A Comprehensive Review of the Developments in Electrocoagulation for the Removal of Contaminants from Wastewater
Abstract
:1. Introduction
- (1)
- Point pollution sources, with this type of pollution originating from a single location [14]; if a specific location is found, then quantitative measurements can be made to perform the numerical description of pollution [15]. Therefore, treating the origin point source may solve the related pollution.
- (2)
- Non-point pollution sources with more than one pollution origin source. This is a complicated pollution source type and not easy to be described quantitatively [16]. The non-point source might contain different types of pollution, such as pathogens and industrial dyes. Therefore, all these sources of pollution should be treated.
- (3)
- Transboundary pollution source type, which is located in the rivers between countries [17]. With the help of the rivers, contaminants are crossing from one country to another.
- (4)
- Groundwater pollution source deep under the earth’s surface. The main problem with this type comes from it being invisible and inaccessible to treat [18]. In addition, water of this type can be naturally contaminated and carry heavy metals, such as iron, arsenic, and manganese. Therefore, it can be identified when it is too late.
- (5)
- Surface water pollution source, which is mainly caused by industrial waste [19]. These wastes are typically concentrated on the surface waters. Hence, the quality of the resources is affected.
- (6)
- Pathogenic pollution source, which contains microbial types, leading to dangerous diseases, such as salmonella [20].
- (7)
- Thermal pollution source, which generates pollution affecting the temperature of water, leading to changes in its physical characteristics [21]. In this case, some biota could be affected because not all can acclimate to the temperature variation.
- (8)
- Radioactive pollution sources are mainly located in the nuclear industries [22]. This source directly produces radiation from radioactive elements, such as uranium. In addition, the radiation elements might be stored in the marine organisms to be transported to humans, leading to cancerous diseases.
- (9)
- Chemical pollution sources that mainly exist in industrial activities and wastes. These chemicals contain toxic compounds located in water resources [23].
2. Organic Contaminants Removal
2.1. Perfluoroalkyl Substances (PFAS)
2.1.1. Perfluorooctanoic Acid (PFOA)
2.1.2. Perflourodecanoic Acid (PFDA)
2.1.3. Perfluorooctane Sulfonate (PFOS)
2.1.4. Perfluorobutanoic Acid (PFBA)
2.1.5. Perfluorobutane Sulfonate (PFBS)
2.1.6. Perfluorohexanoic Acid (PFHxA)
2.1.7. Perfluoroheptanoic Acid (PFHpA)
2.1.8. Perfluorohexane Sulfonate (PFHxS)
No. | Removed Substance | Anode | Cathode | Gap (cm) | Concentration (mg/L) | Efficiency η (%) | pH | Time (min) | Power (A/m2) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1 | PFOA | Al | Al | 1 | — | 99 | 4–5 | 10 | [58] | |
2 | PFOA | Fe | Fe | — | — | 10 | 9 | 360 | 800 | [60] |
3 | PFDA | Fe-Al | Fe-Al | 1 | — | 100 | 7 | 15 | 370 | [62] |
4 | PFOA | Zn | Air | — | — | 100 | 3.5 | 45 | — | [61] |
5 | PFOA | Fe | Fe | — | 100 | 56 | 3.6 | 60 | 78.34 | [59] |
6 | PFBA | Al | Zn | — | — | 90 | 7 | 10 | — | [56] |
7 | PFBS | Al | Zn | — | 31 × 10−3 | 59 | 7 | 10 | — | [56] |
8 | PFOA | Al | Zn | — | 2.4 × 10−3 | 89 | 7 | 10 | — | [56] |
9 | PFOS | Al | Zn | — | 0.5 | 100 | 7 | 10 | — | [56] |
10 | PFHxA | Al | Zn | — | 0.696 | 31 | 7 | 10 | — | [56] |
11 | PFHpA | Al | Zn | — | 0.716 | 57 | 7 | 10 | — | [56] |
12 | PFHxS | Al | Zn | — | 0.807 | 88 | 7 | 10 | — | [56] |
13 | PFHxA | Zn | stainless steel | — | — | 81 | 3.8 | 120 | 50–200 | [57] |
14 | PFBS | Zn | stainless steel | — | — | 54 | 3.8 | 120 | 50–200 | [57] |
15 | PFOS | Zn | stainless steel | — | — | 90 | 3.8 | 120 | 50–200 | [57] |
16 | PFOS | Fe | Fe | — | 5 | 100 | 3 | 60 | — | [64] |
17 | PFBS | Al | Zn | — | — | 87 | 7 | 40 | — | [65] |
18 | PFHxS | Al | Zn | — | — | 95 | 7 | 40 | — | [65] |
19 | PFOS | Al | Zn | — | — | 100 | 7 | 40 | — | [65] |
20 | PFOS | Fe | Fe | — | — | 100 | 5.2 | 50 | 250 | [66] |
21 | PFOA | Fe | Fe | — | — | 78 | 3.8 | 50 | 250 | [66] |
22 | PFHxA | Al | Al | 1 | — | 65 | 7–8 | 45 | 350 | [71] |
23 | PFHpA | Al | Al | 1 | — | 58 | 7–8 | 45 | 350 | [71] |
24 | PFOA | Al | Al | 1 | — | 75 | 7–8 | 45 | 350 | [71] |
25 | PFDA | Al | Al | 1 | — | 18 | 7–8 | 45 | 350 | [71] |
26 | PFBS, PFHxS, and PFOS | Al, Zn | Zn, Al | 2 | 1.0 | 87, 95, and 100 | 7.0 | 60 | — | [71] |
28 | PFOA, and PFOS | Zinc | Air | — | — | 99 and 89 | 7 | 45 | — | [61] |
29 | PFOS | Zn | Air | 2 | 0.005 | 69–81 | 3.5 | 45 | [28] |
2.2. Microplastics (MPs)
2.2.1. Sources and Complexity of MPs
2.2.2. EC Removal and Associated Risks of MPs
2.3. Pharmaceutics
2.3.1. Antibiotics
Ampicillin (AMP)
Amoxicillin (AMX)
Ciprofloxacin (CIP)
Levofloxacin (LVX)
Cefazolin (CEZ)
Cefixime (CFX)
Oxytetracycline Hydrochloride (OTCHC)
Doxycycline (DOX)
2.3.2. Anti-Inflammatory
Dexamethasone (DEX)
Hydrocortisone
2.3.3. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
2.3.4. Anticonvulsants
Carbamazepine (CBZ)
2.3.5. Mixtures of Pharmaceuticals
No. | Removed Substance | Anode | Cathode | Gap (cm) | Concentration (mg/L) | Efficiency η (%) | pH | Time (min) | Power (A/m2) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1 | Metronidazole | Fe | Fe | 1.5 | 25 | 99.28 | 6.5 | 30 | 40 | [119] |
2 | Tetracycline | Fe | Fe | 1 | 1 | 95 | 4 | 30 | 40 | [120] |
3 | Carbamazepine (CBZ) | Fe | Heteroatom P, doped graphene/carbon felt (CF) | 2.0 | 30.0 | 99 | 3 | 15 | 100 | [116] |
4 | Doxycycline | low-carbon steel | low-carbon steel | 50 | ~100 | 6.0–6.5 | 36 | 18 | [89] | |
5 | Ibuprofen, | Al | Fe | 3 | 40 | 50.96, | 5 | 110 | 4878 | [121] |
6 | Acetaminophen | Al | Fe | 3 | 40 | 22.76 | 5 | 110 | 4878 | [121] |
7 | Diclofenac | Al | Al | 5 | — | 98 | 7.2 | 20 | 16.7 | [113] |
8 | Ibuprofen | Al | Al | 5 | — | 80 | 7.2 | 20 | 83.3 | [113] |
9 | Ketoprofen | Al | Al | 5 | — | 75 | 7.2 | 20 | 16.7 | [113] |
10 | Estrone | Fe | Fe | 1 | 0.2 | 81 | 7 | 120 | 167 | [122] |
11 | 17β-estradiol | Fe | Fe | 1 | 0.2 | 87 | 7 | 120 | 167 | [122] |
12 | Estriol | Fe | Fe | 1 | 0.2 | 85 | 7 | 120 | 167 | [122] |
13 | 17α-Ethynylestradiol | Fe | Fe | 1 | 0.2 | 97 | 7 | 120 | 167 | [122] |
2.4. Dyes
No. | Removed Substance | Anode | Cathode | Gap (cm) | Concentration (mg/L) | Efficiency (%) | pH | Time (min) | Power (A/m2) | Ref |
---|---|---|---|---|---|---|---|---|---|---|
1 | Dyes | Fe | Fe | — | — | 96 | 7 | 6 | 100 | [133] |
2 | Dye | Al | stainless-steel | — | 95 | 6.9 | 5 | 10 | [134] | |
3 | Yellow 10 gw dye | Al Cu | Al Cu | — | 1000 | 96 97 | 7.5 9 | 5 15 | 60 | [135] |
4 | Color dye, COD, turbidity, and alkalinity | Fe or Al | — | — | — | 90, 89, 82, and 73 | 6.5 | 81.8 | 350 | [136] |
5 | Color, COD | Fe/Fe | Fe/Fe | — | (1500–7500) | 100, 97. | (2–11) | — | 1.25–7.50 | [136] |
6 | AG 20, and RY 17 | Al | Al | — | 95 and 93 | 2.1 | 60 | 400 | [137] | |
7 | RR 35 and DY 56 | Al | Al | — | 10–150 | 94 and 95 | 8 | 50 | 43.4 and 104.2 | [138] |
9 | Methyl orange | Stainless steel | Fe | 2 | 50 | 93. | 7 | — | — | [139] |
10 | Acid Brown 14, Acid Orange 7, and Acid Red 18 | Al | Al | — | (150–600) | 100, 100, 57 | (4–10) | 15 | 291 | [126] |
2.5. Phthalates
2.6. Complex Solids Containing Organic Matter
2.7. Synthetic Organic Contaminants (SOCs) for Agricultural Usage
2.7.1. Pesticides
Glyphosate
Malathion
Acetamiprid
Oxyfluorfen
Diazinon
Chlorpyrifos
2.7.2. Humic Acids
3. Challenges
4. Summary and Path Forward
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Zhang, Y.; Zhou, L.; Zhang, F.; Jing, Y.; Huang, M.; Liu, H. Quality-related monitoring of papermaking wastewater treatment processes using dynamic multiblock partial least squares. J. Bioresour. Bioprod. 2022, 7, 73. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Bolisetty, S.; Peydayesh, M.; Mezzenga, R. Sustainable technologies for water purification from heavy metals: Review and analysis. Chem. Soc. Rev. 2019, 48, 463–487. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhou, Y.; Feng, Z.; Rui, X.; Zhang, T.; Zhang, Z. A review on reverse osmosis and nanofiltration membranes for water purification. Polymers 2019, 11, 1252. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Wang, Q.; Wu, J.; Duan, G.; Xu, W.; Jian, S. Magnetically separable and recyclable Fe3O4@PDA covalent grafted by l-cysteine core-shell nanoparticles toward efficient removal of Pb2+. Vacuum 2021, 189, 110229. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the projections of the World water development report. npj Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Bank, T.W. The total population from 1960 to 2021. 2022. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL2020 (accessed on 17 April 2023).
- Skaf, L.; Buonocore, E.; Dumontet, S.; Capone, R.; Franzese, P.P. Food security and sustainable agriculture in Lebanon: An environmental accounting framework. J. Clean. Prod. 2019, 209, 1025–1032. [Google Scholar] [CrossRef]
- Haryani, G. Sustainable use and conservation of inland water ecosystem in Indonesia: Challenge for fisheries management in lake and river ecosystem. IOP Conf. Ser. Earth Environ. Sci. 2021, 789, 012023. [Google Scholar] [CrossRef]
- Ezugbe, E.O.; Rathilal, S. Membrane technologies in wastewater treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Abou-Shady, A. Recycling of polluted wastewater for agriculture purpose using electrodialysis: Perspective for large scale application. Chem. Eng. J. 2017, 323, 1–18. [Google Scholar] [CrossRef]
- Weerasekara, P. The United Nations world water development report 2017 wastewater. Future Food J. Food Agric. Soc. 2017, 5, 80–81. [Google Scholar]
- Yasasve, M.; Manjusha, M.; Manojj, D.; Hariharan, N.; Preethi, P.S.; Asaithambi, P.; Karmegam, N.; Saravanan, M. Unravelling the emerging carcinogenic contaminants from industrial waste water for prospective remediation by electrocoagulation—A review. Chemosphere 2022, 307, 136017. [Google Scholar] [CrossRef] [PubMed]
- Poel, P.V.D.; Brooke, D.N.; Leeuwen, C.J.V. Emissions of Chemicals to The Environment, in Risk Assessment of Chemicals: An Introduction; Leeuwen, C.J.V., Vermeire, T.G., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 37–71. [Google Scholar]
- Sany SB, T.; Tajfard, M.; Rezayi, M.; Rahman, M.A.; Hashim, R. Chapter 20—The West Coast of Peninsular Malaysia. In World Seas: An Environmental Evaluation, 2nd ed.; Sheppard, C., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 437–458. [Google Scholar]
- Moss, B. Water pollution by agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Taylor, D. Transboundary atmospheric pollution in Southeast Asia: Current methods, limitations and future developments. Crit. Rev. Environ. Sci. Technol. 2018, 48, 997–1029. [Google Scholar] [CrossRef]
- He, S.; Wu, J.; Wang, D.; He, X. Predictive modeling of groundwater nitrate pollution and evaluating its main impact factors using random forest. Chemosphere 2022, 290, 133388. [Google Scholar] [CrossRef] [PubMed]
- Quesada, H.B.; Baptista, A.T.A.; Cusioli, L.F.; Seibert, D.; de Oliveira Bezerra, C.; Bergamasco, R. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere 2019, 222, 766–780. [Google Scholar] [CrossRef]
- Feng, C.; Yu, L.; Xiao, Y.; An, C. Environmental Behavior and Effects of Pollutants in Water. J. Chem. 2020, 2020, 2639389. [Google Scholar] [CrossRef]
- Blum, P.; Menberg, K.; Koch, F.; Benz, S.A.; Tissen, C.; Hemmerle, H.; Bayer, P. Is thermal use of groundwater a pollution? J. Contam. Hydrol. 2021, 239, 103791. [Google Scholar] [CrossRef]
- Hepler, K.; Kaminski, M.D.; Jolin, W.C.; Magnuson, M. Decontamination of urban surfaces contaminated with radioactive materials and consequent onsite recycling of the waste water. Environ. Technol. Innov. 2021, 21, 101177. [Google Scholar] [CrossRef]
- Atangana, A. Chapter 3—Groundwater Pollution. In Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- National Primary Drinking Water Regulations. 2023; [cited 9/01/2023]. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 17 April 2023).
- Ahmed, S.; Mofijur, M.; Nuzhat, S.; Chowdhury, A.T.; Rafa, N.; Uddin, A.; Inayat, A.; Mahlia, T.; Ong, H.C.; Chia, W.Y.; et al. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 2021, 416, 125912. [Google Scholar] [CrossRef]
- Huang, D.; Hu, C.; Zeng, G.; Cheng, M.; Xu, P.; Gong, X.; Wang, R.; Xue, W. Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. Sci. Total. Environ. 2017, 574, 1599–1610. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Sun, Z.; Zhang, Q.; Hu, J.; Xiang, W. Steam gasification of sewage sludge with CaO as CO2 sorbent for hydrogen-rich syngas production. Biomass-Bioenergy 2017, 107, 52–62. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Islam, M.S.; Hossain, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. A novel and highly efficient Ag and GO co-synthesized ZnO nano photocatalyst for methylene blue dye degradation under UV irradiation. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100495. [Google Scholar]
- Chequer, F.D.; de Oliveira, G.A.R.; Ferraz, E.R.A.; Carvalho, J.; Zanoni, M.B.; de Oliveir, D.P. Textile dyes: Dyeing process and environmental impact. Eco-Friendly Text. Dye. Finish. 2013, 6, 151–176. [Google Scholar]
- Akter, S.; Suhan, M.B.K.; Islam, M.S. Recent advances and perspective of electrocoagulation in the treatment of wastewater: A review. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100643. [Google Scholar] [CrossRef]
- Kadier, A.; Al-Qodah, Z.; Akkaya, G.K.; Song, D.; Peralta-Hernández, J.M.; Wang, J.-Y.; Phalakornkule, C.; Bajpai, M.; Niza, N.M.; Gilhotra, V.; et al. A state-of-the-art review on electrocoagulation (EC): An efficient, emerging, and green technology for oil elimination from oil and gas industrial wastewater streams. Case Stud. Chem. Environ. Eng. 2022, 6, 100274. [Google Scholar] [CrossRef]
- Manikandan, S.; Saraswathi, R. Electrocoagulation technique for removing Organic and Inorganic pollutants (COD) from the various industrial effluents: An overview. Environ. Eng. Res. 2023, 28, 220231. [Google Scholar] [CrossRef]
- Zaied, B.K.; Rashid, M.; Nasrullah, M.; Zularisam, A.W.; Pant, D.; Singh, L. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Sci. Total Environ. 2020, 726, 138095. [Google Scholar] [CrossRef]
- Treviño-Reséndez, J.D.J.; Medel, A.; Meas, Y. Electrochemical technologies for treating petroleum industry wastewater. Curr. Opin. Electrochem. 2021, 27, 100690. [Google Scholar] [CrossRef]
- Othmani, A.; Kadier, A.; Singh, R.; Igwegbe, C.A.; Bouzid, M.; Aquatar, O.; Khanday, W.A.; Bote, M.E.; Damiri, F.; Gökkuş, Ö.; et al. A comprehensive review on green perspectives of electrocoagulation integrated with advanced processes for effective pollutants removal from water environment. Environ. Res. 2022, 215, 114294. [Google Scholar] [CrossRef]
- Mousazadeh, M.; Naghdali, Z.; Al-Qodah, Z.; Alizadeh, S.; Niaragh, E.K.; Malekmohammadi, S.; Nidheesh, P.; Roberts, E.P.; Sillanpää, M.; Emamjomeh, M.M. A systematic diagnosis of state of the art in the use of electrocoagulation as a sustainable technology for pollutant treatment: An updated review. Sustain. Energy Technol. Assess. 2021, 47, 101353. [Google Scholar] [CrossRef]
- Shahedi, A.; Darban, A.K.; Taghipour, F.; Jamshidi-Zanjani, A. A review on industrial wastewater treatment via electrocoagulation processes. Curr. Opin. Electrochem. 2020, 22, 154–169. [Google Scholar] [CrossRef]
- Abdulkhadher, R.K.; Jaeel, A.J. Removal of fluoride, nitrates and phosphor from drinking water using electrocoagulation: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1058, 012050. [Google Scholar] [CrossRef]
- Rakhmania; Kamyab, H.; Yuzir, M.A.; Abdullah, N.; Quan, L.M.; Riyadi, F.A.; Marzouki, R. Recent Applications of the Electrocoagulation Process on Agro-Based Industrial Wastewater: A Review. Sustainability 2022, 14, 1985. [Google Scholar] [CrossRef]
- Tahreen, A.; Jami, M.S.; Ali, F. Role of electrocoagulation in wastewater treatment: A developmental review. J. Water Process. Eng. 2020, 37, 101440. [Google Scholar] [CrossRef]
- Castañeda, L.F.; Rodríguez, J.F.; Nava, J.L. Electrocoagulation as an affordable technology for decontamination of drinking water containing fluoride: A critical review. Chem. Eng. J. 2021, 413, 127529. [Google Scholar] [CrossRef]
- Ingelsson, M.; Yasri, N.; Roberts, E.P. Electrode passivation, faradaic efficiency, and performance enhancement strategies in electrocoagulation—A review. Water Res. 2020, 187, 116433. [Google Scholar] [CrossRef]
- Tegladza, I.D.; Xu, Q.; Xu, K.; Lv, G.; Lu, J. Electrocoagulation processes: A general review about role of electro-generated flocs in pollutant removal. Process. Saf. Environ. Prot. 2021, 146, 169–189. [Google Scholar] [CrossRef]
- Ghernaout, D.; Alghamdi, A.; Ghernaout, B. Electrocoagulation process: A mechanistic review at the dawn of its modeling. J. Environ. Sci. Allied Res. 2019, 2, 23–31. [Google Scholar] [CrossRef]
- Shokri, A.; Fard, M.S. A critical review in electrocoagulation technology applied for oil removal in industrial wastewater. Chemosphere 2022, 288, 132355. [Google Scholar] [CrossRef]
- Moussa, D.T.; El-Naas, M.H.; Nasser, M.; Al-Marri, M.J. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. J. Environ. Manag. 2017, 186, 24–41. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, C.; Li, H.; Offiong, N.-A.O.; Bi, Y.; Zhou, R.; Ren, H. A systematic review of electrocoagulation technology applied for microplastics removal in aquatic environment. Chem. Eng. J. 2023, 456, 141078. [Google Scholar] [CrossRef]
- Das, P.P.; Sharma, M.; Purkait, M.K. Recent progress on electrocoagulation process for wastewater treatment: A review. Sep. Purif. Technol. 2022, 292, 121058. [Google Scholar] [CrossRef]
- Butler, E.; Hung, Y.-T.; Yeh, R.Y.-L.; Al Ahmad, M.S. Electrocoagulation in Wastewater Treatment. Water 2011, 3, 495–525. [Google Scholar] [CrossRef]
- Boinpally, S.; Kolla, A.; Kainthola, J.; Kodali, R.; Vemuri, J. A state-of-the-art review of the electrocoagulation technology for wastewater treatment. Water Cycle 2023, 4, 26–36. [Google Scholar] [CrossRef]
- Al-Raad, A.A.; Hanafiah, M.M.; Naje, A.S.; Ajeel, M.A.; Basheer, A.O.; Aljayashi, T.A.; Toriman, M.E. Treatment of Saline Water Using Electrocoagulation with Combined Electrical Connection of Electrodes. Processes 2019, 7, 242. [Google Scholar] [CrossRef]
- Patel, S.K.; Shukla, S.C.; Natarajan, B.; Prajapati, A.K. Treatment of Debrominated Wastewater by Electrocoagulation Using Mild Steel Electrodes. Mater. Proc. 2023, in press. [Google Scholar] [CrossRef]
- Rashed, M.N. Adsorption technique for the removal of organic pollutants from water and wastewater. Org. Pollut. Monit. Risk Treat. 2013, 7, 167–194. [Google Scholar]
- Lin, D.; Zhao, Q.; Hu, L.; Xing, B. Synthesis and characterization of cubic mesoporous bridged polysilsesquioxane for removing organic pollutants from water. Chemosphere 2014, 103, 188–196. [Google Scholar] [CrossRef]
- Zhu, D.; Zhou, Q. Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100255. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, L.-X.; Yu, W.-J.; Bao, J.; Li, T.-Y.; Hu, X.-M.; Zhao, X. Simultaneous removal of multiple PFAS from contaminated groundwater around a fluorochemical facility by the periodically reversing electrocoagulation technique. Chemosphere 2022, 307, 135874. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Chiang, S.-Y.; Wang, Y.; Wang, Y.; Liang, S.; Zhou, J.; Fontanez, R.; Gao, S.; Huang, Q. An electrocoagulation and electrooxidation treatment train to remove and degrade per- and polyfluoroalkyl substances in aqueous solution. Sci. Total. Environ. 2021, 788, 147723. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-F.; Hu, C.-Y.; Lee, Y.-C.; Lo, S.-L. Effects of zinc salt addition on perfluorooctanoic acid (PFOA) removal by electrocoagulation with aluminum electrodes. Chemosphere 2022, 288, 132665. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Lo, S.-L.; Srivastava, V.C.; Qiao, Q.; Sharma, P. Mineralization of perfluorooctanoic acid by combined aerated electrocoagulation and Modified peroxi-coagulation methods. J. Taiwan Inst. Chem. Eng. 2021, 118, 169–178. [Google Scholar] [CrossRef]
- Kim, M.-K.; Kim, T.; Kim, T.-K.; Joo, S.-W.; Zoh, K.-D. Degradation mechanism of perfluorooctanoic acid (PFOA) during electrocoagulation using Fe electrode. Sep. Purif. Technol. 2020, 247, 116911. [Google Scholar] [CrossRef]
- Mu, T.; Park, M.; Kim, K.-Y. Energy-efficient removal of PFOA and PFOS in water using electrocoagulation with an air-cathode. Chemosphere 2021, 281, 130956. [Google Scholar] [CrossRef]
- Nippatlapalli, N.; Selvaraj, A. A study on the removal of long chain perflourodecanoic acid in simulated aqueous solution using enhanced electrochemical technique: Metabolites, kinetic and isotherm model analysis. J. Water Process. Eng. 2022, 49, 103045. [Google Scholar] [CrossRef]
- Zareitalabad, P.; Siemens, J.; Hamer, M.; Amelung, W. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater—A review on concentrations and distribution coefficients. Chemosphere 2013, 91, 725–732. [Google Scholar] [CrossRef]
- Li, M.; Mo, C.-H.; Luo, X.; He, K.-Y.; Yan, J.-F.; Wu, Q.; Yu, P.-F.; Han, W.; Feng, N.-X.; Yeung, K.L.; et al. Exploring key reaction sites and deep degradation mechanism of perfluorooctane sulfonate via peroxymonosulfate activation under electrocoagulation process. Water Res. 2021, 207, 117849. [Google Scholar] [CrossRef]
- Bao, J.; Yu, W.-J.; Liu, Y.; Wang, X.; Liu, Z.-Q.; Duan, Y.-F. Removal of perfluoroalkanesulfonic acids (PFSAs) from synthetic and natural groundwater by electrocoagulation. Chemosphere 2020, 248, 125951. [Google Scholar] [CrossRef]
- Yang, B.; Han, Y.; Yu, G.; Zhuo, Q.; Deng, S.; Wu, J.; Zhang, P. Efficient removal of perfluoroalkyl acids (PFAAs) from aqueous solution by electrocoagulation using iron electrode. Chem. Eng. J. 2016, 303, 384–390. [Google Scholar] [CrossRef]
- Sana, T.; Chowdhury, M.I.; Logeshwaran, P.; Megharaj, M. Behavioural, developmental and reproductive toxicological impacts of perfluorobutanoic acid (PFBA) in Caenorhabditis elegans. Environ. Chall. 2023, 10, 100662. [Google Scholar] [CrossRef]
- Abraham, K.; El-Khatib, A.H.; Schwerdtle, T.; Monien, B.H. Perfluorobutanoic acid (PFBA): No high-level accumulation in human lung and kidney tissue. Int. J. Hyg. Environ. Health 2021, 237, 113830. [Google Scholar] [CrossRef]
- Xue, X.; Gao, N.; Xu, F. Toxicity of perfluooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS) to Scenedesmus obliquus: Photosynthetic characteristics, oxidative damage and transcriptome analysis. Environ. Pollut. 2022, 315, 120397. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, Y.; Mu, H.; Li, H.; Liu, S.; Zhu, M.; Bu, Y.; Wu, B. Effects of perfluorobutane sulfonate and perfluorooctane sulfonate on lipid homeostasis in mouse liver. Environ. Pollut. 2022, 315, 120403. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Peng, Y.; Ning, K.; Niu, X.; Tan, S.; Su, P. Remediation of Perfluoroalkyl Substances in Landfill Leachates by Electrocoagulation. CLEAN Soil Air Water 2014, 42, 1740–1743. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.; Chen, X.; He, Y.; Bolan, N.; Rinklebe, J.; Lam, S.S.; Peng, W.; Sonne, C. A discussion of microplastics in soil and risks for ecosystems and food chains. Chemosphere 2023, 313, 137637. [Google Scholar] [CrossRef]
- Fan, S.; Yan, Z.; Qiao, L.; Gui, F.; Li, T.; Yang, Q.; Zhang, X.; Ren, C. Biological effects on the migration and transformation of microplastics in the marine environment. Mar. Environ. Res. 2023, 185, 105875. [Google Scholar] [CrossRef]
- Xiong, F.; Liu, J.; Xu, K.; Huang, J.; Wang, D.; Li, F.; Wang, S.; Zhang, J.; Pu, Y.; Sun, R. Microplastics induce neurotoxicity in aquatic animals at environmentally realistic concentrations: A meta-analysis. Environ. Pollut. 2023, 318, 120939. [Google Scholar] [CrossRef]
- Luo, M.; Wang, Z.; Fang, S.; Song, B.; Cao, P.; Liu, H.; Yang, Y. Removal and toxic forecast of microplastics treated by electrocoagulation: Influence of dissolved organic matter. Chemosphere 2022, 308, 136309. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, Y.; Almatrafi, E.; Hu, T.; Zhou, C.; Song, B.; Zeng, Z.; Zeng, G. Efficient removal of microplastics from wastewater by an electrocoagulation process. Chem. Eng. J. 2022, 428, 131161. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Xing, B. Environmental source, fate, and toxicity of microplastics. J. Hazard. Mater. 2021, 407, 124357. [Google Scholar] [CrossRef]
- Franco, A.A.; Arellano, J.M.; Albendín, G.; Rodríguez-Barroso, R.; Quiroga, J.M.; Coello, M.D. Microplastic pollution in wastewater treatment plants in the city of Cádiz: Abundance, removal efficiency and presence in receiving water body. Sci. Total Environ. 2021, 776, 145795. [Google Scholar] [CrossRef]
- Siegfried, M.; Koelmans, A.A.; Besseling, E.; Kroeze, C. Export of microplastics from land to sea. A modelling approach. Water Res. 2017, 127, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Elkhatib, D.; Oyanedel-Craver, V.; Carissimi, E. Electrocoagulation applied for the removal of microplastics from wastewater treatment facilities. Sep. Purif. Technol. 2021, 276, 118877. [Google Scholar] [CrossRef]
- Perren, W.; Wojtasik, A.; Cai, Q. Removal of Microbeads from Wastewater Using Electrocoagulation. ACS Omega 2018, 3, 3357–3364. [Google Scholar] [CrossRef]
- Xu, R.; Yang, Z.; Niu, Y.; Xu, D.; Wang, J.; Han, J.; Wang, H. Removal of microplastics and attached heavy metals from secondary effluent of wastewater treatment plant using interpenetrating bipolar plate electrocoagulation. Sep. Purif. Technol. 2022, 290, 120905. [Google Scholar] [CrossRef]
- Rajala, K.; Grönfors, O.; Hesampour, M.; Mikola, A. Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals. Water Res. 2020, 183, 116045. [Google Scholar] [CrossRef]
- Bajpai, M.; Katoch, S.S.; Kadier, A.; Ma, P.-C. Treatment of pharmaceutical wastewater containing cefazolin by electrocoagulation (EC): Optimization of various parameters using response surface methodology (RSM), kinetics and isotherms study. Chem. Eng. Res. Des. 2021, 176, 254–266. [Google Scholar] [CrossRef]
- Oulebsir, A.; Chaabane, T.; Tounsi, H.; Omine, K.; Sivasankar, V.; Flilissa, A.; Darchen, A. Treatment of artificial pharmaceutical wastewater containing amoxicillin by a sequential electrocoagulation with calcium salt followed by nanofiltration. J. Environ. Chem. Eng. 2020, 8, 104597. [Google Scholar] [CrossRef]
- Coutu, S.; Wyrsch, V.; Wynn, H.; Rossi, L.; Barry, D. Temporal dynamics of antibiotics in wastewater treatment plant influent. Sci. Total. Environ. 2013, 458–460, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Padmaja, K.; Cherukuri, J.; Anji Reddy, M. A comparative study of the efficiency of chemical coagulation and electrocoagulation methods in the treatment of pharmaceutical effluent. J. Water Process. Eng. 2020, 34, 101153. [Google Scholar] [CrossRef]
- Pazda, M.; Kumirska, J.; Stepnowski, P.; Mulkiewicz, E. Antibiotic resistance genes identified in wastewater treatment plant systems—A review. Sci. Total. Environ. 2019, 697, 134023. [Google Scholar] [CrossRef] [PubMed]
- Baran, W.; Adamek, E.; Jajko, M.; Sobczak, A. Removal of veterinary antibiotics from wastewater by electrocoagulation. Chemosphere 2018, 194, 381–389. [Google Scholar] [CrossRef]
- Zaidi, S.; Chaabane, T.; Sivasankar, V.; Darchen, A.; Maachi, R.; Msagati, T. Electro-coagulation coupled electro-flotation process: Feasible choice in doxycycline removal from pharmaceutical effluents. Arab. J. Chem. 2019, 12, 2798–2809. [Google Scholar] [CrossRef]
- Oliveira, J.T.; de Sousa, M.C.; Martins, I.A.; de Sena, L.M.G.; Nogueira, T.R.; Vidal, C.B.; Neto, E.F.A.; Romero, F.B.; Campos, O.S.; do Nascimento, R.F. Electrocoagulation/oxidation/flotation by direct pulsed current applied to the removal of antibiotics from Brazilian WWTP effluents. Electrochim. Acta 2021, 388, 138499. [Google Scholar] [CrossRef]
- Balarak, D.; Chandrika, K.; Attaolahi, M. Assessment of effective operational parameters on removal of Amoxicillin from synthetic wastewater using electrocoagulation process. J. Pharm. Res. Int. 2019, 29, 1–8. [Google Scholar] [CrossRef]
- Wang, C.-J.; Li, Z.; Jiang, W.-T.; Jean, J.-S.; Liu, C.-C. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite. J. Hazard. Mater. 2010, 183, 309–314. [Google Scholar] [CrossRef]
- Aghazadeh, M.; Ghotaslou, R.; Rezaee, M.A.; Moshafi, M.H.; Hojabri, Z.; Saffari, F. Determination of antimicrobial resistance profile and inducible clindamycin resistance of coagulase negative staphylococci in pediatric patients: The first report from Iran. World J. Pediatr. 2015, 11, 250–254. [Google Scholar] [CrossRef]
- Fasihi, Y.; Saffari, F.; Ghahraman, M.R.K.; Kalantar-Neyestanaki, D. Molecular detection of macrolide and lincosamide-resistance genes in clinical methicillin-resistant Staphylococcus aureus isolates from Kerman, Iran. Arch. Pediatr. Infect. Dis. 2017, 5, e37761. [Google Scholar] [CrossRef]
- Yoosefian, M.; Ahmadzadeh, S.; Aghasi, M.; Dolatabadi, M. Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption. J. Mol. Liq. 2017, 225, 544–553. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Asadipour, A.; Pournamdari, M.; Behnam, B.; Rahimi, H.R.; Dolatabadi, M. Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: Optimization and modelling through response surface methodology. Process. Saf. Environ. Prot. 2017, 109, 538–547. [Google Scholar] [CrossRef]
- Malakootian, M.; Ahmadian, M. Removal of ciprofloxacin from aqueous solution by electro-activated persulfate oxidation using aluminum electrodes. Water Sci. Technol. 2019, 80, 587–596. [Google Scholar] [CrossRef]
- Mohammed, S.J.; M-Ridha, M.J.; Abed, K.M.; Elgharbawy, A.A.M. Removal of levofloxacin and ciprofloxacin from aqueous solutions and an economic evaluation using the electrocoagulation process. Int. J. Environ. Anal. Chem. 2021, 1–19. [Google Scholar] [CrossRef]
- Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol. 2017, 27, R713–R715. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Mohammed-Ridha, M. Optimization of levofloxacin removal from aqueous solution using electrocoagulation process by response surface methodology. Iraqi J. Agric. Sci. 2021, 52, 204–217. [Google Scholar] [CrossRef]
- Benrighi, Y.; Nasrallah, N.; Chaabane, T.; Sivasankar, V.; Darchen, A.; Baaloudj, O. Photocatalytic performances of ZnCr2O4 nanoparticles for cephalosporins removal: Structural, optical and electrochemical properties. Opt. Mater. 2021, 115, 111035. [Google Scholar] [CrossRef]
- Mostafaloo, R.; Mahmoudian, M.H.; Asadi-Ghalhari, M. BiFeO3/Magnetic nanocomposites for the photocatalytic degradation of cefixime from aqueous solutions under visible light. J. Photochem. Photobiol. A Chem. 2019, 382, 111926. [Google Scholar] [CrossRef]
- Asadi-Ghalhari, M.; Mostafaloo, R.; Ghafouri, N.; Kishipour, A.; Usefi, S.; Baaloudj, O. Removal of Cefixime from aqueous solutions via proxy electrocoagulation: Modeling and optimization by response surface methodology. React. Kinet. Catal. Lett. 2021, 134, 459–471. [Google Scholar] [CrossRef]
- Mostafaloo, R.; Yari, A.R.; Mohammadi, M.J.; Khaniabadi, Y.O.; Asadi-Ghalhari, M. Optimization of the electrocoagulation process on the effectiveness of removal of Cefixime antibiotic from aqueous solutions. Desalination Water Treat. 2019, 144, 138–144. [Google Scholar] [CrossRef]
- Nariyan, E.; Aghababaei, A.; Sillanpää, M. Removal of pharmaceutical from water with an electrocoagulation process; effect of various parameters and studies of isotherm and kinetic. Sep. Purif. Technol. 2017, 188, 266–281. [Google Scholar] [CrossRef]
- Zaidi, S.; Chaabane, T.; Sivasankar, V.; Darchen, A.; Maachi, R.; Msagati, T.; Prabhakaran, M. Performance efficiency of electro-coagulation coupled electro-flotation process (EC-EF) versus adsorption process in doxycycline removal from aqueous solutions. Process. Saf. Environ. Prot. 2016, 102, 450–461. [Google Scholar] [CrossRef]
- Arsand, D.R.; Kümmerer, K.; Martins, A.F. Removal of dexamethasone from aqueous solution and hospital wastewater by electrocoagulation. Sci. Total. Environ. 2013, 443, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Kothgassner, O.D.; Pellegrini, M.; Goreis, A.; Giordano, V.; Edobor, J.; Fischer, S.; Plener, P.L.; Huscsava, M.M. Hydrocortisone administration for reducing post-traumatic stress symptoms: A systematic review and meta-analysis. Psychoneuroendocrinology 2021, 126, 105168. [Google Scholar] [CrossRef]
- Sweetman, S.C. Martindale: The Complete Drug Reference; Pharmaceutical Press: London, UK, 2009. [Google Scholar]
- AlAani, H.; Hashem, S.; Karabet, F. Photocatalytic (UV-A/TiO2) and photolytic (UV-A) degradation of steroid hormones: Ethinyl Estradiol, Levonorgestrel, and Progesterone. Int. J. ChemTech Res. 2017, 10, 1061–1070. [Google Scholar]
- Alaani, H.; Hashem, S.; Karabet, F. Electrochemical removal of hydrocortisone from aqueous environments using aluminum electrodes. Orient. J. Chem. 2018, 34, 203–213. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Lo, S.-L.; Liou, Y.-H.; Hu, C.-Y. Removal of nonsteroidal anti-inflammatory drugs (NSAIDs) by electrocoagulation–flotation with a cationic surfactant. Sep. Purif. Technol. 2015, 152, 148–154. [Google Scholar] [CrossRef]
- Tauxe-Wuersch, A.; De Alencastro, L.; Grandjean, D.; Tarradellas, J. Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment. Water Res. 2005, 39, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.A. Mechanisms of action of antiepileptic drugs. Seizure 1995, 4, 267–271. [Google Scholar] [CrossRef]
- Xiao, Z.; Cui, T.; Wang, Z.; Dang, Y.; Zheng, M.; Lin, Y.; Song, Z.; Wang, Y.; Liu, C.; Xu, B.; et al. Energy-efficient removal of carbamazepine in solution by electrocoagulation-electrofenton using a novel P-rGO cathode. J. Environ. Sci. 2022, 115, 88–102. [Google Scholar] [CrossRef]
- Ensano, B.M.B.; Borea, L.; Naddeo, V.; Belgiorno, V.; de Luna, M.D.G.; Balakrishnan, M.; Ballesteros, F.C., Jr. Applicability of the electrocoagulation process in treating real municipal wastewater containing pharmaceutical active compounds. J. Hazard. Mater. 2019, 361, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Oladipo, A.A.; Mustafa, F.S.; Ezugwu, O.N.; Gazi, M. Efficient removal of antibiotic in single and binary mixture of nickel by electrocoagulation process: Hydrogen generation and cost analysis. Chemosphere 2022, 300, 134532. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Liu, F.; Du, X.; Zhang, C.; Yang, C.; Offiong, N.-A.; Bi, Y.; Zeng, W.; Ren, H. Removal of metronidazole from wastewater by electrocoagulation with chloride ions electrolyte: The role of reactive chlorine species and process optimization. Sep. Purif. Technol. 2022, 290, 120799. [Google Scholar] [CrossRef]
- Zhang, H.; Bian, J.; Yang, C.; Hu, Z.; Liu, F.; Zhang, C. Removal of tetracycline from livestock wastewater by positive single pulse current electrocoagulation: Mechanism, toxicity assessment and cost evaluation. Sci. Total. Environ. 2022, 810, 151955. [Google Scholar] [CrossRef] [PubMed]
- Negarestani, M.; Motamedi, M.; Kashtiaray, A.; Khadir, A.; Sillanpää, M. Simultaneous removal of acetaminophen and ibuprofen from underground water by an electrocoagulation unit: Operational parameters and kinetics. Groundw. Sustain. Dev. 2020, 11, 100474. [Google Scholar] [CrossRef]
- Maher, E.K.; O’Malley, K.N.; Heffron, J.; Huo, J.; Mayer, B.K.; Wang, Y.; McNamara, P.J. Analysis of operational parameters, reactor kinetics, and floc characterization for the removal of estrogens via electrocoagulation. Chemosphere 2019, 220, 1141–1149. [Google Scholar] [CrossRef]
- Rius-Ayra, O.; Biserova-Tahchieva, A.; Llorca-Isern, N. Removal of dyes, oils, alcohols, heavy metals and microplastics from water with superhydrophobic materials. Chemosphere 2022, 311 Pt 2, 137148. [Google Scholar] [CrossRef]
- Kausar, A.; Zohra, S.T.; Ijaz, S.; Iqbal, M.; Iqbal, J.; Bibi, I.; Nouren, S.; El Messaoudi, N.; Nazir, A. Cellulose-based materials and their adsorptive removal efficiency for dyes: A review. Int. J. Biol. Macromol. 2022, 224, 1337–1355. [Google Scholar] [CrossRef]
- Guvenc, S.Y.; Can-Güven, E.; Varank, G. Persulfate enhanced electrocoagulation of paint production industry wastewater: Process optimization, energy consumption, and sludge analysis. Process. Saf. Environ. Prot. 2022, 157, 68–80. [Google Scholar] [CrossRef]
- Taheri, M. Techno-economical aspects of electrocoagulation optimization in three acid azo dyes’ removal comparison. Clean. Chem. Eng. 2022, 2, 100007. [Google Scholar] [CrossRef]
- Abbasi, S.; Mirghorayshi, M.; Zinadini, S.; Zinatizadeh, A.A. A novel single continuous electrocoagulation process for treatment of licorice processing wastewater: Optimization of operating factors using RSM. Process. Saf. Environ. Prot. 2020, 134, 323–332. [Google Scholar] [CrossRef]
- Abbasi, S.; Zinatizadeh, A.; Mirghorayshi, M.; Zinadini, S.; McKay, T. Electrocoagulation technique for continuous industrial licorice processing wastewater treatment in a single reactor employing Fe-rod electrodes: Process modeling and optimization and operating cost analysis. J. Environ. Chem. Eng. 2022, 10, 106686. [Google Scholar] [CrossRef]
- Irki, S.; Ghernaout, D.; Naceur, M.W. Decolourization of Methyl Orange (MO) by electrocoagulation (EC) using iron electrodes under a magnetic field (MF). Desalination Water Treat. 2017, 79, 368–377. [Google Scholar] [CrossRef]
- Ma, H.; Wang, B.; Luo, X. Studies on degradation of Methyl Orange wastewater by combined electrochemical process. J. Hazard. Mater. 2007, 149, 492–498. [Google Scholar] [CrossRef]
- Munagapati, V.S.; Yarramuthi, V.; Kim, D.-S. Methyl orange removal from aqueous solution using goethite, chitosan beads and goethite impregnated with chitosan beads. J. Mol. Liq. 2017, 240, 329–339. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S. Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. Surfaces Interfaces 2020, 18, 100422. [Google Scholar] [CrossRef]
- Abdulrazzaq, N.N.; Al-Sabbagh, B.H.; Shanshool, H.A. Coupling of electrocoagulation and microflotation for the removal of textile dyes from aqueous solutions. J. Water Process. Eng. 2021, 40, 101906. [Google Scholar] [CrossRef]
- Ravadelli, M.; da Costa, R.E.; Lobo-Recio, M.A.; Akaboci, T.R.V.; Bassin, J.P.; Lapolli, F.R.; Belli, T.J. Anoxic/oxic membrane bioreactor assisted by electrocoagulation for the treatment of azo-dye containing wastewater. J. Environ. Chem. Eng. 2021, 9, 105286. [Google Scholar] [CrossRef]
- Kalivel, P.; Jagadeesh, T.; Kavitha, S.; Padmanabhan, D.; Palanichamy, J.; Murphy, A. Comparative study on removal of yellow 10gw dye from aqueous solution using Al, Cu electrodes in electrocoagulation. Mater. Today Proc. 2021, 47, 807–813. [Google Scholar] [CrossRef]
- Asaithambi, P.; Govindarajan, R.; Yesuf, M.B.; Selvakumar, P.; Alemayehu, E. Enhanced treatment of landfill leachate wastewater using sono(US)-ozone(O3)–electrocoagulation(EC) process: Role of process parameters on color, COD and electrical energy consumption. Process Saf. Environ. Prot. 2020, 142, 212–218. [Google Scholar] [CrossRef]
- Moneer, A.A.; El-Mallah, N.M.; Ramadan, M.S.; Shaker, A.M. Removal of Acid Green 20 and Reactive Yellow 17 dyes by aluminum electrocoagulation technique in a single and a binary dye system. Egypt. J. Aquat. Res. 2021, 47, 223–230. [Google Scholar]
- Moneer, A.A.; El-Mallah, N.M.; El-Sadaawy, M.M.; Khedawy, M.; Ramadan, M.S. Kinetics, thermodynamics, isotherm modeling for removal of reactive Red 35 and disperse yellow 56 dyes using batch bi-polar aluminum electrocoagulation. Alex. Eng. J. 2021, 60, 4139–4154. [Google Scholar]
- Sorayyaei, S.; Raji, F.; Rahbar-Kelishami, A.; Ashrafizadeh, S.N. Combination of electrocoagulation and adsorption processes to remove methyl orange from aqueous solution. Environ. Technol. Innov. 2021, 24, 102018. [Google Scholar]
- Zhu, Z.; Rao, R.; Zhao, Z.; Chen, J.; Jiang, W.; Bi, F.; Yang, Y.; Zhang, X. Research progress on removal of phthalates pollutants from environment. J. Mol. Liq. 2022, 355, 118930. [Google Scholar]
- Ali, M.; Vellanki, B.P.; Shoaib, M.; Kazmi, A.A. Occurrence of Phthalates in common effluent treatment plants and removal by using Nano Titania-Graphene based photo-catalyst for tertiary treated effluent. J. Hazard. Mater. Adv. 2022, 8, 100192. [Google Scholar] [CrossRef]
- Kabdaşlı, I.; Keleş, A.; Ölmez-Hancı, T.; Tünay, O.; Arslan-Alaton, I. Treatment of phthalic acid esters by electrocoagulation with stainless steel electrodes using dimethyl phthalate as a model compound. J. Hazard. Mater. 2009, 171, 932–940. [Google Scholar]
- Yang, G.C.C.; Chen, Y.-C.; Yang, H.-X.; Yen, C.-H. Performance and mechanisms for the removal of phthalates and pharmaceuticals from aqueous solution by graphene-containing ceramic composite tubular membrane coupled with the simultaneous electrocoagulation and electrofiltration process. Chemosphere 2016, 155, 274–282. [Google Scholar]
- Werkneh, A.A.; Gebru, S.B. Development of ecological sanitation approaches for integrated recovery of biogas, nutrients and clean water from domestic wastewater. Resour. Environ. Sustain. 2023, 11, 100095. [Google Scholar]
- Larsen, T.; Maurer, M. 4.07—Source Separation and Decentralization; Wilderer, P., Ed.; Elsevier: Oxford, UK, 2011; pp. 203–229. [Google Scholar]
- Benekos, A.K.; Zampeta, C.; Argyriou, R.; Economou, C.N.; Triantaphyllidou, I.-E.; Tatoulis, T.I.; Tekerlekopoulou, A.; Vayenas, D.V. Treatment of table olive processing wastewaters using electrocoagulation in laboratory and pilot-scale reactors. Process. Saf. Environ. Prot. 2019, 131, 38–47. [Google Scholar]
- Villalobos-Lara, A.D.; Álvarez, F.; Gamiño-Arroyo, Z.; Navarro, R.; Peralta-Hernández, J.M.; Fuentes, R.; Pérez, T. Electrocoagulation treatment of industrial tannery wastewater employing a modified rotating cylinder electrode reactor. Chemosphere 2021, 264 Pt 2, 128491. [Google Scholar]
- Barzegar, G.; Wu, J.; Ghanbari, F. Enhanced treatment of greywater using electrocoagulation/ozonation: Investigation of process parameters. Process. Saf. Environ. Prot. 2019, 121, 125–132. [Google Scholar] [CrossRef]
- Ahangarnokolaei, M.A.; Attarian, P.; Ayati, B.; Ganjidoust, H.; Rizzo, L. Life cycle assessment of sequential and simultaneous combination of electrocoagulation and ozonation for textile wastewater treatment. J. Environ. Chem. Eng. 2021, 9, 106251. [Google Scholar] [CrossRef]
- Patel, R.K.; Shankar, R.; Khare, P.; Mondal, P. Treatment of sugar processing industry wastewater using copper electrode by electrocoagulation: Performance and economic study. J. Indian Chem. Soc. 2022, 99, 100563. [Google Scholar] [CrossRef]
- Can-Güven, E. Advanced treatment of dye manufacturing wastewater by electrocoagulation and electro-Fenton processes: Effect on COD fractions, energy consumption, and sludge analysis. J. Environ. Manag. 2021, 300, 113784. [Google Scholar] [CrossRef]
- Ahangarnokolaei, M.A.; Ayati, B.; Ganjidoust, H. Simultaneous and sequential combination of electrocoagulation and ozonation by Al and Fe electrodes for DirectBlue71 treatment in a new reactor: Synergistic effect and kinetics study. Chemosphere 2021, 285, 131424. [Google Scholar] [CrossRef] [PubMed]
- Asaithambi, P.; Govindarajan, R.; Yesuf, M.B.; Selvakumar, P.; Alemayehu, E. Investigation of direct and alternating current–electrocoagulation process for the treatment of distillery industrial effluent: Studies on operating parameters. J. Environ. Chem. Eng. 2021, 9, 104811. [Google Scholar] [CrossRef]
- Bote, M.E. Studies on electrode combination for COD removal from domestic wastewater using electrocoagulation. Heliyon 2021, 7, e08614. [Google Scholar] [CrossRef]
- Chen, R.-F.; Wu, L.; Zhong, H.-T.; Liu, C.-X.; Qiao, W.; Wei, C.-H. Evaluation of electrocoagulation process for high-strength swine wastewater pretreatment. Sep. Purif. Technol. 2021, 272, 118900. [Google Scholar] [CrossRef]
- Das, P.P.; Anweshan, A.; Mondal, P.; Sinha, A.; Biswas, P.; Sarkar, S.; Purkait, M.K. Integrated ozonation assisted electrocoagulation process for the removal of cyanide from steel industry wastewater. Chemosphere 2021, 263, 128370. [Google Scholar] [CrossRef]
- Le, T.S.; Dang, N.M.; Tran, D.T. Performance of coupling electrocoagulation and biofiltration processes for the treatment of leachate from the largest landfill in Hanoi, Vietnam: Impact of operating conditions. Sep. Purif. Technol. 2021, 255, 117677. [Google Scholar] [CrossRef]
- Li, K.; Zhang, L.; Jin, X.; Song, J.; Jin, P.; Wei, Y.; Zhu, Y.; Liu, M.; Wang, X.C. Removal performance and membrane fouling mitigation mechanism of electrocoagulation membrane dissolved ozone flotation. J. Water Process. Eng. 2021, 43, 102289. [Google Scholar] [CrossRef]
- Reilly, M.; Cooley, A.P.; Richardson, B.; Tito, D.; Theodorou, M.K. Electrocoagulation of food waste digestate and the suitability of recovered solids for application to agricultural land. J. Water Process. Eng. 2021, 42, 102121. [Google Scholar] [CrossRef]
- Sediqi, S.; Bazargan, A.; Mirbagheri, S.A. Consuming the least amount of energy and resources in landfill leachate electrocoagulation. Environ. Technol. Innov. 2021, 22, 101454. [Google Scholar] [CrossRef]
- Pratiwi, N.I.; Mukimin, A.; Zen, N.; Septarina, I. Integration of electrocoagulation, adsorption and wetland technology for jewelry industry wastewater treatment. Sep. Purif. Technol. 2021, 279, 119690. [Google Scholar] [CrossRef]
- Xu, J.; Qiu, T.; Chen, F.; Zhou, L.; Sun, J.; Du, Y. Construction and application of an electrocoagulation and filtration linkage control system in a recirculating aquaculture system. J. Water Process. Eng. 2021, 44, 102379. [Google Scholar] [CrossRef]
- da Costa, P.R.; Costa, E.C.T.D.A.; Castro, S.S.; Fajardo, A.S.; Martínez-Huitle, C.A. A sequential process to treat a cashew-nut effluent: Electrocoagulation plus electrochemical oxidation. J. Electroanal. Chem. 2019, 834, 79–85. [Google Scholar] [CrossRef]
- Acharya, N.; Thakur, C.; Chaudhari, P. Dataset on statistical reduction of COD by electrocoagulation process using RSM. Data Brief 2020, 28, 104944. [Google Scholar] [CrossRef]
- Akansha, J.; Nidheesh, P.; Gopinath, A.; Anupama, K.; Kumar, M.S. Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process. Chemosphere 2020, 253, 126652. [Google Scholar] [CrossRef]
- Akhtar, A.; Aslam, Z.; Asghar, A.; Bello, M.M.; Raman, A.A.A. Electrocoagulation of Congo Red dye-containing wastewater: Optimization of operational parameters and process mechanism. J. Environ. Chem. Eng. 2020, 8, 104055. [Google Scholar] [CrossRef]
- Alkhatib, A.M.; Hawari, A.H.; Hafiz, M.A.; Benamor, A. A novel cylindrical electrode configuration for inducing dielectrophoretic forces during electrocoagulation. J. Water Process. Eng. 2020, 35, 101195. [Google Scholar] [CrossRef]
- Sun, X.; Wang, X.; Liu, Y.; Lian, Y.; Meng, L.; Su, Z. Removing refractory organic matter from nanofiltration concentrated landfill leachate by electrooxidation combined with electrocoagulation: Characteristics and implication for leachate management. J. Water Process. Eng. 2022, 47, 102747. [Google Scholar] [CrossRef]
- Xie, A.; Ladner, D.A.; Popat, S.C. Electrocoagulation-electroflotation for primary treatment of animal rendering wastewater to enable recovery of fats. Chem. Eng. J. 2022, 431, 133910. [Google Scholar] [CrossRef]
- Bener, S.; Bulca, Ö.; Palas, B.; Tekin, G.; Atalay, S.; Ersöz, G. Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study. Process. Saf. Environ. Prot. 2019, 129, 47–54. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, Y.; Shen, L.; Li, R.; Lin, H. Preparation of nickel@polyvinyl alcohol (PVA) conductive membranes to couple a novel electrocoagulation-membrane separation system for efficient oil-water separation. J. Membr. Sci. 2022, 653, 120541. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, W.; Liu, Y.; Chen, M.; He, Y.; Edem, M.A.; Wang, T.; Chen, J. Optimization of an integrated electrocoagulation/sedimentation unit for purification of polymer-flooding sewage. J. Electroanal. Chem. 2019, 842, 193–202. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, W.; Wang, H.; Zhang, H.; Wang, J.; Yang, J.; Lin, D.; Liang, H. Ferrate-enhanced electrocoagulation/ultrafiltration system on municipal secondary effluent treatment: Identify synergistic contribution of coagulant and oxidation. Sep. Purif. Technol. 2022, 298, 121587. [Google Scholar] [CrossRef]
- Monteil, H.; Pechaud, Y.; Oturan, N.; Trellu, C.; Oturan, M.A. Pilot scale continuous reactor for water treatment by electrochemical advanced oxidation processes: Development of a new hydrodynamic/reactive combined model. Chem. Eng. J. 2021, 404, 127048. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, B.; Li, X.; Zhang, X.; Wang, Y. Electrocoagulation treatment of shale gas drilling wastewater: Performance and statistical optimization. Sci. Total. Environ. 2021, 794, 148436. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, M.; Yao, J.; Long, J. Industrial indigo dyeing wastewater purification: Effective COD removal with peroxi-AC electrocoagulation system. Arab. J. Chem. 2023, 16, 104607. [Google Scholar] [CrossRef]
- Karimi, N.; Mirbagheri, S.A.; Nouri, R.; Bazargan, A. Sequential application of aerated electrocoagulation and γ-Fe2O3 nanoparticle adsorption for COD removal: Consuming the least amount of energy and economic evaluation. Results Eng. 2023, 17, 100770. [Google Scholar] [CrossRef]
- Khorram, A.G.; Fallah, N. Comparison of sludge settling velocity and filtration time after electrocoagulation process in treating industrial textile dyeing wastewater: RSM optimization. Int. J. Environ. Sci. Technol. 2019, 16, 3437–3446. [Google Scholar] [CrossRef]
- Núñez, J.; Yeber, M.; Cisternas, N.; Thibaut, R.; Medina, P.; Carrasco, C. Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry. J. Hazard. Mater. 2019, 371, 705–711. [Google Scholar] [CrossRef] [PubMed]
- GilPavas, E.; Correa-Sanchez, S. Assessment of the optimized treatment of indigo-polluted industrial textile wastewater by a sequential electrocoagulation-activated carbon adsorption process. J. Water Process. Eng. 2020, 36, 101306. [Google Scholar] [CrossRef]
- Sanni, I.; Estahbanati, M.K.; Carabin, A.; Drogui, P. Coupling electrocoagulation with electro-oxidation for COD and phosphorus removal from industrial container wash water. Sep. Purif. Technol. 2022, 282, 119992. [Google Scholar] [CrossRef]
- Priya, M.; Jeyanthi, J. Removal of COD, oil and grease from automobile wash water effluent using electrocoagulation technique. Microchem. J. 2019, 150, 104070. [Google Scholar] [CrossRef]
- John, S.; Soloman, P.A.; Fasnabi, P.A. Study on Removal of Acetamiprid from Wastewater by Electrocoagulation. Procedia Technol. 2016, 24, 619–630. [Google Scholar] [CrossRef]
- Sankar, M.R.; Sivasubramanian, V. Optimization and evaluation of malathion removal by electrocoagulation process and sludge management. J. Environ. Chem. Eng. 2021, 9, 106147. [Google Scholar] [CrossRef]
- Briceño, S.; Reinoso, C. CoFe2O4-chitosan-graphene nanocomposite for glyphosate removal. Environ. Res. 2022, 212, 113470. [Google Scholar] [CrossRef]
- Behloul, M.; Grib, H.; Drouiche, N.; Abdi, N.; Lounici, H.; Mameri, N. Removal of Malathion Pesticide from Polluted Solutions by Electrocoagulation: Modeling of Experimental Results using Response Surface Methodology. Sep. Sci. Technol. 2013, 48, 664–672. [Google Scholar] [CrossRef]
- Hosseini, G.; Maleki, A.; Daraei, H.; Faez, E.; Shahamat, Y.D. Electrochemical Process for Diazinon Removal from Aqueous Media: Design of Experiments, Optimization, and DLLME-GC-FID Method for Diazinon Determination. Arab. J. Sci. Eng. 2015, 40, 3041–3046. [Google Scholar] [CrossRef]
- Saini, R.; Kumar, P. Optimization of chlorpyrifos degradation by Fenton oxidation using CCD and ANFIS computing technique. J. Environ. Chem. Eng. 2016, 4, 2952–2963. [Google Scholar] [CrossRef]
- András, S.K.C.; Béla, D. Forty Years with Glyphosate. In Herbicides; Mohammed Naguib Abd El-Ghany, H., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 14. [Google Scholar]
- Danial, R.; Sobri, S.; Abdullah, L.C.; Mobarekeh, M.N. FTIR, CHNS and XRD analyses define mechanism of glyphosate herbicide removal by electrocoagulation. Chemosphere 2019, 233, 559–569. [Google Scholar] [CrossRef]
- Tao, Y.; Fang, F.; Lv, Q.; Qin, W.; He, X.; Zhang, Y.; Zhou, Y.; Li, X.; Li, J. Highly efficient removal of glyphosate from water by hierarchical-pore UiO-66: Selectivity and effects of natural water particles. J. Environ. Manag. 2022, 316, 115301. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, Y.; Yin, M.; Ma, X.; Lin, S. Removing heavy metal ions with continuous aluminum electrocoagulation: A study on back mixing and utilization rate of electro-generated Al ions. Chem. Eng. J. 2015, 267, 86–92. [Google Scholar] [CrossRef]
- Guvenc, S.Y.; Varank, G.; Can-Güven, E.; Ercan, H.; Yaman, D.; Saricam, E.; Türk, O.K. Application of the hybrid electrocoagulation–electrooxidation process for the degradation of contaminants in acidified biodiesel wastewater. J. Electroanal. Chem. 2022, 926, 116933. [Google Scholar] [CrossRef]
- Hussein, T.K.; Jasim, N.A. A comparison study between chemical coagulation and electro-coagulation processes for the treatment of wastewater containing reactive blue dye. Mater. Today Proc. 2021, 42, 1946–1950. [Google Scholar] [CrossRef]
- Ndjeri, M.; Pensel, A.; Peulon, S.; Haldys, V.; Desmazières, B.; Chaussé, A. Degradation of glyphosate and AMPA (amino methylphosphonic acid) solutions by thin films of birnessite electrodeposited: A new design of material for remediation processes? Colloids Surf. A Physicochem. Eng. Asp. 2013, 435, 154–169. [Google Scholar] [CrossRef]
- Abdel-Gawad, S.A.; Baraka, A.M.; Omran, K.A.; Mokhtar, M.M. Removal of Some Pesticides from the Simulated Waste Water by Electrocoagulation Method Using Iron Electrodes. Int. J. Electrochem. Sci. 2012, 7, 6654–6665. [Google Scholar]
- Millán, M.; Rodrigo, M.A.; Fernández-Marchante, C.M.; Díaz-Abad, S.; Peláez, M.C.; Cañizares, P.; Lobato, J. Towards the sustainable powering of the electrocoagulation of wastewater through the use of solar-vanadium redox flow battery: A first approach. Electrochim. Acta 2018, 270, 14–21. [Google Scholar] [CrossRef]
- Amooey, A.A.; Ghasemi-Mir, S.; Mirsoleimani-Azizi, S.M.; Gholaminezhad, Z.; Chaichi, M.J. Removal of Diazinon from aqueous solution by electrocoagulation process using aluminum electrodes. Korean J. Chem. Eng. 2014, 31, 1016–1020. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Mohammadi, L.; Balarak, D.; Keikhaei, S.; Mahvi, A.H. Optimization of Diazinon Removal from Aqueous Environments by Electrocoagulation Process Using Response Surface Methodology. J. Maz. Univ. Med. Sci. 2016, 26, 118–130. [Google Scholar]
- Heidari, M.; Vosoughi, M.; Sadeghi, H.; Dargahi, A.; Mokhtari, S.A. Degradation of diazinon from aqueous solutions by electro-Fenton process: Effect of operating parameters, intermediate identification, degradation pathway, and optimization using response surface methodology (RSM). Sep. Sci. Technol. 2021, 56, 2287–2299. [Google Scholar] [CrossRef]
- Saini, R.; Kumar, P. Simultaneous removal of methyl parathion and chlorpyrifos pesticides from model wastewater using coagulation/flocculation: Central composite design. J. Environ. Chem. Eng. 2016, 4, 673–680. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, J.; Li, L.; Zhen, G.; Lu, X.; Zhang, J.; Liu, H.; Zhou, Z.; Wu, Z.; Zhang, X. Prospects for humic acids treatment and recovery in wastewater: A review. Chemosphere 2023, 312, 137193. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, W.; Zhan, S.; Qiu, J.; Wang, X.; Wu, Z.; Li, H.; Qiu, Z.; Peng, H. Adsorption and mechanistic study for humic acid removal by magnetic biochar derived from forestry wastes functionalized with Mg/Al-LDH. Sep. Purif. Technol. 2021, 276, 119296. [Google Scholar] [CrossRef]
- Xu, L.; Liu, S.; Zhao, S.; Li, K.; Cao, A.; Wang, J. A novel electrocoagulation-membrane stripping hybrid system for simultaneous ammonia recovery and contaminant removal. Sep. Purif. Technol. 2022, 296, 121377. [Google Scholar] [CrossRef]
- Rajaei, F.; Taheri, E.; Hadi, S.; Fatehizadeh, A.; Amin, M.M.; Rafei, N.; Fadaei, S.; Aminabhavi, T.M. Enhanced removal of humic acid from aqueous solution by combined alternating current electrocoagulation and sulfate radical. Environ. Pollut. 2021, 277, 116632. [Google Scholar] [CrossRef]
- Barhoumi, A.; Ncib, S.; Chibani, A.; Brahmi, K.; Bouguerra, W.; Elaloui, E. High-rate humic acid removal from cellulose and paper industry wastewater by combining electrocoagulation process with adsorption onto granular activated carbon. Ind. Crop. Prod. 2019, 140, 111715. [Google Scholar] [CrossRef]
- Acosta-Santoyo, G.; Raschitor, A.; Bustos, E.; Llanos, J.; Cañizares, P.; Rodrigo, M.A. Electrochemically assisted dewatering for the removal of oxyfluorfen from a coagulation/flocculation sludge. J. Environ. Manag. 2020, 258, 110015. [Google Scholar] [CrossRef]
- El-Ghenymy, A.; Alsheyab, M.; Khodary, A.; Sirés, I.; Abdel-Wahab, A. Corrosion behavior of pure titanium anodes in saline medium and their performance for humic acid removal by electrocoagulation. Chemosphere 2020, 246, 125674. [Google Scholar] [CrossRef]
- Hasani, G.; Maleki, A.; Daraei, H.; Ghanbari, R.; Safari, M.; McKay, G.; Yetilmezsoy, K.; Ilhan, F.; Marzban, N. A comparative optimization and performance analysis of four different electrocoagulation-flotation processes for humic acid removal from aqueous solutions. Process. Saf. Environ. Prot. 2019, 121, 103–117. [Google Scholar] [CrossRef]
- Hu, Q.; He, L.; Lan, R.; Feng, C.; Pei, X. Recent advances in phosphate removal from municipal wastewater by electrocoagulation process: A review. Sep. Purif. Technol. 2023, 308, 122944. [Google Scholar] [CrossRef]
Contaminant | MCLG (mg/L) | MCL or TT (mg/L) |
---|---|---|
Acrylamide | 0.0 | 0.05% dosed at 1 mg/L (or equivalent) |
Alachlor | 0.0 | 0.002 |
Atrazine | 0.003 | 0.003 |
Benzene | 0.0 | 0.005 |
Benzo(a)pyrene (PAHs) | 0.0 | 0.0002 |
Carbofuran | 0.04 | 0.04 |
Carbon tetrachloride | 0.0 | 0.005 |
Chlordane | 0.0 | 0.002 |
Chlorobenzene | 0.1 | 0.1 |
2,4-D | 0.07 | 0.07 |
Dalapon | 0.2 | 0.2 |
1,2-Dibromo-3-chloropropane (DBCP) | 0.0 | 0.0002 |
o-Dichlorobenzene | 0.6 | 0.6 |
p-Dichlorobenzene | 0.075 | 0.075 |
1,2-Dichloroethane | 0.0 | 0.005 |
1,1-Dichloroethylene | 0.007 | 0.007 |
cis-1,2-Dichloroethylene | 0.07 | 0.07 |
trans-1,2-Dichloroethylene | 0.1 | 0.1 |
Dichloromethane | 0.0 | 0.005 |
1,2-Dichloropropane | 0.0 | 0.005 |
Di(2-ethylhexyl) adipate | 0.4 | 0.4 |
Di(2-ethylhexyl) phthalate | 0.0 | 0.006 |
Dinoseb | 0.007 | 0.007 |
Dioxin (2,3,7,8-TCDD) | 0.0 | 0.00000003 |
Diquat | 0.02 | 0.02 |
Endothall | 0.1 | 0.1 |
Endrin | 0.002 | 0.002 |
Epichlorohydrin | 0.0 | 0.01% dosed at 20 mg/L (or equivalent) |
Ethylbenzene | 0.7 | 0.7 |
Ethylene dibromide | 0.0 | 0.00005 |
Glyphosate | 0.7 | 0.7 |
Heptachlor | 0.0 | 0.0004 |
Heptachlor epoxide | 0.0 | 0.0002 |
Hexachlorobenzene | 0.0 | 0.001 |
Hexachlorocyclopentadiene | 0.05 | 0.05 |
Lindane | 0.0002 | 0.0002 |
Methoxychlor | 0.04 | 0.04 |
Oxamyl (Vydate) | 0.2 | 0.2 |
Polychlorinated biphenyls (PCBs) | 0.0 | 0.0005 |
Pentachlorophenol | 0.0 | 0.001 |
Picloram | 0.5 | 0.5 |
Simazine | 0.004 | 0.004 |
Styrene | 0.1 | 0.1 |
Tetrachloroethylene | 0.0 | 0.005 |
Toluene | 1.0 | 1.0 |
Toxaphene | 0.0 | 0.003 |
2,4,5-TP (Silvex) | 0.05 | 0.05 |
1,2,4-Trichlorobenzene | 0.07 | 0.07 |
1,1,1-Trichloroethane | 0.20 | 0.2 |
1,1,2-Trichloroethane | 0.003 | 0.005 |
Trichloroethylene | 0.0 | 0.005 |
Vinyl chloride | 0.0 | 0.002 |
Xylenes (total) | 10 | 10 |
No. | Removed Substance | Anode | Cathode | Efficiency (%) | pH | Time (min) | Power | Ref |
---|---|---|---|---|---|---|---|---|
1 | polyethylene (PE) | Al | Al | 97 | 6 | 10 to 60 | 12 mA/m2 | [82] |
2 | PE | Al | Al | 99 | 7.5 | 60 | 110 A/m2 | [81] |
3 | PE | Al | Al | 93 | 7.2 | — | 10 Volts | [76] |
4 | PMMA | Al | Al | 91 | 7.2 | — | 10 Volts | [76] |
5 | CA | Al | Al | 98 | 7.2 | — | 10 Volts | [76] |
6 | PP | Al | Al | 98 | 7.2 | — | 10 Volts | [76] |
7 | PE | Al | Al | 96 | 4 | 90 | 28.8 A/m2 | [80] |
8 | PS | Fe | Fe | 99 | 7.3–6.5 | — | — | [83] |
No. | Removed Substance | Anode | Cathode | Gap (cm) | Concentration (mg/L) | Efficiency (%) | pH | Time (min) | Power (A/m2) | Ref |
---|---|---|---|---|---|---|---|---|---|---|
1 | COD, CN | Fe | Fe | 1.5 | 1500 | 64, 98 | 5 | 35 | 210 | [125] |
2 | COD | Cu | Cu | 1.5 | 1500 | 73 | 7 | 120 | 89.28 | [150] |
3 | Color, COD, turbidity, alkalinity | Fe, Al | Fe | — | 39, 45, 1500−1600, 230–285 | 90, 89, 82, 73 | 6.5 | 81.8 | 350 | [127] |
4 | Color, COD | Fe | Fe | — | 300–450 1450–1565 | 94, 90 | 6.8 | 90 | 350 | [128] |
5 | COD | Fe or Al | Fe or Al | — | 60 | 50 | 5.5–11 | 90 | 35.4 | [151] |
6 | Dye, COD | Fe or Al | Fe or Al | — | — | 97, 37 | 8 | 30–40 | 35.4 | [152] |
7 | Color, COD | -Fe/Fe | -Fe/Fe | 1 | 3000 | 100, 95 | 7 | 210 | 0.4 | [153] |
8 | COD | Fe | Fe | — | 25 | 85 | 8 | 40 | 160 | [84] |
9 | COD | Al, Fe, Al, Fe | Al, Fe, Fe, Al | — | — | 87, 90, 87 and 89 | 3–9 | 15–60 | 9.23–45 | [154] |
10 | COD, CN, UV254 | (Fe) | — | — | 38, 90, and 52 | 7.3 | 25 | 210 | [151] | |
11 | SS, TP, COD and BOD | Fe Al | SS | 2.0 | 23,000, 132, 5500, 2000 | 98, 99, 50 and 10 | 6.3 | 35 | 300 | [155] |
12 | cyanide, COD, BOD, and chloride ions | Al | Al | — | 0.1, 110, 24, and 975 | 99, 94, 95, and 46 | 8. | 30 | 100 | [156] |
13 | COD, Nitrate | Fe and Al | 7 | 6325, 1256 | 70 and 90 | 8 | 60 | 3 | [157] | |
14 | dissolved organic carbon (DOC) UV254 Color | Fe | SS | 2 | — | 35, 71, 69 | 7.36 | 990 | 100 | [158] |
15 | P, COD | Al and steel | — | — | — | 87, 33 | 7.36 | 30 | — | [159] |
16 | COD | Al | Fe | 3.5 | — | 71 | 5.4 | 60 | — | [160] |
17 | TSS, COD, Cu, CN, and oil & grease | Al | Fe | — | — | 71, 91, 95, 96, 71 | 6–8 | 60 | 41 | [161] |
18 | COD, Turbidity | Al | Al | — | — | 70 | 7 | 40 | 60 | [147] |
19 | RAS for TSS, COD), ammonia, nitrite | Fe | Fe | 2.0 | — | 24, 24, 8, and 1 | 6.92 | 2 | 50 | [162] |
20 | COD TOC | Fe and Al | Fe and Al | 2 | 47.4 | 95 and 87 | 7.0 | 60 | 150 | [148] |
21 | COD | Nb/BDD | SS | — | 424 | 51 | 7.35 | 83.3 | [163] | |
22 | COD | SS 304 | SS 304 | — | — | 77 | 5, 7, 9 | 20 | 27.78 | [164] |
23 | COD | Al-Fe | Al- Fe | — | — | 97 | 7 | 120 | — | [165] |
24 | COD, color | Fe | H2 | 3 | 1000 | 89 97 | 3 | 75 | — | [166] |
25 | P, COD | Al | Al | — | — | 88, 82 | 6.9 | 30 | 40 | [167] |
26 | TOC, UV254, COD and CN | Fe, Al, PbO2 and DSA (Ti/Ru-Ir) | Graphite | 1 | — | 79, 97, 80 and 95 | 7.6 | 60 | 250 | [168] |
27 | Chemical oxygen demand (COD) | Al mesh | Stainless steel mesh | 2 | 4000–10000 | 69 | 8.5 | 15 | 20 | [169] |
28 | TOC, a dissolved organic carbon (DOC), Turbidity, TSS, color | Al | 42, 18, 83, 64, and 90–95 | 7.5–8.5 | 120 | 250 | [170] | |||
29 | Oil-water emulsion separation | Al mesh | Ni@PVA membrane | 99 | 5.5 | 20 | 80 | [171] | ||
30 | Oil | Al | 700 | 97 | 6.8–7.2 | 189 | [172] | |||
31 | UV254, DOC, SMX, CBZ, and ATZ | Fe | Membrane attached to the titanium (Ti) mesh | 0.128 UV 7.08 DOC | 34, 45, 16, 35, and 31 | 7.3–7.8 | 6.25 | [173] | ||
32 | Microplastics PE, PMMA, CA, PP | Al, Fe | Cu | 2 | — | 93, 91, 98 and 98 | 7.2 | 360 | — | [76] |
33 | Total organic carbon (TOC) | BDD | Carbon felt | — | 29.8 | 97 | 3 | 83 | 476 | [174] |
34 | turbidity, TOC, and Ca2+ | Iron | Iron | — | — | 98, 78, and 56 | 4.4 | 20 | 318 | [175] |
35 | COD | Al, Fe | Al, Fe | 538.2 | 98 | 9.55 | 40 | 20 Volts | [176] | |
36 | COD | Fe | Fe | 2.5 | 2970 | 88 | 4 | 20 | 150 | [177] |
37 | COD | Al | Al | 2 | 1200 | 62 | 11.51 | 120 | 285.7 | [177] |
38 | COD | Fe | Fe | 0.5 | 1200 | 35 | 7.43 | 40 | 50 | [178] |
39 | COD | Al | Steel | 1.2 | 800 | 59 | 7.1 | 10 | 80 | [179] |
40 | COD | Al Fe Fe Al | Al Fe Al Fe | — | — | 87 90 88 87 | 3–9 | 15–60 | 9.2, 20, 45 | [154] |
41 | COD | Fe | Fe | 1 | 840 | 63 | 5.4 | 140 | [180] | |
42 | COD | BDD, Ti/IrO2 | Graphite | — | — | 70 | 3–11 | 45 | 91 | [181] |
43 | COD | Fe | Fe | 3.9 | — | 38 | 7.3 | 25 | 210 | [151] |
44 | COD | SS-304 | SS-304 | — | — | 77 | 20 | 27.78 | [164] | |
45 | COD | Cu | Al | 5 | — | 95 | 6 | 40 | 25 | [182] |
No. | Removed Substance | Anode | Cathode | Gap (cm) | Concentration (mg/L) | Efficiency η (%) | pH | Time (min) | Power (A/m2) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1 | Oxyfluorfen | BDD | (Stainless steel or BDD | 428.05 mg/L | 75 | 6.5 | [207] | |||
2 | Malathion | (Fe) | (Al) | 85 | 7.5 | 75 | [184] | |||
3 | Humic acid, NH4 | Al | Electrically conductive membranes | 30, 300 | 99, 68 | 9.3 | 60 | 40 | [204] | |
4 | Humic acid | Al | 70 | 93 | 4 | 30 | 13.88 | [206] | ||
5 | Humic acid | Al | Fe | 30 | 99 | 5 | 25 | 4.5 | [205] | |
6 | Glyphosate | Al | Al | 94 | 6.7 | 60 | 60 | [190] | ||
Fe | Fe | 88 | ||||||||
Steel | Steel | 62 | ||||||||
Cu | Cu | 46 | ||||||||
7 | Malathion | Al | Al | 2 | 40 | 90 | 6 | 10 | 100 | [186] |
8 | Acetamiprid | Al | Al | — | — | 97.6 | 7–8.5 | 0–60 | 0.1–0.5 | [183] |
9 | Diazinon | Al | Al | — | — | 89 | 3 | 35 | 120 | [198] |
10 | Malathion, chlorpyrifos | Fe | Fe | — | — | 98–99 | 6–7 | 10 | 10 | [196] |
11 | Humic acid | Ti | Ti | 0.2 | — | 100 | 9 | 60 | 100 | [208] |
12 | Humic acid | Al | Al | 1 | — | 90 | 6.6 | 10 | 24.3 | [209] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammar, M.; Yousef, E.; Mahmoud, M.A.; Ashraf, S.; Baltrusaitis, J. A Comprehensive Review of the Developments in Electrocoagulation for the Removal of Contaminants from Wastewater. Separations 2023, 10, 337. https://doi.org/10.3390/separations10060337
Ammar M, Yousef E, Mahmoud MA, Ashraf S, Baltrusaitis J. A Comprehensive Review of the Developments in Electrocoagulation for the Removal of Contaminants from Wastewater. Separations. 2023; 10(6):337. https://doi.org/10.3390/separations10060337
Chicago/Turabian StyleAmmar, Mohamed, Ezz Yousef, Muhammed A. Mahmoud, Sherif Ashraf, and Jonas Baltrusaitis. 2023. "A Comprehensive Review of the Developments in Electrocoagulation for the Removal of Contaminants from Wastewater" Separations 10, no. 6: 337. https://doi.org/10.3390/separations10060337
APA StyleAmmar, M., Yousef, E., Mahmoud, M. A., Ashraf, S., & Baltrusaitis, J. (2023). A Comprehensive Review of the Developments in Electrocoagulation for the Removal of Contaminants from Wastewater. Separations, 10(6), 337. https://doi.org/10.3390/separations10060337