Diagnostic Strategies for Brain Doping in an Animal Model via Quantitative Analysis of Neurochemicals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animals
2.3. Animal Model Study
2.3.1. Experimental Design
2.3.2. tDCS Application
2.3.3. Behavior Test
2.3.4. Urine Sample Collection
2.4. Analytical Method Development
2.4.1. Target Substances and Standard Solutions
2.4.2. Sample Preparation
2.4.3. LC–MS/MS Analysis
2.4.4. Method Validation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Behavior Test
3.2. Sample Preparation
3.3. LC–MS/MS Analysis
3.4. Method Validation
3.5. Analysis of Neurochemicals
3.5.1. Neurochemicals
3.5.2. Substance-to-Substance Ratios
3.5.3. Application to PCA
3.5.4. Correlation between Sports Performance and Neurochemicals
4. Conclusions
5. Patents
- Simultaneous analysis method of neurotransmitters and metabolites from the same using derivatization, Korea, 10-2340107 (December 2021).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Anti-Doping Agency. World Anti-Doping Code; World Anti-Doping Agency: Montreal, QC, Canada, 2021. [Google Scholar]
- Krug, O.; Thomas, A.; Walpurgis, K.; Piper, T.; Sigmund, G.; Schänzer, W.; Laussmann, T.; Thevis, M. Identification of black market products and potential doping agents in Germany 2010–2013. Eur. J. Clin. Pharmacol. 2014, 70, 1303–1311. [Google Scholar] [CrossRef]
- Davis, N.J. Neurodoping: Brain stimulation as a performance-enhancing measure. Sports Med. 2013, 43, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Pugh, J.; Pugh, C. Neurostimulation, doping, and the spirit of sport. Neuroethics 2021, 14 (Suppl. S2), 141–158. [Google Scholar] [CrossRef] [PubMed]
- Reardon, S. “Brain doping” may improve athletes’ performance. Nature 2016, 531, 283–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noakes, T.D. Time to move beyond a brainless exercise physiology: The evidence for complex regulation of human exercise performance. Appl. Physiol. Nutr. Metab. 2011, 36, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Noakes, T.D. Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure the protection of whole body homeostasis. Front. Physiol. 2012, 3, 82. [Google Scholar] [CrossRef] [Green Version]
- Goodall, S.; Howatson, G.; Romer, L.; Ross, E. Transcranial magnetic stimulation in sport science: A commentary. Eur. J. Sport. Sci. 2014, 14 (Suppl. S1), S332–S340. [Google Scholar] [CrossRef] [Green Version]
- Angius, L.; Hopker, J.; Mauger, A.R. The ergogenic effects of transcranial direct current stimulation on exercise performance. Front. Physiol. 2017, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Liebetanz, D.; Nitsche, M.A.; Tergau, F.; Paulus, W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 2002, 125, 2238–2247. [Google Scholar] [CrossRef] [Green Version]
- Flöel, A. tDCS-enhanced motor and cognitive function in neurological diseases. Neuroimage 2014, 85, 934–947. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Cohen, L.G.; Wassermann, E.M.; Priori, A.; Lang, N.; Antal, A.; Paulus, W.; Hummel, F.; Boggio, P.S.; Fregni, F.; et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008, 1, 206–223. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Ku, J.; Kim, H.J.; Im, D.J.; Lee, H.S.; Han, K.A.; Kang, Y.J. Randomized, sham controlled trial of transcranial direct current stimulation for painful diabetic polyneuropathy. Ann. Rehabil. Med. 2013, 37, 766–776. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Kim, D.Y.; Park, D.H. Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain Stimul. 2015, 8, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, E.; Liouta, E.; Andreadis, N.; Korfias, S.; Ktonas, P.; Stranjalis, G.; Sakas, D.E. Transcranial direct current stimulation effects in disorders of consciousness. Arch. Phys. Med. Rehabil. 2014, 95, 283–289. [Google Scholar] [CrossRef]
- Floel, A.; Cohen, L.G. Recovery of function in humans: Cortical stimulation and pharmacological treatments after stroke. Neurobiol. Dis. 2010, 37, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Benninger, D.H.; Hallett, M. Non-invasive brain stimulation for Parkinson’s disease: Current concepts and outlook 2015. NeuroRehabilitation 2015, 37, 11–24. [Google Scholar] [CrossRef]
- Costa-Ribeiro, A.; Maux, A.; Bosford, T.; Aoki, Y.; Castro, R.; Baltar, A.; Shirahige, L.; Moura Filho, A.; Nitsche, M.A.; Monte-Silva, K. Transcranial direct current stimulation associated with gait training in Parkinson’s disease: A pilot randomized clinical trial. Dev. Neurorehabil. 2017, 20, 121–128. [Google Scholar] [CrossRef]
- Okano, A.H.; Fontes, E.B.; Montenegro, R.A.; Farinatti, T.; Cyrino, E.S.; Li, L.M.; Bikson, M.; Noakes, T.D. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br. J. Sports Med. 2015, 49, 1213–1218. [Google Scholar] [CrossRef] [Green Version]
- Vitor-Costa, M.; Okuno, N.M.; Bortolotti, H.; Bertollo, M.; Boggio, P.S.; Fregni, F.; Altimari, L.R. Improving cycling performance: Transcranial direct current stimulation increases time to exhaustion in cycling. PLoS ONE 2015, 10, e0144916. [Google Scholar] [CrossRef]
- Park, S.B.; Sung, D.J.; Kim, B.; Kim, S.; Han, J.K. Transcranial direct current stimulation of motor cortex enhances running performance. PLoS ONE 2019, 14, e0211902. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.-J.; Uhm, Y.H. The Effects of Transcranial Direct Current Stimulation Combined High Intensity Interval Training on Aerobic Exercise Capacity of the Soccer Player. J. Korean Soc. Integr. Med. 2021, 9, 105–117. [Google Scholar]
- Priori, A.; Berardelli, A.; Rona, S.; Accornero, N.; Manfredi, M. Polarization of the human motor cortex through the scalp. NeuroReport 1998, 9, 2257–2260. [Google Scholar] [CrossRef] [PubMed]
- Stagg, C.J.; Jayaram, G.; Pastor, D.; Kincses, Z.T.; Matthews, P.M.; Johansen-Berg, H. Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia 2011, 49, 800–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stagg, C.J.; Best, J.G.; Stephenson, M.C.; O’Shea, J.; Wylezinska, M.; Kincses, Z.T.; Morris, P.G.; Matthews, P.M.; Johansen-Berg, H. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J. Neurosci. 2009, 29, 5202–5206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heimrath, K.; Brechmann, A.; Blobel-Lüer, R.; Stadler, J.; Budinger, E.; Zaehle, T. Transcranial direct current stimulation (tDCS) over the auditory cortex modulates GABA and glutamate: A 7 T MR-spectroscopy study. Sci. Rep. 2020, 10, 20111. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Alvarado, S.; Boutzoukas, E.M.; Kraft, J.N.; O’Shea, A.; Indahlastari, A.; Albizu, A.; Nissim, N.R.; Evangelista, N.D.; Cohen, R.; Porges, E.C.; et al. Impact of transcranial direct current stimulation and cognitive training on frontal lobe neurotransmitter concentrations. Front. Aging Neurosci. 2021, 13, 761348. [Google Scholar] [CrossRef]
- Yamada, Y.; Sumiyoshi, T. Neurobiological mechanisms of transcranial direct current stimulation for psychiatric disorders; neurophysiological, chemical, and anatomical considerations. Front. Hum. Neurosci. 2021, 15, 631838. [Google Scholar] [CrossRef]
- Peaston, R.T.; Weinkove, C. Measurement of catecholamines and their metabolites. Ann. Clin. Biochem. 2004, 41, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Dumas, M.E.; Davidovic, L. Metabolic profiling and phenotyping of central nervous system diseases: Metabolites bring insights into brain dysfunctions. J. Neuroimmune Pharmacol. 2015, 10, 402–424. [Google Scholar] [CrossRef] [Green Version]
- Bicker, J.; Fortuna, A.; Alves, G.; Falcão, A. Liquid chromatographic methods for the quantification of catecholamines and their metabolites in several biological samples—A review. Anal. Chim. Acta 2013, 768, 12–34. [Google Scholar] [CrossRef]
- Khamis, M.M.; Adamko, D.J.; El-Aneed, A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass. Spectrom. Rev. 2017, 36, 115–134. [Google Scholar] [CrossRef] [PubMed]
- Gray, N.; Zia, R.; King, A.; Patel, V.C.; Wendon, J.; McPhail, M.J.; Coen, M.; Plumb, R.S.; Wilson, I.D.; Nicholson, J.K. High-speed quantitative UPLC-MS analysis of multiple amines in human plasma and serum via precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate: Application to acetaminophen-induced liver failure. Anal. Chem. 2017, 89, 2478–2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tufi, S.; Lamoree, M.; de Boer, J.; Leonards, P. Simultaneous analysis of multiple neurotransmitters by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2015, 1395, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Konieczna, L.; Roszkowska, A.; Niedźwiecki, M.; Bączek, T. Hydrophilic interaction chromatography combined with dispersive liquid-liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples. J. Chromatogr. A 2016, 1431, 111–121. [Google Scholar] [CrossRef]
- Nirogi, R.; Komarneni, P.; Kandikere, V.; Boggavarapu, R.; Bhyrapuneni, G.; Benade, V.; Gorentla, S. A sensitive and selective quantification of catecholamine neurotransmitters in rat microdialysates by pre-column dansyl chloride derivatization using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 913–914, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, K.J.; Gangl, E.; Sarkar, U.; Pop-Damkov, P.; Jones, N.; Borodovsky, A.; Woessner, R.; Fretland, A.J. Development of a quantification method for adenosine in tumors by LC-MS/MS with dansyl chloride derivatization. Anal. Biochem. 2019, 568, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, S.; Tano, Y.; Yamakata, Y.; Higashi, T.; Min, J.Z.; Toyo’oka, T. Highly sensitive and positively charged precolumn derivatization reagent for amines and amino acids in liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2010, 24, 1358–1364. [Google Scholar] [CrossRef]
- Greco, S.; Danysz, W.; Zivkovic, A.; Gross, R.; Stark, H. Microdialysate analysis of monoamine neurotransmitters—A versatile and sensitive LC-MS/MS method. Anal. Chim. Acta 2013, 771, 65–72. [Google Scholar] [CrossRef]
- Park, J.Y.; Myung, S.W.; Kim, I.S.; Choi, D.K.; Kwon, S.J.; Yoon, S.H. Simultaneous measurement of serotonin, dopamine and their metabolites in mouse brain extracts by high-performance liquid chromatography with mass spectrometry following derivatization with ethyl chloroformate. Biol. Pharm. Bull. 2013, 36, 252–258. [Google Scholar] [CrossRef] [Green Version]
- van de Merbel, N.C.; Hendriks, G.; Imbos, R.; Tuunainen, J.; Rouru, J.; Nikkanen, H. Quantitative determination of free and total dopamine in human plasma by LC-MS/MS: The importance of sample preparation. Bioanalysis 2011, 3, 1949–1961. [Google Scholar] [CrossRef]
- Rose, A.R.; Joshi, M.; Staretz, M.E.; Wood, M.; Brettell, T.A. GC-MS analysis of eight aminoindanes using three derivatization reagents. J. Forensic Sci. 2023, 68, 1148–1161. [Google Scholar] [CrossRef] [PubMed]
- Machado, D.G.D.S.; Unal, G.; Andrade, S.M.; Moreira, A.; Altimari, L.R.; Brunoni, A.R.; Perrey, S.; Mauger, A.R.; Bikson, M.; Okano, A.H. Effect of transcranial direct current stimulation on exercise performance: A systematic review and meta-analysis. Brain Stimul. 2019, 12, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Loland, S.; McNamee, M.J. The ‘spirit of sport’, WADAs code review, and the search for an overlapping consensus. Int. J. Sport. Policy Pol. 2019, 11, 325–339. [Google Scholar] [CrossRef]
- Parma, J.O.; Profeta, V.L.D.S.; Andrade, A.G.P.; Lage, G.M.; Apolinário-Souza, T. TDCS of the primary motor cortex: Learning the absolute dimension of a complex motor task. J. Mot. Behav. 2021, 53, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Park, G.; Suh, J.H.; Han, S.J. Transcranial direct current stimulation for balance and gait in repetitive mild traumatic brain injury in rats. BMC Neurosci. 2021, 22, 26. [Google Scholar] [CrossRef]
- Marc, D.T.; Ailts, J.W.; Campeau, D.C.A.; Bull, M.J.; Olson, K.L. Neurotransmitters excreted in the urine as biomarkers of nervous system activity: Validity and clinical applicability. Neurosci. Biobehav. Rev. 2011, 35, 635–644. [Google Scholar] [CrossRef]
- Liebetanz, D.; Koch, R.; Mayenfels, S.; König, F.; Paulus, W.; Nitsche, M.A. Safety limits of cathodal transcranial direct current stimulation in rats. Clin. Neurophysiol. 2009, 120, 1161–1167. [Google Scholar] [CrossRef]
- Lynn-Bullock, C.P.; Welshhans, K.; Pallas, S.L.; Katz, P.S. The effect of oral 5-HTP administration on 5-HTP and 5-HT immunoreactivity in monoaminergic brain regions of rats. J. Chem. Neuroanat. 2004, 27, 129–138. [Google Scholar] [CrossRef]
- Shen, Y.; Lu, J.; Tang, Q.; Guan, Q.; Sun, Z.; Li, H.; Cheng, L. Rapid, easy analysis of urinary vanillylmandelic acid for diagnostic testing of pheochromocytoma by liquid chromatography tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 1002, 92–97. [Google Scholar] [CrossRef]
- Veselova, I.A.; Sergeeva, E.A.; Makedonskaya, M.I.; Eremina, O.E.; Kalmykov, S.N.; Shekhovtsova, T.N. Methods for determining neurotransmitter metabolism markers for clinical diagnostics. J. Anal. Chem. 2016, 71, 1155–1168. [Google Scholar] [CrossRef]
- Kondziella, D. The top 5 neurotransmitters from a clinical neurologist’s perspective. Neurochem. Res. 2017, 42, 1767–1771. [Google Scholar] [CrossRef] [PubMed]
- Kassahun, W.T. Update on the optimal management of patients with vascular extension of pheochromocytoma. Vascular 2015, 23, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.J.; Lee, Y.T.; Chae, S.W.; Park, C.R.; Kim, D.Y. Effects of anodal transcranial direct current stimulation (tDCS) on behavioral and spatial memory during the early stage of traumatic brain injury in the rats. J. Neurol. Sci. 2016, 362, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Lopes, B.C.; Medeiros, L.F.; Stein, D.J.; Cioato, S.G.; de Souza, V.S.; Medeiros, H.R.; Sanches, P.R.S.; Fregni, F.; Caumo, W.; Torres, I.L.S. tDCS and exercise improve anxiety-like behavior and locomotion in chronic pain rats via modulation of neurotrophins and inflammatory mediators. Behav. Brain Res. 2021, 404, 113173. [Google Scholar] [CrossRef] [PubMed]
- Meeusen, R.; Smolders, I.; Sarre, S.; de Meirleir, K.; Keizer, H.; Serneels, M.; Ebinger, G.; Michotte, Y. Endurance training effects on neurotransmitter release in rat striatum: An in vivo microdialysis study. Acta Physiol. Scand. 1997, 159, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, H.; Takatsu, S.; Ishiwata, T.; Tanaka, H.; Sarre, S.; Meeusen, R. Continuous monitoring of hypothalamic neurotransmitters and thermoregulatory responses in exercising rats. J. Neurosci. Methods 2011, 202, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Takano, Y.; Tanaka, S.; Hironaka, N.; Kobayashi, K.; Hanakawa, T.; Watanabe, K.; Honda, M. Transcranial direct-current stimulation increases extracellular dopamine levels in the rat striatum. Front. Syst. Neurosci. 2013, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Monai, H.; Ohkura, M.; Tanaka, M.; Oe, Y.; Konno, A.; Hirai, H.; Mikoshiba, K.; Itohara, S.; Nakai, J.; Iwai, Y.; et al. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat. Commun. 2016, 7, 11100. [Google Scholar] [CrossRef] [Green Version]
- van Boekholdt, L.; Kerstens, S.; Khatoun, A.; Asamoah, B.; Mc Laughlin, M. tDCS peripheral nerve stimulation: A neglected mode of action? Mol. Psychiatry 2021, 26, 456–461. [Google Scholar] [CrossRef]
- Barco, S.; Gennai, I.; Reggiardo, G.; Galleni, B.; Barbagallo, L.; Maffia, A.; Viscardi, E.; De Leonardis, F.; Cecinati, V.; Sorrentino, S.; et al. Urinary homovanillic and vanillylmandelic acid in the diagnosis of neuroblastoma: Report from the Italian Cooperative Group for Neuroblastoma. Clin. Biochem. 2014, 47, 848–852. [Google Scholar] [CrossRef]
- Lee, T.; Yagi, M.; Kusunoki, N.; Nagasaka, M.; Koda, T.; Matsuo, K.; Yokota, T.; Miwa, A.; Shibata, A.; Morioka, I.; et al. Standard values for the urine HVA/VMA ratio in neonates as a screen for Menkes disease. Brain Dev. 2015, 37, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Bastani, A.; Jaberzadeh, S. Within-session repeated a-tDCS: The effects of repetition rate and inter-stimulus interval on corticospinal excitability and motor performance. Clin. Neurophysiol. 2014, 125, 1809–1818. [Google Scholar] [CrossRef] [PubMed]
- Clancy, J.A.; Johnson, R.; Raw, R.; Deuchars, S.A.; Deuchars, J. Anodal transcranial direct current stimulation (tDCS) over the motor cortex increases sympathetic nerve activity. Brain Stimul. 2014, 7, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, R.A.; Farinatti, T.; Fontes, E.B.; Soares, P.P.; Cunha, F.A.; Gurgel, J.L.; Porto, F.; Cyrino, E.S.; Okano, A.H. Transcranial direct current stimulation influences the cardiac autonomic nervous control. Neurosci. Lett. 2011, 497, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Tavares, R.F.; Antunes-Rodrigues, J.; de Aguiar Corrêa, F.M. Pressor effects of electrical stimulation of medial prefrontal cortex in unanesthetized rats. J. Neurosci. Res. 2004, 77, 613–620. [Google Scholar] [CrossRef]
- Zouhal, H.; Jacob, C.; Delamarche, P.; Gratas-Delamarche, A. Catecholamines and the effects of exercise, training and gender. Sports Med. 2008, 38, 401–423. [Google Scholar] [CrossRef]
- Trudeau, F.; Brisson, G.R.; Péronnet, F. PNMT inhibition decreases exercise performance in the rat. Physiol. Behav. 1992, 52, 389–392. [Google Scholar] [CrossRef]
Compound | LOD * (ng/mL) | LOQ ** (ng/mL) | Intraday (n = 5) | Interday (n = 3) | Matrix *** Effect (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy (%) | Precision (%RSD) | Accuracy (%) | Precision (%RSD) | ||||||||||||
Low | Mid | High | Low | Mid | High | Low | Mid | High | Low | Mid | High | ||||
3-MT | 0.002 | 0.01 | 104.7 | 100.5 | 98.3 | 2.79 | 0.84 | 2.12 | 109.9 | 99.2 | 99.0 | 4.82 | 2.95 | 1.98 | 88.3 |
5-HIAA | 0.005 | 0.01 | 99.8 | 98.4 | 99.5 | 1.57 | 3.55 | 3.50 | 92.9 | 91.6 | 89.6 | 13.27 | 9.38 | 11.66 | 94.2 |
5-HT | 0.02 | 0.1 | 100.0 | 102.9 | 98.1 | 3.96 | 1.04 | 2.19 | 102.1 | 97.8 | 98.1 | 8.32 | 7.05 | 4.22 | 100.8 |
5-HTP | 0.005 | 0.01 | 102.0 | 99.8 | 98.7 | 3.37 | 3.19 | 3.80 | 100.6 | 92.7 | 94.2 | 3.99 | 6.78 | 5.12 | 98.8 |
DA | 0.02 | 0.05 | 92.5 | 104.1 | 101.7 | 8.93 | 5.43 | 1.20 | 104.5 | 100.3 | 104.0 | 12.22 | 5.08 | 2.67 | 86.2 |
DHPG | 0.01 | 0.05 | 101.4 | 101.3 | 103.0 | 4.22 | 4.62 | 3.04 | 108.6 | 108.2 | 106.9 | 8.78 | 8.35 | 6.91 | 113.3 |
DOPAC | 0.01 | 0.1 | 96.5 | 101.9 | 100.6 | 1.86 | 1.32 | 2.62 | 98.5 | 94.8 | 97.5 | 3.97 | 5.73 | 3.51 | 103.4 |
EP | 0.05 | 0.5 | 94.2 | 101.8 | 99.3 | 2.69 | 2.58 | 1.75 | 106.2 | 98.7 | 102.0 | 9.99 | 3.00 | 3.35 | 80.0 |
GABA | 0.5 | 5 | 106.7 | 102.2 | 100.0 | 11.79 | 8.92 | 13.66 | 105.4 | 93.7 | 102.0 | 9.69 | 11.30 | 14.30 | 109.2 |
Glu | 2 | 10 | 95.3 | 103.6 | 96.0 | 1.91 | 5.29 | 4.00 | 95.5 | 101.4 | 100.1 | 7.15 | 7.12 | 6.23 | 102.6 |
HVA | 0.01 | 0.5 | 97.2 | 101.0 | 98.9 | 7.11 | 2.96 | 2.46 | 96.7 | 95.6 | 97.6 | 13.08 | 4.68 | 2.55 | 110.6 |
Kyn | 0.05 | 0.2 | 104.1 | 99.0 | 98.8 | 3.20 | 1.78 | 1.23 | 107.1 | 94.2 | 94.1 | 6.21 | 4.61 | 4.44 | 99.5 |
L-DOPA | 0.02 | 0.05 | 102.7 | 100.5 | 98.2 | 6.22 | 3.21 | 1.58 | 99.0 | 93.6 | 96.2 | 8.77 | 6.45 | 4.22 | 97.1 |
MHPG | 1 | 10 | 106.9 | 104.7 | 101.6 | 13.71 | 1.83 | 5.88 | 98.5 | 106.3 | 106.3 | 12.66 | 4.47 | 5.00 | 101.1 |
MN | 0.05 | 0.2 | 101.7 | 101.1 | 98.8 | 6.63 | 3.08 | 1.86 | 106.2 | 98.8 | 98.4 | 7.58 | 3.03 | 3.29 | 62.7 |
NE | 0.2 | 1 | 104.2 | 98.4 | 99.2 | 5.03 | 5.05 | 5.32 | 105.5 | 96.6 | 98.0 | 5.63 | 4.16 | 5.01 | 112.7 |
NMN | 0.2 | 2 | 99.3 | 101.4 | 97.7 | 3.55 | 2.80 | 3.38 | 103.2 | 100.4 | 98.4 | 4.26 | 2.12 | 3.85 | 100.1 |
OA | 0.5 | 2 | 105.5 | 99.9 | 97.8 | 4.72 | 4.80 | 3.28 | 111.1 | 101.4 | 99.3 | 5.71 | 4.17 | 4.16 | 100.4 |
TA | 0.002 | 0.01 | 103.1 | 102.1 | 99.1 | 1.37 | 2.70 | 1.36 | 106.3 | 101.0 | 94.9 | 3.28 | 1.87 | 3.65 | 65.4 |
Trp | 0.1 | 1 | 105.9 | 102.4 | 98.7 | 1.05 | 2.61 | 1.64 | 107.4 | 97.6 | 90.4 | 3.28 | 5.09 | 6.98 | 99.7 |
Tyr | 0.05 | 0.2 | 95.8 | 101.6 | 98.2 | 2.96 | 3.49 | 0.93 | 99.4 | 96.5 | 96.2 | 5.02 | 5.19 | 2.36 | 111.9 |
VMA | 0.1 | 0.2 | 100.6 | 100.7 | 99.7 | 3.54 | 1.82 | 3.31 | 103.1 | 92.1 | 95.8 | 7.61 | 7.43 | 6.91 | 97.4 |
ACh | 1 | 5 | 94.1 | 101.0 | 102.3 | 2.23 | 1.22 | 2.18 | 100.8 | 102.1 | 107.8 | 9.90 | 2.34 | 5.25 | 107.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.; Jeon, S.; Lee, Y.; Park, H.; Xu, Y.; Jeon, M.; Jung, S.; Kim, M.; Chin, A.; Yoon, S.S.; et al. Diagnostic Strategies for Brain Doping in an Animal Model via Quantitative Analysis of Neurochemicals. Separations 2023, 10, 413. https://doi.org/10.3390/separations10070413
Cho Y, Jeon S, Lee Y, Park H, Xu Y, Jeon M, Jung S, Kim M, Chin A, Yoon SS, et al. Diagnostic Strategies for Brain Doping in an Animal Model via Quantitative Analysis of Neurochemicals. Separations. 2023; 10(7):413. https://doi.org/10.3390/separations10070413
Chicago/Turabian StyleCho, Yoeseph, Seongeun Jeon, Yejin Lee, Hana Park, Yinglan Xu, Mijin Jeon, Sunmi Jung, Minyoung Kim, Ahlim Chin, Sang Sun Yoon, and et al. 2023. "Diagnostic Strategies for Brain Doping in an Animal Model via Quantitative Analysis of Neurochemicals" Separations 10, no. 7: 413. https://doi.org/10.3390/separations10070413
APA StyleCho, Y., Jeon, S., Lee, Y., Park, H., Xu, Y., Jeon, M., Jung, S., Kim, M., Chin, A., Yoon, S. S., & Son, J. (2023). Diagnostic Strategies for Brain Doping in an Animal Model via Quantitative Analysis of Neurochemicals. Separations, 10(7), 413. https://doi.org/10.3390/separations10070413