 2025, 12, 123. https://doi.org/10.3390/separations12050123
Zhang Q, Li X, Hu Z, Gao B, Liu C. Study on Floatation Separation of Molybdenite and Talc Based on Crystal Surface Anisotropy. Separations. 2025; 12(5):123. https://doi.org/10.3390/separations12050123
Chicago/Turabian StyleZhang, Qidong, Xiaoli Li, Zhifang Hu, Bowen Gao, and Chen Liu. 2025. "Study on Floatation Separation of Molybdenite and Talc Based on Crystal Surface Anisotropy" Separations 12, no. 5: 123. https://doi.org/10.3390/separations12050123
APA StyleZhang, Q., Li, X., Hu, Z., Gao, B., & Liu, C. (2025). Study on Floatation Separation of Molybdenite and Talc Based on Crystal Surface Anisotropy. Separations, 12(5), 123. https://doi.org/10.3390/separations12050123