Nitrous Oxide Emission from a Single-Stage Oxygen-Limited Mainstream Anammox Reactor Treating Moderate C/N Ratio Sewage
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Seed Sludge and Wastewater
2.3. Operating Condition
2.4. Chemical Analysis
2.5. N2O Sampling and Determination
2.5.1. Gaseous N2O Sampling
2.5.2. Dissolved N2O Sampling
2.5.3. N2O Measurement
2.5.4. N2O Calculation
- MN2O,dis,begin and MN2O,dis,end represent the amount of dissolved N2O at the beginning and end of the cycle (mg).
- Qair is the reactor gas flow rate (L/min).
- ∆t is the time interval (min).
- CN2O,gas, CN2O,dis, denote N2O concentrations in the off-gas and solution (mg/L), while CN2O,gas,n, and CN2O,dis,n indicate concentrations at the sampling intervals.
- MN2O production is the daily N2O production (mg/d).
- TN load is the influent total nitrogen loading (mg/d).
- [TN]inf is the influent TN concentration (mg/L).
- V is the influent wastewater volume (L).
- HRT is the hydraulic retention time (d).
2.6. Metagenomic Analysis
3. Results and Discussion
3.1. Nitrogen Removal and N2O Emissions
3.2. Nitrogen Conversion Characteristics in Typical Cycle
3.3. N2O Emission Behaviors in Typical Cycle
3.4. Microbial Community Dynamics
3.5. Functional Genes Generation Revealed via KEGG
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Genus | Relative Abundance (%) | |||
---|---|---|---|---|
C/N = 4.0 | C/N = 4.5 | C/N = 5.0 | C/N = 6.0 | |
Armatimonadetes_gp5 | 1.65 | 6.59 | 1.09 | 1.05 |
Gp4 | 0.8 | 1.54 | 0.73 | 0.34 |
Litorilinea | 0.34 | 0.93 | 2.63 | 0.84 |
Kofleria | 0.2 | 0.2 | 1.54 | 0.46 |
Meiothermus | 5.37 | 2.4 | 4.98 | 6.1 |
Candidatus Kuenenia | 0.34 | 0.61 | 1.33 | 0.57 |
Candidatus Anammoxoglobus | 0.01 | 0.05 | 0.01 | 0.06 |
Candidatus Brocadia | 0.01 | 0.06 | 0.14 | 0.03 |
Acinetobacter | 7.22 | 10.57 | 0.06 | 8.55 |
Pirellula | 2.36 | 0.98 | 2.22 | 1.03 |
Azospira | 1.2 | 1.5 | 4.18 | 4.88 |
Ignavibacterium | 1.18 | 1.38 | 0.75 | 0.86 |
Flavobacterium | 0.11 | 1.24 | 0.25 | 3.2 |
Thermomonas | 0.02 | 0.05 | 0.02 | 1.17 |
Defluviimonas | 0 | 0.24 | 0.33 | 0.09 |
Aridibacter | 4.16 | 4.46 | 2.08 | 0.69 |
Saccharibacteria_genera_incertae_sedis | 2.33 | 1.76 | 3.6 | 4.78 |
Gemmatimonas | 1.99 | 0.52 | 1.02 | 0.39 |
Lacibacterium | 1.54 | 1.21 | 1.94 | 1.19 |
Thermogutta | 1.35 | 0.8 | 1.02 | 0.82 |
Caldimonas | 0.01 | 0.06 | 0.09 | 2.84 |
Tepidisphaera | 0.35 | 0.6 | 0.53 | 1.83 |
Subdivision3_genera_incertae_sedis | 0.68 | 0.79 | 0.71 | 1.31 |
Nitrosomonas | 0.06 | 0.02 | 0.04 | 0.06 |
Nitrospira | 1.41 | 0.98 | 3.76 | 1.56 |
Thauera | 0.13 | 0.04 | 0.12 | 0.21 |
References
- Saxena, V. Water quality, air pollution, and climate change: Investigating the environmental impacts of industrialization and urbanization. Water Air Soil Pollut. 2025, 236, 73. [Google Scholar] [CrossRef]
- Hu, Z.; Houweling, D.; Dold, P. Biological nutrient removal in municipal wastewater treatment: New directions in sustainability. J. Environ. Eng. 2012, 138, 307–317. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef]
- Edenhofer, O. Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Kartal, B.; Kuenen, J.V.; Van Loosdrecht, M.C.M. Sewage treatment with anammox. Science 2010, 328, 702–703. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Ji, B.; Liu, Y. Towards mainstream deammonification of municipal wastewater: Partial nitrification-anammox versus partial denitrification-anammox. Sci. Total Environ. 2019, 692, 393–401. [Google Scholar] [CrossRef]
- Sun, Y.; Cao, J.; Xu, R.; Zhang, T.; Luo, J.; Xue, Z.; Chen, S.; Wang, S.; Zhou, H. Influence of C/N ratio and ammonia on nitrogen removal and N2O emissions from one-stage partial denitrification coupled with anammox. Chemosphere 2023, 341, 140035. [Google Scholar] [CrossRef]
- Pijuan, M.; Ribera-Guardia, A.; Balcázar, J.L.; Micó, M.M.; Torre, T.D.L. Effect of COD on mainstream anammox: Evaluation of process performance, granule morphology and nitrous oxide production. Sci. Total Environ. 2020, 712, 136372. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, G.; Wang, R. Drivers of nitrous oxide accumulation in denitrification biofilters with low carbon:nitrogen ratios. Water Res. 2016, 106, 79–85. [Google Scholar] [CrossRef]
- Zhou, X.; Song, J.; Wang, G.; Yin, Z.; Cao, X.; Gao, J. Unravelling nitrogen removal and nitrous oxide emission from mainstream integrated nitrification-partial denitrification-anammox for low carbon/nitrogen domestic wastewater. J. Environ. Manag. 2020, 270, 110872. [Google Scholar] [CrossRef]
- Li, H.; Zhou, B.; Tian, Z.; Song, Y.; Yu, H.; Xiang, L.; Wang, S.; Sun, C. Johannesburg-sulfur autotrophic denitrification system treatment of municipal wastewater with a low COD/TN ratio: Performance, material balance and bacterial community. Desalin Water Treat. 2017, 59, 99–113. [Google Scholar] [CrossRef]
- Lan, C.J.; Kumar, M.; Wang, C.C.; Lin, J.G. Development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequential batch reactor. Bioresour. Technol. 2011, 102, 5514–5519. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Z.; Zhang, X.; Liu, Y. A novel single-stage process integrating simultaneous COD oxidation, partial nitritation-denitritation and anammox (SCONDA) for treating ammonia-rich organic wastewater. Bioresour. Technol. 2018, 254, 50–55. [Google Scholar] [CrossRef]
- Gabel, R.; Schultz, B. Solubility of Nitrous Oxide in Water, 20–80 °C. Anesthesiology 1973, 38, 75–81. [Google Scholar] [CrossRef]
- Mannina, G.; Capodici, M.; Cosenza, A.; Di Trapani, D.; van Loosdrecht, M.C.M. Nitrous oxide emission in a University of Cape Town membrane bioreactor: The effect of carbon to nitrogen ratio. J. Clean. Prod. 2017, 149, 180–190. [Google Scholar] [CrossRef]
- Law, Y.; Lant, P.; Yuan, Z. The confounding effect of nitrite on N2O production by an enriched ammonia-oxidizing culture. Environ. Sci. Technol. 2013, 47, 7186–7194. [Google Scholar] [CrossRef]
- Helmer, C.; Tromm, C.; Hippen, A.; Rosenwinkel, K.H.; Seyfried, C.F.; Kunst, S. Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems. Water Sci. Technol. 2001, 43, 311–320. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, S.; Bian, W.; Liang, D.; Wang, X.; Zhang, K.; Ma, X.; Li, J. Enhanced nitrogen removal of the simultaneous partial nitrification, anammox and denitrification (SNAD) biofilm reactor for treating mainstream wastewater under low dissolved oxygen (DO) concentration. Bioresour. Technol. 2019, 283, 213–220. [Google Scholar] [CrossRef]
- Liang, Y.; Li, D.; Zhang, X.; Zeng, H.; Yang, Z.; Zhang, J. Microbial characteristics and nitrogen removal of simultaneous partial nitrification, anammox and denitrification (SNAD) process treating low C/N ratio sewage. Bioresour. Technol. 2014, 169, 103–109. [Google Scholar] [CrossRef]
- Chen, J.; Hai, Y.; Zhang, W.; Zhou, X. Insights into deterioration and reactivation of a mainstream anammox biofilm reactor response to C/N ratio. J. Environ. Manag. 2022, 320, 115780. [Google Scholar] [CrossRef]
- Ali, M.; Rathnayake, R.M.; Zhang, L.; Ishii, S.; Kindaichi, T.; Satoh, H.; Okabe, S. Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor. Water Res. 2016, 102, 147–157. [Google Scholar] [CrossRef]
- Kampschreur, M.J.; Temmink, H.; Kleerebezem, R.; Jetten, M.S.; van Loosdrecht, M.C. Nitrous oxide emission during wastewater treatment. Water Res. 2009, 43, 4093–4103. [Google Scholar] [CrossRef]
- Massara, T.M.; Malamis, S.; Guisasola, A.; Baeza, J.A.; Noutsopoulos, C.; Katsou, E. A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Sci. Total Environ. 2017, 596, 106–123. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, B.; Tang, X.; Liu, S. Metagenomic insights into functional traits variation and coupling effects on the anammox community during reactor start-up. Sci. Total Environ. 2019, 687, 50–60. [Google Scholar] [CrossRef]
- Ye, L.; Zhou, Y.; Tang, L.; Chen, S.; Zhao, X. Analysis of the partial nitrification/anammox performance and microbial structure of low C/N wastewater by A2/O process. Water. 2023, 15, 2300. [Google Scholar] [CrossRef]
- Huang, S.; Zhu, Y.; Zhang, G.; Lian, J.; Liu, Z.; Zhang, L.; Tian, S. Effects of low-intensity ultrasound on nitrite accumulation and microbial characteristics during partial nitrification. Sci. Total Environ. 2020, 705, 135985. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Peng, Y.; Ji, J.; Shi, L.; Gao, R.; Li, X. Partial denitrification providing nitrite: Opportunities of extending application for anammox. Environ. Int. 2019, 131, 105001. [Google Scholar] [CrossRef]
- Gottshall, E.Y.; Bryson, S.J.; Cogert, K.I.; Landreau, M.; Sedlacek, C.J.; Stahl, D.A.; Winkler, M. Sustained nitrogen loss in a symbiotic association of Comammox Nitrospira and Anammox bacteria. Water Res. 2021, 202, 117426. [Google Scholar] [CrossRef]
- Vilardi, K.; Cotto, I.; Bachmann, M.; Parsons, M.; Klaus, S.; Wilson, C. Co-occurrence and cooperation between comammox and anammox bacteria in a full-scale attached growth municipal wastewater treatment process. Environ. Sci. Technol. 2023, 57, 5013–5023. [Google Scholar] [CrossRef]
- Xia, L.; Li, X.; Fan, W.; Wang, J. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. Bioresour. Technol. 2020, 301, 122749. [Google Scholar] [CrossRef]
- Roothans, N.; Gabriëls, M.; Abeel, T.; Pabst, M.; van Loosdrecht, M.C.; Laureni, M. Aerobic denitrification as an N2O source from microbial communities. ISME J. 2024, 18, wrae116. [Google Scholar] [CrossRef]
- Han, P.; Wu, D.; Sun, D.; Zhao, M.; Wang, M.; Wen, T. N2O and NOy production by the comammox bacterium Nitrospira inopinata in comparison with canonical ammonia oxidizers. Water Res. 2021, 190, 116728. [Google Scholar] [CrossRef]
- Ren, Z.; Li, D.; Zhang, Z.; Sun, W.; Liu, G. Enhancing the relative abundance of comammox nitrospira in ammonia oxidizer community decreases N2O emission in nitrification exponentially. Chemosphere 2024, 356, 141883. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, Y.; Che, Y.; Chen, Y.; Xia, Y.; Luo, R.; Cheng, S.; Zheng, C.; Zhang, T. High-quality bacterial genomes of a partial-nitritation/anammox system by an iterative hybrid assembly method. Microbiome 2020, 8, 155. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, J.; Liu, Z.; Yang, W.; Hu, J.; Jia, Z.; Hu, B. Biofilm: A strategy for the dominance of comammox Nitrospira. J. Clean. Prod. 2022, 363, 132361. [Google Scholar] [CrossRef]
- Li, X.; Wang, G.; Chen, J.; Zhou, X.; Liu, Y. Deciphering the concurrence of comammox, partial denitrification and anammox in a single low-oxygen mainstream nitrogen removal reactor. Chemosphere 2022, 305, 135409. [Google Scholar] [CrossRef]
- Kits, K.D.; Jung, M.Y.; Vierheilig, J.; Pjevac, P.; Sedlacek, C.J.; Liu, S.; Herbold, C.; Stein, L.Y.; Richter, A.; Wissel, H.; et al. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nat. Commun. 2019, 10, 1836. [Google Scholar] [CrossRef]
- Li, D.; Fang, F.; Liu, G. Efficient nitrification and low-level N2O emission in a weakly acidic bioreactor at low dissolved-oxygen levels are due to comammox. Appl. Microbiol. Biotechnol. 2021, 87, e00154-21. [Google Scholar]
- Duan, H.; Zhao, Y.; Koch, K.; Wells, G.F.; Zheng, M.; Yuan, Z.; Ye, L. Insights into nitrous oxide mitigation strategies in wastewater treatment and challenges for wider implementation. Environ. Sci. Technol. 2021, 55, 7208–7224. [Google Scholar] [CrossRef]
Phase | Days | COD (mg/L) | NH4+-N (mg/L) | C/N | pH | Temp. (°C) | OLR (kg COD/(m3·d)) | F/M (kg COD/(kg MLVSS·d)) |
---|---|---|---|---|---|---|---|---|
P1 | 1–19 | 200 | 50 | 4.0 | 7.0 ± 0.2 | 30 ± 1 | 0.20 | 0.036 |
P2 | 20–56 | 225 | 50 | 4.5 | 7.0 ± 0.2 | 30 ± 1 | 0.22 | 0.040 |
P3 | 57–78 | 250 | 50 | 5.0 | 7.0 ± 0.2 | 30 ± 1 | 0.26 | 0.046 |
P4 | 79–115 | 300 | 50 | 6.0 | 7.0 ± 0.2 | 30 ± 1 | 0.30 | 0.054 |
C/N | NH4+-N mg/L | NO2−-N mg/L | NO3−-N mg/L | ARE % | NRE % | N2O mg |
---|---|---|---|---|---|---|
4.0 | 1.1 ± 0.6 | 0 | 3.5 ± 0.9 | 97.7 ± 1.2 | 90.8 ± 1.5 | 0.46 ± 0.05 |
4.5 | 0.9 ± 0.6 | 0 | 2.4 ± 1.2 | 98.2 ± 1.3 | 93.4 ± 1.9 | 0.39 ± 0.04 |
5.0 | 0.5 ± 0.3 | 0 | 1.9 ± 1.2 | 99.0 ± 0.6 | 95.3 ± 2.4 | 0.37 ± 0.01 |
6.0 | 1.3 ± 1.0 | 0 | 1.4 ± 0.7 | 97.5 ± 2.0 | 94.6 ± 1.9 | 0.38 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di, D.; Cao, X.; Zhou, X. Nitrous Oxide Emission from a Single-Stage Oxygen-Limited Mainstream Anammox Reactor Treating Moderate C/N Ratio Sewage. Separations 2025, 12, 271. https://doi.org/10.3390/separations12100271
Di D, Cao X, Zhou X. Nitrous Oxide Emission from a Single-Stage Oxygen-Limited Mainstream Anammox Reactor Treating Moderate C/N Ratio Sewage. Separations. 2025; 12(10):271. https://doi.org/10.3390/separations12100271
Chicago/Turabian StyleDi, Da, Xiwei Cao, and Xin Zhou. 2025. "Nitrous Oxide Emission from a Single-Stage Oxygen-Limited Mainstream Anammox Reactor Treating Moderate C/N Ratio Sewage" Separations 12, no. 10: 271. https://doi.org/10.3390/separations12100271
APA StyleDi, D., Cao, X., & Zhou, X. (2025). Nitrous Oxide Emission from a Single-Stage Oxygen-Limited Mainstream Anammox Reactor Treating Moderate C/N Ratio Sewage. Separations, 12(10), 271. https://doi.org/10.3390/separations12100271