Triplet-Excited Dissolved Organic Matter Efficiently Promoted Atmospheric Sulfate Production: Kinetics and Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Environmental Sample Collection and Extraction
2.3. Photochemical Experiments
2.4. Analytic Methods
2.5. Kinetic Analysis
3. Results and Discussion
3.1. Transformation Kinetics of S(IV) with Triplet Photosensitizers
3.2. Roles of Reactive Intermediates in Sulfate Production by Photosensitizers
3.3. Atmospheric Co-Existing Ions Influence Sulfate Photosensitization
3.4. Sulfate Formation Promoted by DOM under Irradiation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirkby, J.; Duplissy, J.; Sengupta, K.; Frege, C.; Gordon, H.; Williamson, C.; Heinritzi, M.; Simon, M.; Yan, C.; Almeida, J.; et al. Ion-induced nucleation of pure biogenic particles. Nature 2016, 533, 521. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Hu, M.; Zamora, M.-L.; Peng, J.-F.; Shang, D.-J.; Zheng, J.; Du, Z.-F.; Wu, Z.; Shao, M.; Zeng, L.-M.; et al. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378. [Google Scholar] [CrossRef]
- Kerminen, V.; Wexler, A.-S. Post-fog nucleation of H2SO4-H2O particles in smog. Atmos. Environ. 1994, 28, 2399–2406. [Google Scholar] [CrossRef]
- Galloway, J.-N. Acid deposition: Perspectives in time and space. Water Air Soil Poll. 1995, 85, 15–24. [Google Scholar] [CrossRef]
- Daniele, C.; Daniela, C.; Marianna, C.; Antonio, D. Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations. Sci. Total Environ. 2016, 560–561, 131–140. [Google Scholar]
- Liu, T.; Chan, A.-W.-H.; Abbatt, J.-P.-D. Multiphase oxidation of sulfur dioxide in aerosol particles: Implications for Sulfate Formation in Polluted Environments. Environ. Sci. Technol. 2021, 55, 4227–4242. [Google Scholar] [CrossRef]
- Kaur, R.; Anastasio, C. First measurements of organic triplet excited states in atmospheric waters. Environ. Sci. Technol. 2018, 52, 5218–5226. [Google Scholar] [CrossRef]
- Li, P.; Pang, H.; Wang, Y.; Deng, H.; Liu, J.; Loisel, G.; Jin, B.; Li, X.; Vione, D.; Gligorovski, S. Inorganic ions enhance the number of product compounds through heterogeneous processing of gaseous NO2 on an aqueous layer of acetosyringone. Environ. Sci. Technol. 2022, 56, 5398–5408. [Google Scholar] [CrossRef]
- Steinfeld, J.-I. Atmospheric chemistry and physics: From air pollution to climate change. Environ. Sci. Policy Sustain. Dev. 1998, 40, 26. [Google Scholar] [CrossRef]
- Li, G.-H.; Bei, N.-F.; Cao, J.-J.; Huang, R.-J.; Wu, J.-R.; Feng, T.; Wang, Y.-C.; Liu, S.-X.; Zhang, Q.; Tie, X.-X.; et al. A possible pathway for rapid growth of sulfate during haze days in China. Atmos. Chem. Phys. 2017, 17, 3301–3316. [Google Scholar] [CrossRef]
- Chen, Q.; Mu, Z.; Xu, L.; Wang, M.; Wang, J.; Shan, M.; Fan, X.; Song, J.; Wang, Y.; Lin, P.; et al. Triplet-state organic matter in atmospheric aerosols: Formation characteristics and potential effects on aerosol aging. Atmos. Environ. 2021, 252, 118343. [Google Scholar] [CrossRef]
- Smith, J.-D.; Sio, V.; Yu, L.; Zhang, Q.; Anastasio, C. Secondary organic aerosol production from aqueous reactions of atmospheric phenols with an organic triplet excited state. Environ. Sci. Technol. 2014, 48, 1049–1057. [Google Scholar] [CrossRef]
- Xue, J.; Yu, X.; Yuan, Z.-B.; Griffith, S.-M.; Lau, A.; Seinfeld, J.-H.; Yu, J.-Z. Efficient control of atmospheric sulfate production based on three formation regimes. Nat. Geosci. 2019, 12, 977. [Google Scholar] [CrossRef]
- Wang, J.-F.; Li, J.-Y.; Ye, J.-H.; Zhao, J.; Wu, Y.-Z.; Hu, J.-L.; Liu, D.-T.; Nie, D.-Y.; Shen, F.-Z.; Huang, X.-P.; et al. Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nat. Commun. 2020, 11, 2844. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, T.; Fang, X.; Deng, Y.; Cheng, H.; Bacha, A.; Nabi, I.; Zhang, L. Brown carbon: An underlying driving force for rapid atmospheric sulfate formation and haze event. Sci. Total Environ. 2020, 734, 139415. [Google Scholar] [CrossRef]
- Wang, X.; Gemayel, R.; Hayeck, N.; Perrier, S.; Charbonnel, N.; Xu, C.; Chen, H.; Zhu, C.; Zhang, L.; Wang, L.; et al. Atmospheric photosensitization: A new pathway for sulfate formation. Environ. Sci. Technol. 2020, 54, 3114–3120. [Google Scholar] [CrossRef]
- Wenk, J.; von Gunten, U.; Canonica, S. Effect of Dissolved Organic Matter on the Transformation of Contaminants Induced by Excited Triplet States and the Hydroxyl Radical. Environ. Sci. Technol. 2011, 45, 1334–1340. [Google Scholar] [CrossRef]
- Wang, J.-Q.; Chen, J.-W.; Qiao, X.-L.; Zhang, Y.-N.; Uddin, M.; Guo, Z.-Y. Disparate effects of DOM extracted from coastal seawaters and freshwaters on photodegradation of 2,4-Dihydroxybenzophenone. Water Res. 2019, 151, 280–287. [Google Scholar] [CrossRef]
- Kaur, R.; Hudson, B.-M.; Draper, J.; Tantillo, D.-J.; Anastasio, C. Aqueous reactions of organic triplet excited states with atmospheric alkenes. Atmos. Chem. Phys. 2019, 19, 5021–5032. [Google Scholar] [CrossRef]
- Smith, J.-D.; Kinney, H.; Anastasio, C. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol. Phys. Chem. Chem. Phys. 2015, 17, 10227–10237. [Google Scholar] [CrossRef]
- Vione, D.; Maurino, V.; Minero, C.; Pelizzetti, E.; Harrison, M.-A.-J.; Olariu, R.; Arsene, C. Photochemical reactions in the tropospheric aqueous phase and on particulate matter. Chem. Soc. Rev. 2006, 35, 441–453. [Google Scholar] [CrossRef]
- Li, Y.-J.; Liu, X.-L.; Zhang, B.-J.; Zhao, Q.; Ning, P.; Tian, S.-L. Aquatic photochemistry of sulfamethazine: Multivariate effects of main water constituents and mechanisms. Environ. Sci. Processes Impacts. 2018, 20, 513–522. [Google Scholar] [CrossRef]
- Tao, W.; Su, H.; Zheng, G.-J.; Wang, J.-D.; Wei, C.; Liu, L.-X.; Ma, N.; Li, M.; Zhang, Q.; Poschl, U.; et al. Aerosol pH and chemical regimes of sulfate formation in aerosol water during winter haze in the North China Plain. Atmos. Chem. Phys. 2020, 20, 11729–11746. [Google Scholar] [CrossRef]
- Hong, J.; Liu, J.; Wang, L.; Kong, S.-F.; Tong, C.; Qin, J.; Chen, L.; Sui, Y.; Li, B.-Q. Characterization of reactive photoinduced species in rainwater. Environ. Sci. Pollut. Res. 2018, 25, 36368–36380. [Google Scholar] [CrossRef]
- Grebel, J.-E.; Pignatello, J.-J.; Mitch, W.-A. Sorbic acid as a quantitative probe for the formation, scavenging and steady-state concentrations of the triplet-excited state of organic compounds. Water Res. 2011, 45, 6535–6544. [Google Scholar] [CrossRef]
- Parker, K.-M.; Mitch, W.-A. Halogen radicals contribute to photooxidation in coastal and estuarine waters. Proc. Natl. Acad. Sci. USA 2016, 113, 5868–5873. [Google Scholar] [CrossRef]
- Dou, Q.-W.; Duan, J.-Q.; Tang, X.-Y.; Yao, Q.-Z.; Su, R.-G. Indirect photodegradation of sulfachlorpyridazine in seawater. China Environ. Sci. 2023, 43, 190–196. (In Chinese) [Google Scholar]
- Zhang, D.-N.; Yan, S.-W.; Song, W.-H. Photochemically induced formation of reactive oxygen species (ROS) from effluent organic matter. Environ. Sci. Technol. 2014, 48, 12645–12653. [Google Scholar] [CrossRef]
- Camilo, R.-V.; Daniela, M.-L.; Mario, A.; Carla, T.-N.; Ricardo, S. Study of degradation of norfloxacin antibiotic and their intermediates by natural solar photolysis. Environ. Sci. Pollut. Res. 2023, 30, 41014–41027. [Google Scholar]
- Lelieveld, J.; Dentener, F.-J.; Peters, W.; Krol, M.-C. On the role of hydroxyl radicals in the self-cleansing capacity of the troposphere. Atmos. Chem. Phys. 2004, 4, 2337–2344. [Google Scholar] [CrossRef]
- Monks, P.-S. Gas-phase radical chemistry in the troposphere. Chem. Soc. Rev. 2005, 34, 376–395. [Google Scholar] [CrossRef]
- Stockwell, W.-R.; Calvert, J.-G. The mechanism of the HO-SO2 reaction. Atmos. Environ. 1983, 17, 2231–2235. [Google Scholar] [CrossRef]
- Wang, M.-J.; Xiang, X.-Y.; Zuo, Y.-G.; Peng, J.-B.; Lu, K.; Dempsey, C.; Liu, P.; Gao, S.-X. Singlet oxygen production abilities of oxidated aromatic compounds in natural water. Chemosphere 2020, 258, 127308. [Google Scholar] [CrossRef]
- McNeill, K.; Canonica, S. Triplet state dissolved organic matter in aquatic photochemistry: Reaction mechanisms, substrate scope, and photophysical properties. Environ. Sci.-Proc. Imp. 2016, 18, 1381–1399. [Google Scholar] [CrossRef]
- Zepp, R.-G.; Schlotzhauer, P.-F.; Sink, R.-M. Photosensitized transformations involving electronic energy transfer in natural waters: Role of humic substances. Environ. Sci. Technol. 1985, 19, 74–81. [Google Scholar] [CrossRef]
- Loeff, I.; Rabani, J.; Treinin, A.; Linschitz, H. Charge transfer and reactivity of n[pi]* and [pi][pi]* organic triplets, including anthraquinonesulfonates, in interactions with inorganic anions: A comparative study based on classical Marcus theory. J. Am. Chem. Soc. 1993, 115, 8933–8942. [Google Scholar]
- Tamara, F.; Thomas, S.; Lin, H.; Hartmut, H. Aromatic carbonyl and nitro compounds as photosensitizers and their photophysical properties in the tropospheric aqueous phase. J. Phys. Chem. A 2021, 125, 5078–5095. [Google Scholar]
- Couch, K.; Leresche, F.; Farmer, C.; McKay, G.; Rosario-Ortiz, F.-L. Assessing the source of the photochemical formation of hydroxylating species from dissolved organic matter using model sensitizers. Environ. Sci.-Proc. Imp. 2022, 24, 102–115. [Google Scholar] [CrossRef]
- Li, Q.-Y.; Badia, A.; Wang, T.; Sarwar, G.; Fu, X.; Zhang, L.; Zhang, Q.; Fung, J.; Cuevas, C.-A.; Wang, S.-S.; et al. Potential effect of halogens on atmospheric oxidation and air quality in China. J. Geophys. Res.-Atmos. 2020, 125, e2019JD032058. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, T.; Ding, X.; Li, X.; Liu, Y.; Yan, C.; Shen, Y.; Yao, X.; Zheng, M. A clear north-to-south spatial gradience of chloride in marine aerosol in Chinese seas under the influence of East Asian Winter Monsoon. Sci. Total Environ. 2022, 832, 154929. [Google Scholar] [CrossRef]
- Li, J.; Zhang, N.; Wang, P.; Choi, M.; Ying, Q.; Guo, S.; Lu, K.; Qiu, X.; Wang, S.; Hu, M.; et al. Impacts of chlorine chemistry and anthropogenic emissions on secondary pollutants in the Yangtze river delta region. Environ. Pollut. 2021, 287, 117624. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.-K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Cesari, D.; De Benedetto, G.-E.; Bonasoni, P.; Busetto, M.; Dinoi, A.; Merico, E.; Chirizzi, D.; Cristofanelli, P.; Donateo, A.; Grasso, F.-M.; et al. Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy. Sci. Total Environ. 2018, 612, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Gen, M.; Zhang, R.; Huang, D.-D.; Li, Y.; Chan, C.-K. Heterogeneous SO2 oxidation in sulfate formation by photolysis of particulate nitrate. Environ. Sci. Technol. Lett. 2019, 6, 86–91. [Google Scholar] [CrossRef]
- Benedict, K.-B.; McFall, A.-S.; Anastasio, C. Quantum yield of nitrite from the photolysis of aqueous nitrate above 300 nm. Environ. Sci. Technol. 2017, 51, 4387–4395. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, K.; Han, J.; Ying, Q.; Hopke, P.-K. Sources of humic-like substances (HULIS) in PM2.5 in Beijing: Receptor modeling approach. Sci. Total Environ. 2019, 671, 765–775. [Google Scholar] [CrossRef]
- Yuan, W.; Huang, R.; Yang, L.; Ni, H.; Wang, T.; Cao, W.; Duan, J.; Guo, J.; Huang, H.; Hoffmann, T. Concentrations, optical properties and sources of humic-like substances (HULIS) in fine particulate matter in Xi'an, Northwest China. Sci. Total Environ. 2021, 789, 147902. [Google Scholar] [CrossRef]
- Bao, M.; Zhang, Y.; Cao, F.; Lin, Y.; Hong, Y.; Fan, M.; Zhang, Y.; Yang, X.; Xie, F. Light absorption and source apportionment of water soluble humic-like substances (HULIS) in PM2.5 at Nanjing, China. Environ. Res. 2022, 206, 112554. [Google Scholar] [CrossRef]
- Wang, L.; Li, B.; Dionysiou, D.-D.; Chen, B.; Yang, J.; Li, J. Overlooked formation of H2O2 during the hydroxyl radical-scavenging process when using alcohols as scavengers. Environ. Sci. Technol. 2022, 56, 3386–3396. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Zhou, D.; Liu, H.; Tu, Y.; Ma, Y.; Li, Y. Triplet-Excited Dissolved Organic Matter Efficiently Promoted Atmospheric Sulfate Production: Kinetics and Mechanisms. Separations 2023, 10, 335. https://doi.org/10.3390/separations10060335
Wang N, Zhou D, Liu H, Tu Y, Ma Y, Li Y. Triplet-Excited Dissolved Organic Matter Efficiently Promoted Atmospheric Sulfate Production: Kinetics and Mechanisms. Separations. 2023; 10(6):335. https://doi.org/10.3390/separations10060335
Chicago/Turabian StyleWang, Nian, Die Zhou, Huaying Liu, Yina Tu, Yanqiong Ma, and Yingjie Li. 2023. "Triplet-Excited Dissolved Organic Matter Efficiently Promoted Atmospheric Sulfate Production: Kinetics and Mechanisms" Separations 10, no. 6: 335. https://doi.org/10.3390/separations10060335
APA StyleWang, N., Zhou, D., Liu, H., Tu, Y., Ma, Y., & Li, Y. (2023). Triplet-Excited Dissolved Organic Matter Efficiently Promoted Atmospheric Sulfate Production: Kinetics and Mechanisms. Separations, 10(6), 335. https://doi.org/10.3390/separations10060335