Fatty Acid Profiling in Greek Wines by Liquid Chromatography–High-Resolution Mass Spectrometry (LC-HRMS)
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Stock and Working Solutions
2.3. Instrumentation
2.4. Data Processing and Quantification
2.5. Sample Preparation
2.6. Method Validation
2.7. Wine Samples
2.8. Statistical Analysis
3. Results
3.1. Sample Preparation and Method Validation
3.2. Analysis of Samples
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kunkee, R.E.; Escnauer, H.R. Wine, 2. Chemical and physical composition. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co., KgaA: Weinheim, Germany, 2016. [Google Scholar] [CrossRef]
- Butnariu, M.; Butu, A. Qualitative and quantitative chemical composition of wine. Qual. Control Beverage Industr. 2019, 17, 385–417. [Google Scholar] [CrossRef]
- Sumby, K.M.; Grbin, P.R.; Jiranek, V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem. 2010, 121, 1–16. [Google Scholar] [CrossRef]
- Phan, Q.; Tomasino, E. Untargeted lipidomic approach in studying pinot noir wine lipids and predicting wine origin. Food Chem. 2021, 355, 129409. [Google Scholar] [CrossRef]
- Arita, K.; Honma, T.; Suzuki, S. Comprehensive and comparative lipidome analysis of Vitis vinifera L. cv. Pinot Noir and Japanese indigenous V. vinifera L. cv. Koshu grape berries. PLoS ONE 2017, 12, e0186952. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons, Inc.: West Sussex, UK, 2016. [Google Scholar]
- Mbuyane, L.L.; Bauer, F.F.; Divol, B. The metabolism of lipids in yeasts and applications in oenology. Food Res. Int. 2021, 141, 110142. [Google Scholar] [CrossRef]
- Comuzzo, P.; Tat, L.; Tonizzo, A.; Battistutta, F. Yeast derivatives (extracts and autolysates) in winemaking: Release of volatile compounds and effects on wine aroma volatility. Food Chem. 2006, 99, 217–230. [Google Scholar] [CrossRef]
- Ferreira, V.; López, R.; Hernández, P.; Cacho, J.F. Identification of impact odorants of young red wines made with Merlot, Cabernet Sauvignon and Grenache grape varieties: A comparative study. J. Sci. Food Agric. 1999, 79, 1461–1467. [Google Scholar] [CrossRef]
- Yang, Y.; Ai, L.; Mu, Z.; Liu, H.; Yan, X.; Ni, L.; Zhang, H.; Xia, Y. Flavor compounds with high odor activity values (OAV>1) dominate the aroma of aged Chinese rice wine (Huangjiu) by molecular association. Food Chem. 2022, 383, 132370. [Google Scholar] [CrossRef]
- Bordet, F.; Roullier-Gall, C.; Ballester, J.; Vichi, S.; Quintanilla-Casas, B.; Gougeon, R.D.; Julien-Ortiz, A.; Schmitt Kopplin, F.; Alexandre, H. Different wines from different yeasts? “Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine”. Microorganisms 2021, 9, 2327. [Google Scholar] [CrossRef]
- Kong, C.-L.; Ma, N.; Yin, J.; Zhao, H.-Y.; Tao, Y.-S. Fine tuning of medium chain fatty acids levels increases fruity ester production during alcoholic fermentation. Food Chem. 2021, 346, 128897. [Google Scholar] [CrossRef]
- Licek, J.; Baron, M.; Sochor, J.; Kumsta, M.; Mlcek, J. Observation of residues content after application of a medium-chain fatty acids mixture at the end of alcoholic fermentation. Fermentation 2022, 8, 105. [Google Scholar] [CrossRef]
- Wang, C.; Liang, S.; Yang, J.; Wu, C.; Qiu, S. The impact of indigenous Saccharomyces cerevisiae and Schizosaccharomyces japonicus on typicality of crystal grape (Niagara) wine. Food Res. Int. 2022, 159, 111580. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, Y.; Liu, L.; Zheng, M.; Feng, Z.; Hu, K.; Tao, Y. Effects of inoculation timing and mixed fermentation with Pichia fermentans on Oenococcus oeni viability, fermentation duration and aroma production during wine malolactic fermentation. Food Res. Int. 2022, 159, 111604. [Google Scholar] [CrossRef] [PubMed]
- Sherman, E.; Pinu, F.R. Lipidomics in grape and wine research: Past, present and future applications. Curr. Opin. Food Sci. 2023, 52, 101046. [Google Scholar] [CrossRef]
- Phan, Q.; Hoffman, S.; Tomasino, E. Contribution of lipids to taste and mouthfeel perception in a model wine solution. ACS Food Sci. Technol. 2021, 1, 1561–1566. [Google Scholar] [CrossRef]
- Phan, Q.; DuBois, A.; Osborne, J.; Tomasino, E. Effects of yeast product addition and fermentation temperature on lipid composition, taste and mouthfeel characteristics of pinot noir wine. Horticulturae 2022, 8, 52. [Google Scholar] [CrossRef]
- Gallart, M.; Francioli, S.; Viu-Marco, A.; Lopez-Tamames, E.; Buxaderas, S. Determination of free fatty acids and their ethyl esters in musts and wines. J. Chromatogr. A 1997, 776, 283–291. [Google Scholar] [CrossRef]
- Kemp, B.; Condé, B.; Jégou, S.; Howell, K.; Vasserot, Y.; Marchal, R. Chemical compounds and mechanisms involved in the formation and stabilization of foam in sparkling wines. Crit. Rev. Food Sci. Nutr. 2019, 59, 2072–2094. [Google Scholar] [CrossRef]
- Voce, S.; Škrab, D.; Vrhovsek, U.; Battistutta, F.; Comuzzo, P.; Sivilotti, P. Compositional characterization of commercial sparkling wines from cv. Ribolla Gialla produced in Friuli Venezia Giulia. Eur. Food Res. Technol. 2019, 245, 2279–2292. [Google Scholar] [CrossRef]
- Culbert, J.; McRae, J.M.; Conde, B.; Schmidtke, L.M.; Nicholson, E.; Smith, P.A.; Howell, K.; Boss, P.K.; Wilkinson, K.L. Influence of production method on the chemical composition, foaming properties and quality of Australian carbonated and sparkling white wines. J. Agric. Food Chem. 2017, 65, 1378–1386. [Google Scholar] [CrossRef]
- Lenti, L.; Nartea, A.; Orhotohwo, O.L.; Pacetti, D.; Fiorini, D. Development and validation of a new GC-FID method for the determination of short and medium chain free fatty acids in wine. Molecules 2022, 27, 8195. [Google Scholar] [CrossRef] [PubMed]
- Kokotou, M.G.; Mantzourani, C.; Bourboula, A.; Mountanea, O.G.; Kokotos, G. A liquid chromatography-high resolution mass spectrometry (LC-HRMS) method for the determination of free hydroxy fatty acids in cow and goat milk. Molecules 2020, 25, 3947. [Google Scholar] [CrossRef] [PubMed]
- Kokotou, M.G.; Batsika, C.S.; Mantzourani, C.; Kokotos, G. Free saturated oxo fatty acids (SOFAs) and ricinoleic acid in milk determined by a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method. Metabolites 2021, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Kokotou, M.G.; Mantzourani, C.; Kokotos, G. Development of a liquid chromatography-high resolution mass spectrometry method for the determination of free fatty acids in milk. Molecules 2020, 25, 1548. [Google Scholar] [CrossRef]
- Mantzourani, C.; Batsika, C.S.; Kokotou, M.G.; Kokotos, G. Free fatty acid profiling of Greek yogurt by liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis. Food Res. Int. 2022, 160, 111751. [Google Scholar] [CrossRef]
Code | Variety | Area of Production | Type | Vintage Year | % ABV a | Acidity of Wine | Aroma |
---|---|---|---|---|---|---|---|
1 | Moschofilero | Peloponnese | White dry | 2017 | 11.5 | Total acidity: 5.7 g/L pH: 3.4 | Strong varietal aroma of flowers and citrus fruit on the nose and palate, with white rose and orange blossom prevailing. |
2 | Muscat (85%) and Vidiano (15%) | Crete | White dry | 2019 | 12.5 | Total acidity: 5.0 g/L pH: 3.5 | Nose full of rose petal aromas and notes of mature citrus and stone fruit. |
3 | Lagorthi 65%, Roditis 25%, Chardonnay 10% | Peloponnese | White dry | 2019 | 12.0 | - | Aromas of melon, mango, kiwi and pineapple |
4 | Muscat | Samos | White dry | 2016 | 13.5 | Total acidity: 7.6 g/L pH: 2.9 | Floral and fruity aromas to the nose, notably those of citrus, apricot and rose. |
5 | Savvatiano and roditis | Attica | White dry | 2019 | 11.5 | Soft acidity | Citrus fruits, gooseberry and ripe melon. |
6 | Savvatiano and roditis | Attica | White dry | 2019 | 11.0 | - | Aromas of pine resin. |
7 | Moschofilero | Peloponnese | White dry | 2019 | 12.0 | Strong acidity | Aromas of citrus fruits, lemon blossoms and rose. |
8 | Moschofilero | Peloponnese | White dry | 2019 | 12.0 | Total acidity: 5.9 g/L pH: 3.2 | Delicate aroma of rose, green apple and lemon blossom. |
9 | Moschofilero | Peloponnese | White dry | 2019 | 12.0 | Total acidity: 5.5 g/L pH: 3.5 | Aromas of rose, green apple and lemon blossom. |
10 | Muscat | Samos | White dry | 2016 | 12.5 | Total acidity: 7.1 g/L pH: 3.2 | Floral and fruity aromas of muscat (pink roses) along with impressive notes of mainly white fruits, such as melon and peach. |
11 | Lagorthi | Peloponnese | White dry | 2016 | 12.5 | Strong acidity | Aromas of intense mineral character with notes of citrus fruits, ripe pear, Greek wild herbs and freshly cut hay. |
12 | Moschofilero | Peloponnese | White dry | 2019 | 12.0 | Total acidity: 5.7 g/L pH: 3.4 | Citrus fruits, lemon and rose. |
13 | Xinomavro | Florina | Sparkling white semidry | 2019 | 11.5 | Total acidity: 5.2 g/L pH: 3.4 | Apricot and white floral notes. |
14 | Xinomavro (85%)–Chardonnay (15%) | Florina | Sparkling white dry | 2019 | 12.0 | Total acidity: 5.2 g/L pH: 3.4 | Aromas of red berries and citrus, as well as notes of white-fleshed stone fruits and orange blossoms. |
15 | Moschofilero | Peloponnese | Sparkling white dry | 2019 | 12.0 | Total acidity: 5.2 g/L pH: 3.4 | Aromas of citrus blossoms, honey, brioche and rose. |
16 | Athiri | Rodos | Sparkling white dry | 2019 | 13.0 | Total acidity: 5.8 g/L pH: 3.1 | Aromas of apricot, quince and freshly baked brioche. |
17 | Vidiano 100% | Crete | Sparkling white dry | 2016 | 12.3 | Total acidity: 7.2 g/L pH: 3.2 | Aromas of apple, pear, sourdough from the “yeast” of fermentation, on a background of honey, wax and apricot. |
18 | Assyrtiko | Santorini | Sparkling white dry | 2015 | 11.3 | Total acidity: 7.6 g/L pH: 2.8 | Citrus fruit, herbs, mineral, toasted. |
19 | Xinomavro | Florina | Sparkling white dry | 2019 | 12.0 | Total acidity: 5.2 g/L pH: 3.4 | Aromas of red berries and citrus, as well as notes of white-fleshed stone fruits and orange blossoms. |
20 | Moschofilero | Peloponnese | Sparkling white dry | 2019 | 12.5 | Total acidity: 7.8 g/L pH: 3.1 | Fresh and juicy with the classic notes of red cherry, mint and licorice. |
1 | Agiorgitiko | Attica | Rose dry | 2019 | 12.0 | Aromas of summer fruits with intense strawberry tones. | |
2 | Kotsifali (60%) and syrah (40%) | Crete | Rose dry | 2019 | 13.3 | Total acidity: 5.6 g/L pH: 3.5 | Aroma of strawberry and cherry. |
3 | Syrah | Attica | Rose dry | 2019 | 12.5 | Aromas of strawberry, cherry, apple and orange flowers. | |
4 | Xinomavro | Thessaloniki | Rose dry | 2019 | 13.0 | Total acidity: 6.8 g/L pH: 3.8 | Aroma of red fruits (strawberry and cherry). |
5 | Agiorgitiko | Peloponnese | Rose dry | 2019 | 12.0 | Red fruit aromas. | |
6 | Xinomavro 100% | Florina | Rose dry | 2019 | 13.0 | Total acidity: 6.6 g/L pH: 3.2 | Aromas of ripe strawberry, red forest fruits, tomato, and subtle botanical notes in the background. |
7 | Syrah | Peloponnese | Rose dry | 2019 | 13.5 | Delicate aromas of pink grapefruit, strawberry but also notes of cotton candy, white rose, and white pepper. | |
8 | Agiorgitiko | Peloponnese | Rose Semidry | 2019 | 12.0 | Medium acidity, pH: 3.51 | Aromas of nutmeg and cinnamon. |
9 | Xinomavro 100% | Florina | Sparkling rose dry | 2018 | 12.0 | Total acidity: 6.9 g/L pH: 3.0 | Aromas of wild strawberry, white-fleshed cherry, and tomato. |
10 | Agiorgitiko | Peloponnese | Sparkling rose dry | 2018 | 12.0 | - | Aromas of cherry and black fruits. |
White (n = 12), Triplicates | Sparkling White (n = 8), Triplicates | |||||||
---|---|---|---|---|---|---|---|---|
Free Fatty Acid | Minimum Value (μg/mL) | Maximum Value (μg/mL) | Mean Value ± SD (μg/mL) | α | Minimum Value (μg/mL) | Maximum Value (μg/mL) | Mean Value ± SD (μg/mL) | α |
C6:0 | 0.55 | 1.48 | 0.97 ± 0.20 | *** | 0.58 | 4.01 | 1.29 ± 0.62 | *** |
C8:0 | 0.40 | 1.09 | 0.73 ± 0.20 | *** | 0.34 | 1.68 | 0.72 ± 0.20 | *** |
C9:0 | 0.14 | 0.37 | 0.25 ± 0.06 | *** | - | 0.40 | 0.16 ± 0.09 | *** |
C10:0 | 0.09 | 0.24 | 0.15 ± 0.05 | *** | - | 0.14 | 0.08 ± 0.02 | *** |
C12:0 | 0.07 | 0.41 | 0.30 ± 0.09 | ** | 0.15 | 2.94 | 0.54 ± 0.64 | ** |
C14:0 | 0.73 | 3.35 | 2.37 ± 0.90 | *** | 0.65 | 12.17 | 2.75 ± 1.1 | *** |
C14:1 | - | - | - | - | - | - | ||
C15:0 | 0.41 | 2.26 | 1.53 ± 0.10 | *** | 0.54 | 5.80 | 1.62 ± 0.71 | *** |
C16:0 | 5.54 | 25.22 | 17.64 ± 2.1 | *** | 7.04 | 27.07 | 16.92 ± 2.7 | *** |
C16:1 | <LOQ a | 0.05 | 0.03 ± 0.01 b | ** | 0.02 | 0.33 | 0.08 ± 0.03 | ** |
C17:0 | 0.23 | 0.75 | 0.51 ± 0.09 | *** | 0.13 | 1.46 | 0.51 ± 0.21 | *** |
C17:1 | - | - | - | - | - | - | ||
C18:0 | 2.00 | 15.76 | 11.98 ± 2.6 | *** | 5.01 | 19.55 | 10.83 ± 2.5 | *** |
C18:1 Oleic acid | 0.15 | 2.34 | 0.90 ± 0.30 | *** | 0.29 | 9.27 | 1.52 ± 0.41 | *** |
C18:1 Petroselinic acid | - | - | - | - | - | - | ||
C18:2 | 0.03 | 0.12 | 0.08 ± 0.02 | ** | 0.10 | 0.92 | 0.20 ± 0.09 | ** |
C18:3 | - | - | - | - | - | - | ||
C20:0 | <LOQ c | 0.24 | 0.13 ± 0.04 b | ** | <LOQ d | 0.52 | 0.08 ± 0.06 b | ** |
C20:3 Bishomo-γ-linolenic | - | - | - | - | - | - | ||
C20:3 5,8,11-eicosatrienoic | - | - | - | - | - | - | ||
C20:4 | - | - | - | - | - | - | ||
C20:5 | - | - | - | - | - | - | ||
C22:0 | 0.06 | 0.27 | 0.14 ± 0.05 | *** | 0.06 | 0.58 | 0.17 ± 0.09 | *** |
C22:4 | - | - | - | - | - | - | ||
C22:5 | - | - | - | - | - | - | ||
C22:6 | - | - | - | - | - | - | ||
C24:0 | 0.42 | 1.29 | 0.79 ± 0.26 | *** | <LOQ d | 1.41 | 0.60 ± 0.31 b | *** |
Rose (n = 8), Triplicates | Sparkling Rose (n = 2), Triplicates | |||||||
---|---|---|---|---|---|---|---|---|
Free Fatty Acid | Minimum Value (μg/mL) | Maximum Value (μg/mL) | Mean Value ± SD (μg/mL) | α | Minimum Value (μg/mL) | Maximum Value (μg/mL) | Mean Value ± SD (μg/mL) | α |
C6:0 | 1.00 | 1.61 | 1.32 ± 0.20 | *** | 0.90 | 1.00 | 0.95 ± 0.07 | *** |
C8:0 | 0.62 | 1.21 | 0.89 ± 0.20 | *** | 0.59 | 0.60 | 0.60 ± 0.01 | *** |
C9:0 | 0.18 | 0.24 | 0.21 ± 0.02 | *** | 0.11 | 0.14 | 0.13 ± 0.02 | *** |
C10:0 | 0.15 | 0.26 | 0.19 ± 0.04 | *** | 0.08 | 0.10 | 0.09 ± 0.01 | *** |
C12:0 | 0.28 | 0.35 | 0.32 ± 0.02 | *** | 0.17 | 0.19 | 0.18 ± 0.01 | *** |
C14:0 | 1.65 | 2.38 | 1.93 ± 0.09 | *** | 1.07 | 1.12 | 1.10 ± 0.04 | *** |
C14:1 | - | - | - | - | - | - | ||
C15:0 | 1.26 | 1.55 | 1.42 ± 0.11 | *** | 0.81 | 0.85 | 0.83 ± 0.03 | *** |
C16:0 | 16.74 | 29.32 | 20.75 ± 2.21 | *** | 15.16 | 17.38 | 16.27 ± 1.57 | *** |
C16:1 | 0.05 | 0.06 | 0.06 ± 0.01 | *** | 0.04 | 0.05 | 0.05 ± 0.01 | *** |
C17:0 | 0.39 | 0.60 | 0.46 ± 0.06 | *** | 0.17 | 0.21 | 0.19 ± 0.03 | *** |
C17:1 | - | - | - | - | - | - | ||
C18:0 | 9.13 | 24.39 | 15.39 ± 1.9 | *** | 10.66 | 12.43 | 11.55 ± 1.25 | *** |
C18:1 Oleic acid | 0.49 | 7.64 | 1.61 ± 1.5 | ** | 0.34 | 0.47 | 0.41 ± 0.09 | ** |
C18:1 Petroselinic acid | - | - | - | - | - | - | ||
C18:2 | 0.07 | 0.14 | 0.11 ± 0.03 | *** | 0.15 | 0.18 | 0.17 ± 0.02 | *** |
C18:3 | - | - | - | |||||
C20:0 | - | - | - | - | - | - | ||
C20:3 Bishomo-γ-linolenic | - | - | - | - | - | - | ||
C20:3 5,8,11-eicosatrienoic | - | - | - | - | - | - | ||
C20:4 | - | - | - | - | - | - | ||
C20:5 | - | - | - | - | - | - | ||
C22:0 | 0.11 | 0.17 | 0.14 ± 0.02 | *** | 0.05 | 0.08 | 0.07 ± 0.02 | *** |
C22:4 | - | - | - | - | - | - | ||
C22:5 | - | - | - | - | - | - | ||
C22:6 | - | - | - | - | - | - | ||
C24:0 | 0.58 | 0.86 | 0.70 ± 0.07 | *** | 0.40 | 0.66 | 0.53 ± 0.18 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokotou, M.G. Fatty Acid Profiling in Greek Wines by Liquid Chromatography–High-Resolution Mass Spectrometry (LC-HRMS). Separations 2024, 11, 321. https://doi.org/10.3390/separations11110321
Kokotou MG. Fatty Acid Profiling in Greek Wines by Liquid Chromatography–High-Resolution Mass Spectrometry (LC-HRMS). Separations. 2024; 11(11):321. https://doi.org/10.3390/separations11110321
Chicago/Turabian StyleKokotou, Maroula G. 2024. "Fatty Acid Profiling in Greek Wines by Liquid Chromatography–High-Resolution Mass Spectrometry (LC-HRMS)" Separations 11, no. 11: 321. https://doi.org/10.3390/separations11110321
APA StyleKokotou, M. G. (2024). Fatty Acid Profiling in Greek Wines by Liquid Chromatography–High-Resolution Mass Spectrometry (LC-HRMS). Separations, 11(11), 321. https://doi.org/10.3390/separations11110321