Bioactive Properties of Pentacalia vaccinioides (Kunth) Cuatrec. (Asteraceae) Essential Oils: Evaluation of Antimicrobial and Antioxidant Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Equipment
2.2. Collection and Preparation of Plant Material
2.3. Obtaining the Essential Oil and Its Physicochemical Properties
2.3.1. Hydrodistillation
2.3.2. Steam Distillation
2.3.3. Simultaneous Distillation–Extraction
2.3.4. Headspace Solid-Phase Microextraction
2.4. Determination of Physical Properties
2.5. Gas Chromatography–Mass Spectrometry (GC/MS)
2.6. Antioxidant Activity Determination
2.7. Antimicrobial Activity Determination
Minimum Inhibitory Concentration
2.8. Statistical Analysis
3. Results
3.1. Obtaining EOs by Different Extraction Techniques and Physicochemical Parameters
3.2. Chemical Composition of the Essential Oil Obtained by Different Extraction Techniques
3.3. Antimicrobial Activity and Minimum Inhibitory Concentration
3.4. Antioxidant Activity
4. Discussion
4.1. Performance and Physical Parameters
4.2. Analysis of the Main Bioactive Compounds and Their Industrial and Pharmaceutical Applications
4.3. Comparison of Extraction Techniques
4.4. Antimicrobial Activity
4.5. Antioxidant Activity
4.6. Multifunctional Potential and Study Limitations of Pentacalia vaccinioides Essential Oils
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barra, A. Factors Affecting Chemical Variability of Essential Oils: A Review of Recent Developments. Nat. Prod. Commun. 2009, 4, 1934578X0900400827. [Google Scholar] [CrossRef]
- Ni, Z.J.; Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.G.; Hu, F.; Wei, Z.J. Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci. Technol. 2021, 110, 78–89. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Ishrat, N.; Sajad, G. Pharmaceutical and Therapeutic Potentials of Essential Oils. In Essential Oils; de Oliveira, M.S., Andrade, E.H.d.A., Eds.; IntechOpen: Rijeka, Croatia, 2022; Chapter 7. [Google Scholar]
- Jugreet, B.S.; Suroowan, S.; Rengasamy, R.R.K.; Mahomoodally, M.F. Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends Food Sci. Technol. 2020, 101, 89–105. [Google Scholar] [CrossRef]
- Frederico, C.; Franciscato, L.M.S. Essential Oils as Natural Food Additives: Stability and Safety. Arq. Ciênc. Saúde UNIPAR 2023, 27, 5739–5755. [Google Scholar] [CrossRef]
- Smith, R.L.; Cohen, S.M.; Doull, J.; Feron, V.J.; Goodman, J.I.; Marnett, L.J.; Portoghese, P.S.; Waddell, W.J.; Wagner, B.M.; Hall, R.L.; et al. A procedure for the safety evaluation of natural flavor complexes used as ingredients in food: Essential oils. Food Chem. Toxicol. 2005, 43, 345–363. [Google Scholar] [CrossRef] [PubMed]
- FDA. 21CFR182.20—GRAS: Essential oils, Oleoresins (Solvent-Free), and Natural Extractives (Including Distillates); FDA: Silver Spring, MD, USA, 2023; Volume 3, p. 5.
- IFA. Essential Oils: Safety and Toxicology. Available online: https://ifaroma.org/es_ES/home/explore_aromatherapy/safety (accessed on 13 May 2024).
- Bassolé, I.H.N.; Juliani, H.R. Essential Oils in Combination and Their Antimicrobial Properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef]
- Hay, Y.O.M.; Abril-Sierra, M.A.; Sequeda-Castañeda, L.G.; Bonnafous, C.; Raynaud, C. Evaluation of combinations of essential oils and essential oils with hydrosols on antimicrobial and antioxidant activities. J. Pharm. Pharmacogn. Res. 2018, 6, 216–230. [Google Scholar] [CrossRef] [PubMed]
- Barrientos, J.C.; Reina, M.L.; Chacón, M.I. The economic potential of four promising aromatic species for the production of essential oils in Colombia. Rev. Colomb. Cienc. Hortíc. 2012, 6, 225–237. [Google Scholar] [CrossRef]
- Olivero-Verbel, J.; Caballero-Gallardo, K.; Jaramillo-Colorado, B.; Stashenko, E. Repellent activity of the essential oils from Lippia origanoides, Citrus sinensis and Cymbopogon nardus cultivated in Colombia against Tribolium castaneum, Herbst. Salud UIS 2009, 41, 244–250. [Google Scholar]
- Pino-Benitez, N.; Torralbo-Cabrera, Y.P.; Stashenko, E.E. Repellent and insecticidal activity of four essential oils from plants recolleted in Chocó-Colombia against Tribolium castaneum. Bol. Latinoam. Caribe Plantas Med. Aromat. 2024, 23, 568–576. [Google Scholar] [CrossRef]
- Devia Castillo, B.O.; Mahecha Jiménez, Y.; Franco Nieves, M.F.; Matulevich Peláez, J.A. Composición química de aceites esenciales de hojas de Fridericia florida DC. y Fridericia chica (Bonpl.). Rev. Fac. Cienc. Básicas 2020, 15, 63–70. [Google Scholar] [CrossRef]
- Beltrán Cifuentes, M.C.; Peláez Gutiérrez, E.C.; Estrada Álvarez, J.M.; Escobar Ríos, J.A.; Serna Ángel, L.; Ríos Morales, D. Study farmacognosico for the care of the health from essential oils obtained by distillation of steam dragging. Investig. Andin. 2010, 12, 8–18. [Google Scholar]
- Stashenko, E. Essential Oils; Ediciones UIS: Bucaramanga, Colombia, 2009. [Google Scholar]
- BioReto. Bio-Challenge XXI 15:50. Available online: https://bio-reto-xxi.uis.edu.co/produccion-sostenible-aceites-esenciales/ (accessed on 26 December 2024).
- Barriga, H.G. Flora Medicinal de Colombia: Botanica Medica; Instituto de Ciencias Naturales, Universidad Nacional: Bogotá, Colombia, 1975. [Google Scholar]
- Díaz-Piedrahita, S.; Cuatrecasas, J. Asteraceas de la Flora de Colombia: SENECIONEAE-I, Géneros Dendrophorbium y Pentacalia; Academia Colombiana De Ciencias Exactas Fisicas Y Naturales—ACCEFYN: Santafé de Bogotá, Colombia, 1999. [Google Scholar]
- Rubiolo, P.; Sgorbini, B.; Liberto, E.; Cordero, C.; Bicchi, C. Essential oils and volatiles: Sample preparation and analysis. A review. Flavour Fragr. J. 2010, 25, 282–290. [Google Scholar] [CrossRef]
- Souiy, Z. Essential Oil Extraction Process. In Essential Oils—Recent Advances, New Perspectives and Applications; Viskelis, J., Ed.; IntechOpen: Rijeka, Croatia, 2024; p. 186. [Google Scholar]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical And Therapeutic Potential—A Review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Chaintreau, A. Simultaneous distillation–extraction: From birth to maturity—Review. Flavour Fragr. J. 2001, 16, 136–148. [Google Scholar] [CrossRef]
- Belliardo, F.; Bicchi, C.; Cordero, C.; Liberto, E.; Rubiolo, P.; Sgorbini, B. Headspace-Solid-Phase Microextraction in the Analysis of the Volatile Fraction of Aromatic and Medicinal Plants. J. Chromatogr. Sci. 2006, 44, 416–429. [Google Scholar] [CrossRef] [PubMed]
- Lancioni, C.; Castells, C.; Candal, R.; Tascon, M. Headspace solid-phase microextraction: Fundamentals and recent advances. Adv. Sample Prep. 2022, 3, 100035. [Google Scholar] [CrossRef]
- Zhao, J.; Quinto, M.; Zakia, F.; Li, D. Microextraction of essential oils: A review. J. Chromatogr. A 2023, 1708, 464357. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Bianchi, F.; Careri, M.; Mangia, A.; Musci, M. Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness. J. Sep. Sci. 2007, 30, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Joulain, D.; König, W.A. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons; E.B.-Verlag: Berlin, Germany, 1998. [Google Scholar]
- Sequeda-Castañeda, L.G.; Celis-Zambrano, C.A.; Torrenegra-Guerrero, R.D. Bioassay-guided fractionation in Anacardium excelsum (Bert. & Balb. Ex Kunth) Skeels (Anacardiaceae). PharmacologyOnline 2021, 1, 426–446. [Google Scholar]
- Ortiz-Ardila, A.E.; Correa-Cuadros, J.P.; Celis-Zambrano, C.A.; RodriguezBocanegra, M.X.; Robles-Carmargo, J.E.; Sequeda-Castañeda, L.G. Antioxidant and Antimicrobial capacity of Cecropia mutisiana Mildbr. (Cecropiaceae) leave extracts. Emir. J. Food Agric. 2017, 29, 25–35. [Google Scholar] [CrossRef]
- Sequeda-Castañeda, L.G.; Muñoz-Realpe, C.C.; Celis-Zambrano, C.A.; Gutiérrez-Prieto, S.J.; Luengas-Caicedo, P.E.; Gamboa, F. Preliminary Phytochemical Analysis of Berberis goudotii Triana & Planch. ex Wedd. (Berberidaceae) with Anticariogenic and Antiperiodontal Activities. Sci. Pharm. 2019, 87, 2. [Google Scholar] [CrossRef]
- Bonev, B.; Hooper, J.; Parisot, J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J. Antimicrob. Chemother. 2008, 61, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- CLSI. M26-A—Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline; CLSI: Wayne, PA, USA, 1999. [Google Scholar]
- Schwalbe, R.; Steele-Moore, L.; Goodwin, A.C. Antimicrobial Susceptibility Testing Protocols; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Wiegand, I.; Hilpert, K.; Hancock, R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Hogg, R.V.; McKean, J.W.; Craig, A.T. Introduction to Mathematical Statistics; Pearson: London, UK, 2019. [Google Scholar]
- Delgado-Ospina, J.; Grande-Tovar, C.D.; Menjívar-Flores, J.C.; Sánchez-Orozco, M.S. Relationship between refractive index and thymol concentration in essential oils of Lippia origanoides Kunth. Chil. J. Agric. Anim. Sci. 2016, 32, 127–133. [Google Scholar] [CrossRef]
- Huong, L.; Thuong, N.T.H.; Chac, L.; Dai, D.; Giwa-Ajeniya, A.; Ogunwande, I. The stem essential oil of Taxus chinensis (Rehder & E.H. Wilson) Rehder (Taxaceae) from Vietnam. Am. J. Essent. Oils Nat. Prod. 2020, 8, 9–12. [Google Scholar]
- Ramírez, J.; Gilardoni, G.; Jácome, M.; Montesinos, J.; Rodolfi, M.; Guglielminetti, M.L.; Cagliero, C.; Bicchi, C.; Vidari, G. Chemical Composition, Enantiomeric Analysis, AEDA Sensorial Evaluation and Antifungal Activity of the Essential Oil from the Ecuadorian Plant Lepechinia mutica Benth (Lamiaceae). Chem. Biodivers. 2017, 14, e1700292. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, D.; Teschke, M.E.E.; Koshima, C.C.; Rodrigues, C.E.d.C. Fractionation of citrus essential oil by liquid–liquid extraction using a perforated rotating disc contactor. Sep. Purif. Technol. 2016, 163, 247–257. [Google Scholar] [CrossRef]
- Koshima, C.C.; Umeda, T.K.; Nakamoto, K.T.; Venâncio, L.L.; Aracava, K.K.; Rodrigues, C.E.C. (Liquid + liquid) equilibrium for systems composed of clove and allspice essential oil compounds and hydrous ethanol at T = 298.2K. J. Chem. Thermodyn. 2016, 95, 54–62. [Google Scholar] [CrossRef]
- Wantaek, J.; Marcel Jonathan, H.; Jongbeom, P.; Sunghwa, J.; Jongho, N.; Hyeonhyo, K. Extraction and Characterization of Essential Oil of Korean Orange Peel Obtained from Supercritical CO2 Extraction. KSBB J. 2018, 33, 227–236. [Google Scholar] [CrossRef]
- EPA. Toxicological Review of Phenol; Environmental Protection Agency: Washington, DC, USA, 2002; 213p.
- Lister, L. Antiseptic Principle of the Practice of Surgery. Available online: https://sourcebooks.fordham.edu/mod/1867lister.asp (accessed on 7 October 2024).
- NIST. Phenol. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=108-95-2 (accessed on 7 October 2024).
- Ghanbariasad, A.; Osanloo, M.; Hatami, S.; Khaksar, S.; Zarenezhad, E.; Ranjbar, R.; Alipanah, H. Synthesis, characterization, and development of alpha-pinene nanoemulsion as an apoptotic inducer with cytotoxicity activity on human melanoma and breast cancer. Chem. Pap. 2024, 78, 1181–1191. [Google Scholar] [CrossRef]
- Nyamwihura, R.J.; Ogungbe, I.V. The pinene scaffold: Its occurrence, chemistry, synthetic utility, and pharmacological importance. RSC Adv. 2022, 12, 11346–11375. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; L.D. Jayaweera, S.; A. Dias, D.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [PubMed]
- Iwakata, S.; Asada, K.; Nishi, T.; Stepanova, R.; Shinoda, S.; Ueda, D.; Fujihashi, M.; Yasuno, Y.; Shinada, T.; Sato, T. Insight into the mechanism of geranyl-β-phellandrene formation catalyzed by Class IB terpene synthases. Biosci. Biotechnol. Biochem. 2022, 86, 724–729. [Google Scholar] [CrossRef] [PubMed]
- NIST. β-Phellandrene. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C555102&Mask=200 (accessed on 7 October 2024).
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Tiyajamorn, T.; Bharathi, M.; Chaiyasut, C. A Narrative Review on the Bioactivity and Health Benefits of Alpha-Phellandrene. Sci. Pharm. 2022, 90, 57. [Google Scholar] [CrossRef]
- ACS. β-Pinene. Available online: https://www.acs.org/molecule-of-the-week/archive/l/limonene.html (accessed on 6 October 2024).
- Chen-Wei, S.; Sean, T.; Hosam, S.; Anny, M.S.C.; Scheffer, C.G.T. Safety and efficacy of 4-terpineol against microorganisms associated with blepharitis and common ocular diseases. BMJ Open Ophthalmol. 2018, 3, e000094. [Google Scholar] [CrossRef]
- Johansen, B.; Duval, R.E.; Sergere, J.-C. First Evidence of a Combination of Terpinen-4-ol and α-Terpineol as a Promising Tool against ESKAPE Pathogens. Molecules 2022, 27, 7472. [Google Scholar] [CrossRef]
- Shapira, S.; Pleban, S.; Kazanov, D.; Tirosh, P.; Arber, N. Terpinen-4-ol: A Novel and Promising Therapeutic Agent for Human Gastrointestinal Cancers. PLoS ONE 2016, 11, e0156540. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on the Safety and Efficacy of Aliphatic and Aromatic Hydrocarbons (Chemical Group 31) When Used as Flavourings for All Animal Species. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/4053 (accessed on 7 October 2024).
- NIST. γ-Terpinene. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=99-85-4 (accessed on 7 October 2024).
- Rudbäck, J.; Bergström, M.A.; Börje, A.; Nilsson, U.; Karlberg, A.T. α-Terpinene, an antioxidant in tea tree oil, autoxidizes rapidly to skin allergens on air exposure. Chem. Res. Toxicol. 2012, 25, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.-K.; Tan, L.T.-H.; Chan, K.-G.; Lee, L.-H.; Goh, B.-H. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules 2016, 21, 529. [Google Scholar] [CrossRef] [PubMed]
- Hanušová, V.; Caltová, K.; Svobodová, H.; Ambrož, M.; Skarka, A.; Murínová, N.; Králová, V.; Tomšík, P.; Skálová, L. The effects of β-caryophyllene oxide and trans-nerolidol on the efficacy of doxorubicin in breast cancer cells and breast tumor-bearing mice. Biomed. Pharmacother. 2017, 95, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Lima, I.S.d.; Ferreira, M.O.G.; Barros, E.M.L.; Rizzo, M.d.S.; Santos, J.d.A.; Ribeiro, A.B.; Anteveli Osajima Furtini, J.; C. Silva-Filho, E.; Estevinho, L.M. Antibacterial and Healing Effect of Chicha Gum Hydrogel (Sterculia striata) with Nerolidol. Int. J. Mol. Sci. 2023, 24, 2210. [Google Scholar] [CrossRef] [PubMed]
- ACS. Limonene. Available online: https://www.acs.org/molecule-of-the-week/archive/l/limonene.html (accessed on 6 October 2024).
- de Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef] [PubMed]
- Jongedijk, E.; Cankar, K.; Buchhaupt, M.; Schrader, J.; Bouwmeester, H.; Beekwilder, J. Biotechnological production of limonene in microorganisms. Appl. Microbiol. Biotechnol. 2016, 100, 2927–2938. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Li, Z.; Sun, Y.; Zhang, Y.; Wang, S.; Zhang, Q.; Cai, T.; Xiang, W.; Zeng, C.; Tang, J. D-Limonene: Promising and Sustainable Natural Bioactive Compound. Appl. Sci. 2024, 14, 4605. [Google Scholar] [CrossRef]
- Foreverest. The Characteristics and Commercial Application Value of α-Thujene, β-Thujene and Cedrene. Available online: https://foreverest.net/news-list/the-characteristics-and-commercial-application-value-of-alpha-thujene-beta-thujene-and-cedrene (accessed on 7 October 2024).
- MEC. PDR for Herbal Medicines; Medical Economics Company: North Olmsted, OH, USA, 1999; p. 1244. [Google Scholar]
- NIST. β-Thujene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/beta-Thujene (accessed on 7 October 2024).
- Aboukhalid, K.; Al Faiz, C.; Douaik, A.; Bakha, M.; Kursa, K.; Agacka-Mołdoch, M.; Machon, N.; Tomi, F.; Lamiri, A. Influence of Environmental Factors on Essential Oil Variability in Origanum compactum Benth. Growing Wild in Morocco. Chem. Biodivers. 2017, 14, e1700158. [Google Scholar] [CrossRef] [PubMed]
- Burneo, J.I.; Benítez, Á.; Calva, J.; Velastegui, P.; Morocho, V. Soil and Leaf Nutrients Drivers on the Chemical Composition of the Essential Oil of Siparuna muricata (Ruiz & Pav.) A. DC. from Ecuador. Molecules 2021, 26, 2949. [Google Scholar] [CrossRef] [PubMed]
- Elicia, R.; Roanisca, O.; Asriza, R.O. The Effect of Harvest Time of Sapu-Sapu Leaves (Baeckea frutescens L.) the Yield, Characteristics and Composition of Essential Oils Extached Using Steam-Hydro Distillation Method. IJCA (Indones. J. Chem. Anal.) 2024, 7, 132–141. [Google Scholar] [CrossRef]
- Nunes Gomes, E.; Reichert, W.; Vasilatis, A.; Allen, K.; Wu, Q.; Simon, J. Essential Oil Yield and Aromatic Profile of Lemon Catnip and Lemon-Scented Catnip Selections at Different Harvesting Times. J. Med. Act. Plants 2020, 9, 21–33. [Google Scholar] [CrossRef]
- Ostadi, A.; Javanmard, A.; Amani Machiani, M.; Morshedloo, M.R.; Nouraein, M.; Rasouli, F.; Maggi, F. Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha x piperita L. Ind. Crops Prod. 2020, 148, 112290. [Google Scholar] [CrossRef]
- Teles, S.; Pereira, J.A.; Muniz de Oliveira, L.; Malheiro, R.; Lucchese, A.M.; Silva, F. Lippia origanoides H.B.K. essential oil production, composition, and antioxidant activity under organic and mineral fertilization: Effect of harvest moment. Ind. Crops Prod. 2014, 60, 217–225. [Google Scholar] [CrossRef]
- Cardozo, E.L.; Ferrarese-Filho, O.; Filho, L.C.; Ferrarese, M.d.L.L.; Donaduzzi, C.M.; Sturion, J.A. Methylxanthines and phenolic compounds in mate (Ilex paraguariensis St. Hil.) progenies grown in Brazil. J. Food Compos. Anal. 2007, 20, 553–558. [Google Scholar] [CrossRef]
- Cardozo, E.L.; Cardozo-Filho, L.; Ferrarese Filho, O.; Zanoelo, E.F. Selective Liquid CO2 Extraction of Purine Alkaloids in Different Ilex paraguariensis Progenies Grown under Environmental Influences. J. Agric. Food Chem. 2007, 55, 6835–6841. [Google Scholar] [CrossRef] [PubMed]
- Lotfy, W.A.; Mostafa, S.W.; Adel, A.A.; Ghanem, K.M. Production of di-(2-ethylhexyl) phthalate by Bacillus subtilis AD35: Isolation, purification, characterization and biological activities. Microb. Pathog. 2018, 124, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Omardien, S.; Ter Beek, A.; Vischer, N.; Montijn, R.; Schuren, F.; Brul, S. Evaluating novel synthetic compounds active against Bacillus subtilis and Bacillus cereus spores using Live imaging with SporeTrackerX. Sci. Rep. 2018, 8, 9128. [Google Scholar] [CrossRef] [PubMed]
- John, J., Jr. The treatment of resistant staphylococcal infections [version 1; peer review: 3 approved]. F1000Research 2020, 9, 150. [Google Scholar] [CrossRef]
- Mellata, M. Human and Avian Extraintestinal Pathogenic Escherichia coli: Infections, Zoonotic Risks, and Antibiotic Resistance Trends. Foodborne Pathog. Dis. 2013, 10, 916–932. [Google Scholar] [CrossRef]
- Hussein, A.-D.; Raad, D.A.-O.; Noor, A.-K. Pseudomonas aeruginosa: Diseases, Biofilm and Antibiotic Resistance. In Pseudomonas aeruginosa; Theerthankar, D., Ed.; IntechOpen: Rijeka, Croatia, 2020; Chapter 2. [Google Scholar]
- Reyes-Jurado, F.; Franco-Vega, A.; Ramírez-Corona, N.; Palou, E.; López-Malo, A. Essential Oils: Antimicrobial Activities, Extraction Methods, and Their Modeling. Food Eng. Rev. 2015, 7, 275–297. [Google Scholar] [CrossRef]
- Aelenei, P.; Miron, A.; Trifan, A.; Bujor, A.; Gille, E.; Aprotosoaie, A.C. Essential Oils and Their Components as Modulators of Antibiotic Activity against Gram-Negative Bacteria. Medicines 2016, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Bučková, M.; Puškárová, A.; Kalászová, V.; Kisová, Z.; Pangallo, D. Essential oils against multidrug resistant gram-negative bacteria. Biologia 2018, 73, 803–808. [Google Scholar] [CrossRef]
- Yap, P.S.; Lim, S.H.; Hu, C.P.; Yiap, B.C. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. Phytomedicine 2013, 20, 710–713. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.G. Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–648. [Google Scholar]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, T.L.; Soares Rde, A.; Piccoli, R.H. A Weibull model to describe antimicrobial kinetics of oregano and lemongrass essential oils against Salmonella Enteritidis in ground beef during refrigerated storage. Meat Sci. 2013, 93, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Chen, J.; Zhang, L.; Zhang, R.; Zhang, S.; Ye, S.; Zhao, Z.; Yang, D. Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant staphylococcus aureus. Int. J. Med. Microbiol. 2020, 310, 151435. [Google Scholar] [CrossRef] [PubMed]
- Aiemsaard, J.; Aiumlamai, S.; Aromdee, C.; Taweechaisupapong, S.; Khunkitti, W. The effect of lemongrass oil and its major components on clinical isolate mastitis pathogens and their mechanisms of action on Staphylococcus aureus DMST 4745. Res. Vet. Sci. 2011, 91, e31–e37. [Google Scholar] [CrossRef]
- Gao, S.; Liu, G.; Li, J.; Chen, J.; Li, L.; Li, Z.; Zhang, X.; Zhang, S.; Thorne, R.F.; Zhang, S. Antimicrobial Activity of Lemongrass Essential Oil (Cymbopogon flexuosus) and Its Active Component Citral Against Dual-Species Biofilms of Staphylococcus aureus and Candida Species. Front. Cell. Infect. Microbiol. 2020, 10, 603858. [Google Scholar] [CrossRef] [PubMed]
- Carson, C.F.; Riley, T.V. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J. Appl. Bacteriol. 1995, 78, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Griffin, S. Aspects of Antimicrobial Activity of Terpenoids and the Relationship to their Molecular Structure. Ph.D. Thesis, University of Western Sydney, Richmond, Australia, 1999. [Google Scholar]
- Rivera-Carriles, K.; Argaiz, A.; Palou, E.; López-Malo, A. Synergistic Inhibitory Effect of Citral with Selected Phenolics against Zygosaccharomyces bailii. J. Food Prot. 2005, 68, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Didry, N.; Dubreuil, L.; Pinkas, M. Antibacterial activity of thymol, carvacrol and cinnamaldehyde alone or in combination. Die Pharm. 1993, 48, 301–304. [Google Scholar]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Assessment of synergistic efficacy of carvacrol and cymene against Edwardsiella tarda in vitro and in Tilapia (Oreochromis niloticus). Afr. J. Microbiol. Res. 2010, 4, 420–425. [Google Scholar]
- Ultee, A.; Slump, R.A.; Steging, G.; Smid, E.J. Antimicrobial Activity of Carvacrol toward Bacillus cereus on Rice. J. Food Prot. 2000, 63, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Viljoen, A.; van Vuuren, S.; Ernst, E.; Klepser, M.; Demirci, B.; Başer, H.; van Wyk, B.-E. Osmitopsis asteriscoides (Asteraceae)-the antimicrobial activity and essential oil composition of a Cape-Dutch remedy. J. Ethnopharmacol. 2003, 88, 137–143. [Google Scholar] [CrossRef]
- Azeredo, C.M.O.; Soares, M.J. Combination of the essential oil constituents citral, eugenol and thymol enhance their inhibitory effect on Crithidia fasciculata and Trypanosoma cruzi growth. Rev. Bras. Farmacogn. 2013, 23, 762–768. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef]
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Bell, H.C.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 2000, 88, 170–175. [Google Scholar] [CrossRef]
- Ergüden, B. Phenol group of terpenoids is crucial for antibacterial activity upon ion leakage. Lett. Appl. Microbiol. 2021, 73, 438–445. [Google Scholar] [CrossRef]
- Negi, P.S. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int. J. Food Microbiol. 2012, 156, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Rahman, M.S. Handbook of Food Preservation; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Ratnam, D.V.; Ankola, D.D.; Bhardwaj, V.; Sahana, D.K.; Kumar, M.N.V.R. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control. Release 2006, 113, 189–207. [Google Scholar] [CrossRef] [PubMed]
- de Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. Polyphenols as natural antioxidants in cosmetics applications. J. Cosmet. Dermatol. 2019, 19, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Tundis, R.; Bonesi, M.; Sanzo, G.D.; Verardi, A.; Lopresto, C.G.; Pugliese, A.; Menichini, F.; Balducchi, R.; Calabrò, V. Chemical Profile and Antioxidant Properties of Extracts and Essential Oils from Citrus × limon (L.) Burm. cv. Femminello Comune. Chem. Biodivers. 2016, 13, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.A.; Clark, S.; Woodard, B.; Deolu-Sobogun, S.A. Antioxidant and free radical scavenging activities of essential oils. Ethn. Dis. 2010, 20, 78–82. [Google Scholar]
- Gharred, N.; Dbeibia, A.; Falconieri, D.; Hammami, S.; Piras, A.; Dridi-Dhaouadi, S. Chemical composition, antibacterial and antioxidant activities of essential oils from flowers, leaves and aerial parts of Tunisian Dittrichia Viscosa. J. Essent. Oil Res. 2019, 31, 582–589. [Google Scholar] [CrossRef]
- Gopi, S.; Sukumaran, N.P.; Jacob, J.; Thomas, S. Natural Flavours, Fragrances, and Perfumes: Chemistry, Production, and Sensory Approach; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar]
- Southwell, I.; Russell, M.; Smith, R.L.; Brophy, J.J.; Day, J. Melaleuca teretifolia, a novel aromatic and medicinal plant from australia. In III WOCMAP Congress on Medicinal and Aromatic Plants-Volume 3: Perspectives in Natural Product Chemistry 677; International Society for Horticultural Science: Leuven, Belgium, 2005; pp. 79–83. [Google Scholar]
- Frankel, E.N.; Huang, S.-W.; Aeschbach, R.; Prior, E. Antioxidant Activity of a Rosemary Extract and Its Constituents, Carnosic Acid, Carnosol, and Rosmarinic Acid, in Bulk Oil and Oil-in-Water Emulsion. J. Agric. Food Chem. 1996, 44, 131–135. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.-P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef] [PubMed]
- Ninfali, P.; Mea, G.; Giorgini, S.; Rocchi, M.; Bacchiocca, M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br. J. Nutr. 2005, 93, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S. Inhibiting rancidity in soaps and cosmetics. Chem. Bus. 1999, 19, 33–36. [Google Scholar]
- Sheskey, P.J.; Hancock, B.C.; Moss, G.P.; Goldfarb, D.J. Handbook of Pharmaceutical Excipients; Pharmaceutical Press: London, UK, 2020; p. 1296. [Google Scholar]
- Webster, G.K.; Craig II, R.A.; Pommerening, C.A.; Acworth, I.N. Selection of Pharmaceutical Antioxidants by Hydrodynamic Voltammetry. Electroanalysis 2012, 24, 1394–1400. [Google Scholar] [CrossRef]
No | Method | Acronym | Mass (g) | Extraction Time (h) | Solvent |
---|---|---|---|---|---|
1 | Hydrodistillation dry leaf | HD-DL | 150 | 3 | 1000 mL H2O |
2 | Hydrodistillation wet leaf | HD-WL | 250 | 3 | 1000 mL H2O |
3 | Steam distillation dry leaf | SD-DL | 150 | 3 | 1000 mL H2O |
4 | Steam distillation wet leaf | SD-WL | 250 | 3 | 1000 mL H2O |
5 | Simultaneous Distillation and Extraction flowers | SDE-WF | 250 | 3 | 100 mL CH2Cl2, 1000 mL H2O |
6 | Simultaneous Distillation and Extraction dry leaf | SDE-DL | 150 | 3 | 100 mL CH2Cl2, 1000 mL H2O |
7 | Simultaneous Distillation and Extraction wet leaf | SDE-WL | 250 | 3 | 100 mL CH2Cl2, 1000 mL H2O |
8 | Solid-Phase Microextraction flowers | SPME-WF | 10 | 0.5 | 25 mL H2O |
9 | Solid-Phase Microextraction dry leaf | SPME-DL | 10 | 0.5 | 25 mL H2O |
10 | Solid-Phase Microextraction wet leaf | SPME-WL | 10 | 0.5 | 25 mL H2O |
No | Acronym | % (m/m) | ρ (g/mL) | η | Color | Smell |
---|---|---|---|---|---|---|
1 | HD-DL | 0.0034 ± 0.003 | 0.8666 ± 0.0030 | 1.611 ± 0.002 | Yellow | It has penetrating, somewhat spicy, turpentine notes. |
2 | HD-WL | 0.0016 ± 0.002 | ||||
3 | SD-DL | 0.0037 ± 0.004 | 0.8666 ± 0.0030 | 1.611 ± 0.002 | ||
4 | SD-WL | 0.0019 ± 0.003 | ||||
5 | SDE-WF | 0.0012 ± 0.002 | 0.8667 ± 0.0030 | 1.612 ± 0.001 | ||
6 | SDE-DL | 0.0345 ± 0.006 | ||||
7 | SDE-WL | 0.0156 ± 0.007 | ||||
8 | SPME-WF | NA | NA | NA | ||
9 | SPME-WL | |||||
10 | SPME-WL |
No. | Compound | Type | LRI | HD | SD | SDE | SPME | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaf | Leaf | Leaf | Flower | Leaf | Flower | |||||||||
Apola | Polar | Fresh | Dry | Fresh | Dry | Fresh | Dry | Fresh | Fresh | Dry | Fresh | |||
1 | 2-Butanone, 3-hydroxy- | * | 775 | - | 1.6 | 2.9 | 3.7 | - | 3.2 | 3.7 | 3.3 | - | - | - |
2 | 1-Butanol, 3-methyl- | * | 780 | - | - | - | 4.8 | - | 1.5 | 1.8 | 1.0 | - | - | - |
3 | 1-Octene | * | 786 | - | - | - | - | - | - | - | - | 1.4 | 1.5 | 1.5 |
4 | Hexanal | * | 802 | 815 | 1.8 | 5.5 | 1.0 | 1.3 | 1.4 | 2.5 | 2.7 | - | - | - |
5 | Furfural | * | 831 | 1078 | - | - | 1.1 | 1.1 | - | - | - | - | - | - |
6 | 3-Hexen-1-ol, (Z)- | * | 852 | - | 1.6 | 1.7 | 3.2 | 3.4 | 1.7 | 2.0 | 2.2 | - | - | - |
7 | 2-Hexenal, (E)- | * | 851 | 1249 | 2.3 | 3.4 | 2.0 | 1.3 | 1.2 | 1.2 | 1.4 | - | - | - |
8 | 1-Hexanol | * | 863 | - | 1.3 | 1.5 | 1.5 | 1.6 | 2.3 | 2.7 | 3.0 | 3.0 | 4.3 | 4.9 |
9 | Phenol | ** | 883 | 1537 | 11.4 | 9.4 | 19.2 | 18.0 | 2.9 | 3.7 | 1.0 | 3.1 | 7.1 | 3.1 |
10 | Cyclopropane, 1-methyl-2-pentyl- | * | 890 | 1612 | 1.2 | 1.4 | 1.4 | 1.5 | 1.8 | 1.6 | 2.0 | 2.3 | 2.1 | 2.7 |
11 | Propanal, 3-(methylthio)- | * | 907 | - | - | - | 1.3 | 1.4 | - | - | - | - | - | - |
12 | 2(5H)-Furanone | * | 915 | 1060 | 3.0 | 1.7 | 6.0 | 5.3 | - | - | - | - | - | - |
13 | Bicyclo [3.1.0]hexane, 4-methyl-1-(1- methylethyl)-, didehydro deriv | * | 927 | 1175 | 1.8 | 1.2 | - | - | 3.1 | 1.7 | 3.2 | 3.7 | 1.6 | 4.2 |
14 | 1S-.alpha.-Pinene | M | 934 | 1245 | 7.4 | 3.8 | 2.0 | 2.6 | 14.6 | 13.0 | 14.4 | 22.8 | 24.3 | 22.3 |
15 | Cyclohexanone, 4-methylidene- | * | 949 | 1386 | 4.4 | 2.6 | 3.1 | 2.3 | 1.2 | 1.6 | 1.8 | - | - | - |
16 | Benzaldehyde | * | 961 | - | 1.8 | 1.6 | 1.9 | 1.1 | 1.8 | 1.7 | 1.8 | 2.1 | 2.5 | 3.1 |
17 | beta.-Phellandrene | M | 974 | 1042 | 6.6 | 4.7 | 1.4 | 2.6 | 11.3 | 9.3 | 12.5 | 7.9 | 8.8 | 8.3 |
18 | beta.-Pinene | M | 978 | 1683 | 5.3 | 4.2 | 1.3 | 2.1 | 10.9 | 10.1 | 11.9 | 7.4 | 5.8 | 8.6 |
19 | beta.-Tujene | M | 991 | 1808 | 3.8 | 4.2 | 1.0 | 1.9 | 4.3 | 4.3 | 5.1 | 5.7 | 2.6 | 5.9 |
20 | alpha.-Phellandrene | M | 1006 | 1069 | 2.9 | 2.3 | 1.8 | 1.5 | 3.0 | 2.4 | 3.1 | 3.9 | 2.1 | 3.3 |
21 | o-Cymene | M | 1025 | - | 1.2 | 2.1 | 1.5 | 2.1 | 1.9 | 2.3 | 3.0 | 3.2 | 3.2 | 4.0 |
22 | Limonene | M | 1029 | 1323 | 6.2 | 6.3 | 3.2 | 3.5 | 7.9 | 5.4 | 6.2 | 8.3 | 8.1 | 8.4 |
23 | 2,4-Heptadienal, (E,E)- | * | - | - | 1.0 | 1.3 | - | - | - | - | - | - | - | - |
24 | Undecane | * | 1045 | 1484 | 1.4 | 1.5 | 1.9 | 1.0 | - | - | - | - | - | - |
25 | Gamma Terpinene | M | 1059 | 1646 | 1.7 | 2.0 | - | 1.3 | 1.7 | 1.4 | 1.8 | 9.9 | 9.0 | 8.4 |
26 | 1-Octanol | * | 1069 | 1760 | 1.5 | 1.6 | - | - | - | - | - | - | - | - |
27 | 2-Furanmethanol, 5-ethenyltetrahydro-.alpha.,.alpha.,5-trimethyl-, Cis | * | 1073 | - | - | - | - | 1.1 | - | - | - | - | - | - |
28 | Terpinolene | M | 1089 | 1982 | 1.5 | 1.3 | 2.2 | 1.1 | 1.2 | 1.2 | 1.0 | 2.1 | 1.1 | 1.2 |
29 | Linalool | MO | 1100 | 2095 | 2.6 | 2.0 | 2.8 | 2.2 | 1.2 | 1.9 | 2.2 | 2.0 | 2.4 | 3.0 |
30 | Nonanal | * | 1104 | 1048 | 2.4 | 2.2 | 1.2 | 1.3 | 1.4 | 2.0 | - | - | - | - |
31 | Phenylethyl Alcohol | * | 1114 | - | - | - | 1.6 | 1.6 | - | - | - | - | - | - |
32 | 2-Cyclohexen-1-ol, 1-methyl-4-(1-methylethyl)-, cis- | MO | 1123 | - | 1.2 | 1.4 | 4.7 | 6.2 | - | - | - | - | - | - |
33 | 4-Terpineol | MO | 1180 | 2049 | 9.4 | 6.9 | 7.4 | 8.0 | 3.8 | 2.5 | 3.0 | 6.2 | 4.0 | 4.9 |
34 | Alpha Terpineol | MO | 1192 | 2200 | - | - | 1.5 | 1.7 | 2.0 | 2.5 | 2.7 | - | - | - |
35 | Di-epi-.alpha.-cedrene-(I) | * | 1481 | 2614 | - | - | 1.7 | 1.1 | - | - | - | - | - | - |
36 | 1-Pentadecene | * | 1491 | 2765 | - | - | 1.0 | 1.2 | - | - | - | - | - | - |
37 | 2-Fluorobenzyl alcohol | * | 1532 | - | 3.3 | 1.8 | 2.3 | 3.0 | 2.3 | 2.7 | 2.9 | - | - | - |
38 | Trans- Nerolidol | SO | 1539 | 2560 | 7.2 | 8.0 | 6.0 | 7.1 | 5.1 | 5.4 | 5.5 | 1.0 | 1.1 | 1.1 |
39 | 4-(2,3,4,6-Tetramethylphenyl)-3-buten-2- one | * | 1653 | - | - | - | 1.9 | 2.0 | - | - | - | - | - | - |
Total compounds | 29 | 29 | 33 | 33 | 26 | 26 | 25 | 18 | 18 | 18 | ||||
Total identified (%) | 98.8 | 90.5 | 98.4 | 94.5 | 94.6 | 90.5 | 98.6 | 96.1 | 91.5 | 98.7 | ||||
Compound family | Relative quantity (%) | |||||||||||||
Monoterpene hydrocarbons (M) | 36.6 | 31.0 | 14.4 | 18.7 | 56.7 | 49.3 | 59.0 | 71.1 | 64.9 | 70.1 | ||||
Oxygenated monoterpenes (MO) | 13.2 | 10.3 | 16.3 | 18.1 | 7.1 | 6.9 | 7.9 | 8.2 | 6.4 | 7.9 | ||||
Sesquiterpene hydrocarbons (S) | - | - | - | - | - | - | - | - | - | - | ||||
Oxygenated sesquiterpenes (SO) | 7.2 | 8.0 | 6.0 | 7.1 | 5.1 | 5.4 | 5.5 | 1.0 | 1.1 | 1.1 | ||||
Phenol ** | 11.4 | 9.4 | 19.2 | 18.0 | 2.9 | 3.7 | 1.0 | 3.1 | 7.1 | 3.1 | ||||
Other compounds * | 30.4 | 31.8 | 42.5 | 32.6 | 22.8 | 25.2 | 25.3 | 12.6 | 12.0 | 16.4 |
(a). Relative Percentage of Inhibition (RI, %) | |||||||
---|---|---|---|---|---|---|---|
Microorganism | HD-DL, HD-WL-μg/mL | ||||||
1215 | 405 | 135 | 45 | 15 | 5.0 | 1.67 | |
B. subtilis | 28.5 ± 4.4 | 21.4 ± 2.2 | - | - | - | - | - |
S. aureus | 34.0 ± 2.2 | 26.2 ± 2.5 | 17.5 ± 2.7 | - | - | - | - |
E. coli | - | - | - | - | - | - | - |
P. aeruginosa | - | - | - | - | - | - | - |
Microorganism | SD-DL, SD-WL-μg/mL | ||||||
1215 | 405 | 135 | 45 | 15 | 5.0 | 1.67 | |
B. subtilis | 90.7 ± 3.8 | 75.2 ± 5.4 | 59.0 ± 7.7 | 37.3 ± 5.4 | 20.9 ± 2.1 | 10.1 ± 1.6 | - |
S. aureus | 35.7 ± 4.1 | 24.5 ± 3.5 | 15.3 ± 2.8 | - | - | - | - |
E. coli | - | - | - | - | - | - | - |
P. aeruginosa | - | - | - | - | - | - | - |
Microorganism | SDE-WF, SDE-DL, SDE-WL-μg/mL | ||||||
1215 | 405 | 135 | 45 | 15 | 5.0 | 1.67 | |
B. subtilis | 73.7 ± 5.2 | 69.9 ± 7.6 | 53.5 ± 6.6 | 37.1 ± 5.4 | - | - | - |
S. aureus | 49.0 ± 2.4 | 39.8 ± 3.7 | 33.6 ± 2.6 | 32.7 ± 2.1 | - | - | - |
E. coli | - | - | - | - | - | - | - |
P. aeruginosa | - | - | - | - | - | - | - |
(b) The Minimum Inhibitory Concentration (μg/mL) | |||||||
Microorganism | HD-DL | HD-WL | SD-DL | SD-WL | SDE-WF | SDE-DL | SDE-WL |
B. subtilis | 405 | 405 | 5.0 | 5.0 | 45 | 45 | 45 |
S. aureus | 135 | 135 | 135 | 135 | 45 | 45 | 45 |
E. coli | >1215 | >1215 | >1215 | >1215 | >1215 | >1215 | >1215 |
P. aeruginosa | >1215 | >1215 | >1215 | >1215 | >1215 | >1215 | >1215 |
Inhibition Concentration—IC50 (μg/mL) | ||||||
---|---|---|---|---|---|---|
HD-DL | HD-WL | SD-DL | SD-WL | SDE-WF | SDE-DL | SDE-WL |
633.82 ± 20.98 | 621.62 ± 23.55 | 668.83 ± 21.28 | 658.24 ± 20.42 | 673.39 ± 26.21 | 696.59 ± 25.50 | 682.54 ± 30.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sequeda-Castañeda, L.G.; Castellanos-Gómez, M.A.; Céspedes-Acuña, C.L.A. Bioactive Properties of Pentacalia vaccinioides (Kunth) Cuatrec. (Asteraceae) Essential Oils: Evaluation of Antimicrobial and Antioxidant Activities. Separations 2025, 12, 9. https://doi.org/10.3390/separations12010009
Sequeda-Castañeda LG, Castellanos-Gómez MA, Céspedes-Acuña CLA. Bioactive Properties of Pentacalia vaccinioides (Kunth) Cuatrec. (Asteraceae) Essential Oils: Evaluation of Antimicrobial and Antioxidant Activities. Separations. 2025; 12(1):9. https://doi.org/10.3390/separations12010009
Chicago/Turabian StyleSequeda-Castañeda, Luis G., María A. Castellanos-Gómez, and Carlos L. A. Céspedes-Acuña. 2025. "Bioactive Properties of Pentacalia vaccinioides (Kunth) Cuatrec. (Asteraceae) Essential Oils: Evaluation of Antimicrobial and Antioxidant Activities" Separations 12, no. 1: 9. https://doi.org/10.3390/separations12010009
APA StyleSequeda-Castañeda, L. G., Castellanos-Gómez, M. A., & Céspedes-Acuña, C. L. A. (2025). Bioactive Properties of Pentacalia vaccinioides (Kunth) Cuatrec. (Asteraceae) Essential Oils: Evaluation of Antimicrobial and Antioxidant Activities. Separations, 12(1), 9. https://doi.org/10.3390/separations12010009