Rapid Simultaneous Determination of 11 Synthetic Cannabinoids in Urine by Liquid Chromatography-Triple Quadrupole Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Animal Study
2.3. Working Standards and Calibration Standards
2.4. Pretreatment of Urine Samples
2.5. Determination of Synthetic Cannabinoids by LC-MS/MS
2.6. Method Validation
3. Results and Discussion
3.1. Optimization of Sample Pretreatment
3.2. Establishment of Standard Curves
3.3. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alipour, A.; Patel, P.B.; Shabbir, Z.; Gabrielson, S. Review of the many faces of synthetic cannabinoid toxicities. Ment. Health Clin. 2019, 9, 93–99. [Google Scholar] [CrossRef]
- Alves, V.L.; Goncalves, J.L.; Aguiar, J.; Teixeira, H.M.; Camara, J.S. The synthetic cannabinoids phenomenon: From structure to toxicological properties. A review. Crit. Rev. Toxicol. 2020, 50, 359–382. [Google Scholar] [CrossRef] [PubMed]
- Pintori, N.; Loi, B.; Mereu, M. Synthetic cannabinoids: The hidden side of Spice drugs. Behav. Pharmacol. 2017, 28, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Simolka, K.; Lindigkeit, R.; Schiebel, H.M.; Papke, U.; Ernst, L.; Beuerle, T. Analysis of synthetic cannabinoids in “spice-like” herbal highs: Snapshot of the German market in summer 2011. Anal. Bioanal. Chem. 2012, 404, 157–171. [Google Scholar] [CrossRef]
- Zanda, M.T.; Fattore, L. Old and new synthetic cannabinoids: Lessons from animal models. Drug Metab. Rev. 2018, 50, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Karila, L.; Benyamina, A.; Blecha, L.; Cottencin, O.; Billieux, J. The Synthetic Cannabinoids Phenomenon. Curr. Pharm. Des. 2016, 22, 6420–6425. [Google Scholar] [CrossRef]
- Ellert-Miklaszewska, A.; Ciechomska, I.A.; Kaminska, B. Synthetic Cannabinoids Induce Autophagy and Mitochondrial Apoptotic Pathways in Human Glioblastoma Cells Independently of Deficiency in TP53 or PTEN Tumor Suppressors. Cancers 2021, 13, 419. [Google Scholar] [CrossRef]
- Deng, H.; Verrico, C.D.; Kosten, T.R.; Nielsen, D.A. Psychosis and synthetic cannabinoids. Psychiatry Res. 2018, 268, 400–412. [Google Scholar] [CrossRef]
- Adamowicz, P.; Meissner, E.; Maslanka, M. Fatal intoxication with new synthetic cannabinoids AMB-FUBINACA and EMB-FUBINACA. Clin. Toxicol. 2019, 57, 1103–1108. [Google Scholar] [CrossRef]
- Dobaja, M.; Grenc, D.; Kozelj, G.; Brvar, M. Occupational transdermal poisoning with synthetic cannabinoid cumyl-PINACA. Clin. Toxicol. 2017, 55, 193–195. [Google Scholar] [CrossRef]
- Malinowska, B.; Baranowska-Kuczko, M.; Schlicker, E. Triphasic blood pressure responses to cannabinoids: Do we understand the mechanism? Br. J. Pharmacol. 2012, 165, 2073–2088. [Google Scholar] [CrossRef] [Green Version]
- Anzillotti, L.; Marezza, F.; Calo, L.; Banchini, A.; Cecchi, R. A case report positive for synthetic cannabinoids: Are cardiovascular effects related to their protracted use? Leg. Med. 2019, 41, 101637. [Google Scholar] [CrossRef]
- Angerer, V.; Jacobi, S.; Franz, F.; Auwarter, V.; Pietsch, J. Three fatalities associated with the synthetic cannabinoids 5F-ADB, 5F-PB-22, and AB-CHMINACA. Forensic Sci. Int. 2017, 281, e9–e15. [Google Scholar] [CrossRef] [PubMed]
- Boland, D.M.; Reidy, L.J.; Seither, J.M.; Radtke, J.M.; Lew, E.O. Forty-Three Fatalities Involving the Synthetic Cannabinoid, 5-Fluoro-ADB: Forensic Pathology and Toxicology Implications. J. Forensic Sci. 2020, 65, 170–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomiyama, K.; Funada, M. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: The involvement of cannabinoid CB1 receptors and apoptotic cell death. Toxicol. Appl. Pharmacol. 2014, 274, 17–23. [Google Scholar] [CrossRef]
- Radaelli, D.; Manfredi, A.; Zanon, M.; Fattorini, P.; Scopetti, M.; Neri, M.; Frisoni, P.; D’Errico, S. Synthetic Cannabinoids and Cathinones Cardiotoxicity: Facts and Perspectives. Curr. Neuropharmacol. 2021, 19, 2038–2048. [Google Scholar] [CrossRef] [PubMed]
- Sherma, J.; Rabel, F. Thin layer chromatography in the analysis of cannabis and its components and synthetic cannabinoids. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 613–628. [Google Scholar] [CrossRef]
- Dybowski, M.P.; Holowinski, P.; Typek, R.; Dawidowicz, A.L. Comprehensive analytical characteristics of N-(adamantan-1-yl)-1-(cyclohexylmethyl)-1H-indazole-3-carboxamide (ACHMINACA). Forensic Toxicol. 2020, 39, 230–239. [Google Scholar] [CrossRef]
- Lee, J.H.; Jung, A.; Park, H.N.; Lee, C.; Mandava, S.; Lim, S.J.; Lim, B.B.; Park, S.K.; Lee, J.; Kang, H. Identification and characterization of an indazole-3-carboxamide class synthetic cannabinoid: 2-[1-(cyclohexylmethyl)-1H-indazole-3-carboxamido]-3,3-dimethylbutanoic acid (DMBA-CHMINACA). Forensic Sci. Int. 2018, 291, 167–174. [Google Scholar] [CrossRef]
- Anzillotti, L.; Marezza, F.; Calo, L.; Andreoli, R.; Agazzi, S.; Bianchi, F.; Careri, M.; Cecchi, R. Determination of synthetic and natural cannabinoids in oral fluid by solid-phase microextraction coupled to gas chromatography/mass spectrometry: A pilot study. Talanta 2019, 201, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Staeheli, S.N.; Veloso, V.P.; Bovens, M.; Bissig, C.; Kraemer, T.; Poetzsch, M. Liquid chromatography-tandem mass spectrometry screening method using information-dependent acquisition of enhanced product ion mass spectra for synthetic cannabinoids including metabolites in urine. Drug Test. Anal. 2019, 11, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Jambo, H.; Dispas, A.; Avohou, H.T.; André, S.; Hubert, C.; Lebrun, P.; Ziemons, É.; Hubert, P. Implementation of a generic SFC-MS method for the quality control of potentially counterfeited medicinal cannabis with synthetic cannabinoids. J. Chromatogr. B 2018, 1092, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Al-Eitan, L.N.; Asa’ad, A.S.; Battah, A.H.; Aljamal, H.A. Application of Gas Chromatography-Mass Spectrometry for the Identification and Quantitation of Three Common Synthetic Cannabinoids in Seized Materials from the Jordanian Market. ACS Omega 2020, 5, 4172–4180. [Google Scholar] [CrossRef] [Green Version]
- Taverniers, I.; De Loose, M.; Van Bockstaele, E. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. TrAC Trends Anal. Chem. 2004, 23, 535–552. [Google Scholar] [CrossRef]
- Ambroziak, K.; Adamowicz, P. Simple screening procedure for 72 synthetic cannabinoids in whole blood by liquid chromatography-tandem mass spectrometry. Forensic Toxicol. 2018, 36, 280–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simoes, S.S.; Silva, I.; Ajenjo, A.C.; Dias, M.J. Validation and application of an UPLC-MS/MS method for the quantification of synthetic cannabinoids in urine samples and analysis of seized materials from the Portuguese market. Forensic Sci. Int. 2014, 243, 117–125. [Google Scholar] [CrossRef]
- Yeter, O.; Erol Ozturk, Y. Detection and quantification of 5F-ADB and its methyl ester hydrolysis metabolite in fatal intoxication cases by liquid chromatography-high resolution mass spectrometry. Forensic Sci. Int. 2019, 302, 109866. [Google Scholar] [CrossRef]
- Herrero, P.; Borrull, F.; Pocurull, E.; Marce, R.M. Novel amide polar-embedded reversed-phase column for the fast liquid chromatography-tandem mass spectrometry method to determine polyether ionophores in environmental waters. J. Chromatogr. A 2012, 1263, 7–13. [Google Scholar] [CrossRef]
- Gundersen, P.O.M.; Spigset, O.; Josefsson, M. Screening, quantification, and confirmation of synthetic cannabinoid metabolites in urine by UHPLC-QTOF-MS. Drug Test. Anal. 2019, 11, 51–67. [Google Scholar] [CrossRef] [Green Version]
- Akamatsu, S.; Mitsuhashi, T. MEKC-MS/MS method using a volatile surfactant for the simultaneous determination of 12 synthetic cannabinoids. J. Sep. Sci. 2014, 37, 304–307. [Google Scholar] [CrossRef]
- Borova, V.L.; Gago-Ferrero, P.; Pistos, C.; Thomaidis, N.S. Multi-residue determination of 10 selected new psychoactive substances in wastewater samples by liquid chromatography-tandem mass spectrometry. Talanta 2015, 144, 592–603. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Zhang, D.; Jemal, M.; Aubry, A.F. Systematic evaluation of the root cause of non-linearity in liquid chromatography/tandem mass spectrometry bioanalytical assays and strategy to predict and extend the linear standard curve range. Rapid Commun. Mass Spectrom. 2012, 26, 1465–1474. [Google Scholar] [CrossRef]
- Ucles, S.; Lozano, A.; Sosa, A.; Parrilla Vazquez, P.; Valverde, A.; Fernandez-Alba, A.R. Matrix interference evaluation employing GC and LC coupled to triple quadrupole tandem mass spectrometry. Talanta 2017, 174, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.; Vàzquez, L.; Ventura, F.; Galceran, M.T. Estimation of measurement uncertainty for the determination of nonylphenol in water using solid-phase extraction and solid-phase microextraction procedures. Anal. Chim. Acta 2004, 506, 71–80. [Google Scholar] [CrossRef]
- Knittel, J.L.; Holler, J.M.; Chmiel, J.D.; Vorce, S.P.; Magluilo, J., Jr.; Levine, B.; Ramos, G.; Bosy, T.Z. Analysis of Parent Synthetic Cannabinoids in Blood and Urinary Metabolites by Liquid Chromatography Tandem Mass Spectrometry. J. Anal. Toxicol. 2016, 40, 173–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borg, D.; Tverdovsky, A.; Stripp, R. A Fast and Comprehensive Analysis of 32 Synthetic Cannabinoids Using Agilent Triple Quadrupole LC-MS-MS. J. Anal. Toxicol. 2017, 41, 6–16. [Google Scholar] [CrossRef] [Green Version]
Compound | Molecular Formula | Retention Time (min) | Precursor Ion (m/z) | Daughter Ion (m/z) | Collision Energy (V) |
---|---|---|---|---|---|
JWH-122 | C25H25NO | 8.98 | 356.2 | 169.2 a/214.2 | 32/32 |
5F-AMB | C19H26FN3O3 | 7.60 | 364.2 | 233.2 a/304.2 | 32/21 |
AMB-FUBINACA | C21H21FN3O3 | 7.73 | 384.2 | 253.2 a/324.2 | 30/23 |
UR-144 | C21H29NO | 9.21 | 312.2 | 125.2 a/214.1 | 30/32 |
RCS-4 | C21H23NO2 | 8.21 | 322.2 | 135.2 a/214.2 | 31/32 |
AB-CHMINACA | C20H28N4O2 | 7.34 | 357.2 | 241.2 a/169.2 | 34/35 |
AB-PINACA | C18H26N4O2 | 6.95 | 331.2 | 286.2 a/314.2 | 21/13 |
MDMB-FUBINACA | C22H24FN3O3 | 8.02 | 398.2 | 253.1 a/338.1 | 33/19 |
5F-ADB | C20H28FN3O3 | 7.91 | 378.2 | 223.1 a/318.3 | 31/23 |
ADB-FUBINACA | C21H23FN4O2 | 6.82 | 383.1 | 253.1 a/338.2 | 34/23 |
5F-MDMB-PICA | C21H29FN2O3 | 7.53 | 377.2 | 144.1 a/232.2 | 56/20 |
Compound | Urine Matrix Standard Curve | R² | LOQ (ng/mL) |
---|---|---|---|
JWH-122 | y = 3.02938 × 106x + 5.09168 × 104 | 0.99841 | 0.01 |
5F-AMB | y = 2.88293 × 106x + 5.16729 × 104 | 0.99835 | 0.03 |
AMB-FUBINACA | y = 2.86395 × 106x + 4.24124 × 104 | 0.99930 | 0.01 |
UR-144 | y = 1.48598 × 106x + 27734.81100 | 0.99912 | 0.03 |
RCS-4 | y = 3.80986 × 106x + 1.12702 × 105 | 0.99578 | 0.03 |
AB-CHMINACA | y = 3.45358 × 105x + 5.58886 × 104 | 0.99829 | 0.1 |
AB-PINACA | y = 3.47936 × 105x + 20569.85965 | 0.99894 | 0.1 |
MDMB-FUBINACA | y = 1.44915 × 106x + 5.04729 × 104 | 0.99726 | 0.03 |
5F-ADB | y = 9.51164 × 105x + 6.20371 × 104 | 0.99592 | 0.03 |
ADB-FUBINACA | y = 2.35373 × 106x + 6.78715 × 104 | 0.99253 | 0.1 |
5F-MDMB-PICA | y = 9.01193 × 105x + 8.52260 × 104 | 0.99541 | 0.1 |
Compound | 0.1 ng/mL Sample Matrix Effect% | 1 ng/mL Sample Matrix Effect% | 10 ng/mL Sample Matrix Effect% |
---|---|---|---|
JWH-122 | 99.3 | 94.6 | 97.8 |
5F-AMB | 104.2 | 106.1 | 97.7 |
AMB-FUBINACA | 91.4 | 95.8 | 90.7 |
UR-144 | 97.9 | 98.9 | 92.9 |
RCS-4 | 83.6 | 91.9 | 101.8 |
AB-CHMINACA | 89.8 | 93.8 | 95.3 |
AB-PINACA | 76.7 | 96.8 | 94.0 |
MDMB-FUBINACA | 98.0 | 81.6 | 92.6 |
5F-ADB | 92.5 | 91.9 | 98.1 |
ADB-FUBINACA | 94.0 | 97.0 | 101.2 |
5F-MDMB-PICA | 105.2 | 92.0 | 97.9 |
Compound | 1 ng/mL | 10 ng/mL | 100 ng/mL | |||
---|---|---|---|---|---|---|
Recovery% | RSD% | Recovery% | RSD% | Recovery% | RSD% | |
JWH-122 | 78.85 | 2.14 | 75.04 | 0.52 | 79.63 | 0.85 |
5F-AMB | 76.03 | 18.68 | 75.84 | 0.92 | 95.85 | 0.59 |
AMB-FUBINACA | 107.70 | 18.95 | 79.26 | 3.62 | 71.03 | 2.21 |
UR-144 | 75.58 | 16.51 | 72.08 | 7.39 | 81.99 | 12.59 |
RCS-4 | 85.94 | 9.77 | 78.78 | 5.31 | 76.26 | 7.89 |
AB-CHMINACA | 93.76 | 11.43 | 87.90 | 15.67 | 98.82 | 10.16 |
AB-PINACA | 118.39 | 9.98 | 69.90 | 4.38 | 82.00 | 7.29 |
MDMB-FUBINACA | 73.07 | 3.97 | 76.04 | 6.62 | 91.38 | 6.03 |
5F-ADB | 94.59 | 10.25 | 74.59 | 3.30 | 92.04 | 7.02 |
ADB-FUBINACA | 106.17 | 8.95 | 72.3 | 8.95 | 100.49 | 13.26 |
5F-MDMB-PICA | 82.75 | 10.22 | 70.38 | 6.32 | 74.61 | 5.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zhang, F.; Ke, X.; Jia, W.; Wan, X.; Zhang, L.; Fan, Y.; Zhou, J. Rapid Simultaneous Determination of 11 Synthetic Cannabinoids in Urine by Liquid Chromatography-Triple Quadrupole Mass Spectrometry. Separations 2023, 10, 203. https://doi.org/10.3390/separations10030203
Wu J, Zhang F, Ke X, Jia W, Wan X, Zhang L, Fan Y, Zhou J. Rapid Simultaneous Determination of 11 Synthetic Cannabinoids in Urine by Liquid Chromatography-Triple Quadrupole Mass Spectrometry. Separations. 2023; 10(3):203. https://doi.org/10.3390/separations10030203
Chicago/Turabian StyleWu, Jianbing, Fan Zhang, Xing Ke, Wei Jia, Xuzhi Wan, Lange Zhang, Yilei Fan, and Jing Zhou. 2023. "Rapid Simultaneous Determination of 11 Synthetic Cannabinoids in Urine by Liquid Chromatography-Triple Quadrupole Mass Spectrometry" Separations 10, no. 3: 203. https://doi.org/10.3390/separations10030203