Comparative GC Analysis, Bronchodilator Effect and the Detailed Mechanism of Their Main Component—Cinnamaldehyde of Three Cinnamon Species
Abstract
1. Introduction
2. Materials and Methods
2.1. General
2.2. Chemicals
2.3. Plant Materials
2.4. Essential Oils Preparation
2.5. GC/MS Analysis
2.6. GC/FID Analysis
2.7. Purification of Compounds 1
2.8. Synthesis of Compound 2
2.9. Animals
2.10. Guinea Pig Trachea
2.11. Statistical Analysis
3. Results
3.1. Essential Oils Preparation
3.2. GC/MS and GC/FID Analysis
3.3. Effect on Trachea
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, M. International Trade in Non-Wood Forest Products: An Overview; FO: Misc/93/11—Working Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1993. [Google Scholar]
- Toussaint-Samat, M. A History of Food, New expanded Ed.; Anthea, Translator; Wiley-Blackwell: Chichester, UK, 2009. [Google Scholar]
- Hariri, M.; Ghiasvand, R. Cinnamon and Chronic Diseases. In Drug Discovery from Mother Nature; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2016; Volume 929, pp. 1–24. [Google Scholar]
- UN Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). Global Cinnamon Production in 2017; Crops/Regions/World Regions/Production Quantity (Pick Lists); UN Food and Agriculture Organization Corporate Statistical Database (FAOSTAT): Rome, Italy, 2018. [Google Scholar]
- Kawatra, P.; Rajagopalan, R. Cinnamon: Mystic powers of a minute ingredient. Pharmacogn. Res. 2015, 7 (Suppl. S1), S1–S6. [Google Scholar] [CrossRef]
- Jakhetia, V.; Patel, R.; Khatri, P.; Pahuja, N.; Pandey, A.; Gyan, S. Cinnamon: A pharmacological review. J. Adv. Sci. Res. 2010, 1, 19–23. [Google Scholar]
- Wondrak, G.T.; Villeneuve, N.F.; Lamore, S.D.; Bause, A.S.; Jiang, T.; Zhang, D.D. The Cinnamon-Derived Dietary Factor Cinnamic Aldehyde Activates the Nrf2-Dependent Antioxidant Response in Human Epithelial Colon Cells. Molecules 2010, 15, 3338–3355. [Google Scholar] [CrossRef] [PubMed]
- Hossein, N.; Zahra, Z.; Abolfazl, M.; Mahdi, S.; Ali, K. Effect of Cinnamon zeylanicum essence and distillate on the clotting time. J. Med. Plant. Res. 2013, 7, 1339–1343. [Google Scholar]
- Allen, R.W.; Schwartzman, E.; Baker, W.; Coleman, C.; Phung, O.J. Cinnamon Use in Type 2 Diabetes: An Updated Systematic Review and Meta-Analysis. Ann. Fam. Med. 2013, 11, 452–459. [Google Scholar] [CrossRef]
- Matan, N.; Rimkeeree, H.; Mawson, A.; Chompreeda, P.; Haruthaithanasan, V.; Parker, M. Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. Int. J. Food Microbiol. 2006, 107, 180–185. [Google Scholar] [CrossRef]
- Mancini-Filho, J.; Van-Koiij, A.; Mancini, D.A.; Cozzolino, F.F.; Torres, R.P. Antioxidant activity of cinnamon (Cinnamomum Zeylanicum, Breyne) extracts. Boll. Chim. Farm. 1998, 137, 443–447. [Google Scholar]
- Chao, L.K.; Hua, K.-F.; Hsu, H.-Y.; Cheng, S.-S.; Liu, J.-Y.; Chang, S.-T. Study on the Antiinflammatory Activity of Essential Oil from Leaves of Cinnamomum osmophloeum. J. Agric. Food Chem. 2005, 53, 7274–7278. [Google Scholar] [CrossRef]
- Tung, Y.-T.; Yen, P.-L.; Lin, C.-Y.; Chang, S.-T. Anti-inflammatory activities of essential oils and their constituents from different provenances of indigenous cinnamon (Cinnamomum osmophloeum) leaves. Pharm. Biol. 2010, 48, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.-O.; Lee, S.-M.; Moon, Y.-S.; Lee, S.-G.; Ahn, Y.-J. Nematicidal Activity of Cassia and Cinnamon Oil Compounds and Related Compounds toward Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae). J. Nematol. 2007, 39, 31–36. [Google Scholar]
- Cheng, S.-S.; Liu, J.-Y.; Tsai, K.-H.; Chen, W.-J.; Chang, S.-T. Chemical Composition and Mosquito Larvicidal Activity of Essential Oils from Leaves of Different Cinnamomum osmophloeum Provenances. J. Agric. Food Chem. 2004, 52, 4395–4400. [Google Scholar] [CrossRef]
- Cheng, S.-S.; Liu, J.-Y.; Huang, C.-G.; Hsui, Y.-R.; Chen, W.-J.; Chang, S.-T. Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresour. Technol. 2009, 100, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Bandara, T.; Uluwaduge, I.; Jansz, E.R. Bioactivity of cinnamon with special emphasis on diabetes mellitus: A review. Int. J. Food Sci. Nutr. 2012, 63, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Koppikar, S.J.; Choudhari, A.S.; Suryavanshi, S.A.; Kumari, S.; Chattopadhyay, S.; Kaul-Ghanekar, R. Aqueous Cinnamon Extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Cancer 2010, 10, 210. [Google Scholar] [CrossRef]
- Marongiu, B.; Piras, A.; Porcedda, S.; Tuveri, E.; Sanjust, E.; Meli, M.; Sollai, F.; Zucca, P.; Rescigno, A. Supercritical CO2 Extract of Cinnamomum zeylanicum: Chemical Characterization and Antityrosinase Activity. J. Agric. Food Chem. 2007, 55, 10022–10027. [Google Scholar] [CrossRef]
- Chou, S.-T.; Chang, W.-L.; Chang, C.-T.; Hsu, S.-L.; Lin, Y.-C.; Shih, Y. Cinnamomum cassia Essential Oil Inhibits α-MSH-Induced Melanin Production and Oxidative Stress in Murine B16 Melanoma Cells. Int. J. Mol. Sci. 2013, 14, 19186–19201. [Google Scholar] [CrossRef] [PubMed]
- ESCOP. ESCOP Monographs: The Scientific Foundation for Herbal Medicinal Products, 2nd ed.; Thieme: Stuttgart, Germany; New York, NY, USA, 2003. [Google Scholar]
- Tisserand, R.; Young, R. Essential Oils Safety, 2nd ed.; Churchill Living-Stone Elsevier: London, UK, 2014. [Google Scholar]
- Rehman, N.U.; Salkini, M.A.A.; Alanizi, H.M.K.; Alharbi, A.G.; Alqarni, M.H.; Abdel-Kader, M.S. Achillea fragrantissima Essential Oil: Composition and Detailed Pharmacodynamics Study of the Bronchodilator Activity. Separations 2022, 9, 334. [Google Scholar] [CrossRef]
- Horváth, G.; Ács, K. Essential oils in the treatment of respiratory tract diseases highlighting the irrolein bacterial infections and their anti-inflammatory action: A review. Flavour Fragr. J. 2015, 30, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Damtie, D.; Braunberger, C.; Conrad, J.; Mekonnen, Y.; Beifuss, U. Composition and hepatoprotective activity of essential oils from Ethiopian thyme species (Thymus serrulatus and Thymus schimperi). J. Essent. Oil Res. 2018, 31, 120–128. [Google Scholar] [CrossRef]
- Rehman, N.U.; Ansari, M.N.; Hailea, T.; Karim, A.; Abujheisha, K.Y.; Ahamad, S.R.; Imam, F. Possible tracheal relaxant and antimicrobial effects of the essential oil of Ethiopian thyme specie (Thymus serrulatus Hoschst. Ex Benth.): A multiple mechanistic approach. Front. Pharmacol. 2021, 12, 615228. [Google Scholar] [CrossRef]
- National Research Council (NRC). Guide for the Care and Use of Laboratory Animals; National Academy Press: Washington, DC, USA, 1996; pp. 1–7.
- Moghadam, Z.A.; Hosseini, H.; Hadian, Z.; Asgari, B.; Mirmoghtadaie, L.; Mohammadi, A.; Shamloo, E.; Javadi, N.H.S. Evaluation of the Antifungal Activity of Cinnamon, Clove, Thymes, Zataria Multiflora, Cumin and Caraway Essential Oils against Ochratoxigenic Aspergillus ochraceus. J. Pharm. Res. Int. 2019, 26, 1–16. [Google Scholar] [CrossRef]
- Gotmare, S.; Tambe, E. Identification of Chemical Constituents of Cinnamon Bark Oil by GCMS and Comparative Study Garnered from Five Different Countries. Glob. J. Sci. Front. Res. C Biol. Sci. 2019, 19, 35–42. [Google Scholar]
- Zhang, G.; Han, X.; Luan, Y.; Wang, Y.; Wen, X.; Ding, C. L-Proline: An Efficient N,O-Bidentate Ligand for Copper-Catalyzed Aerobic Oxidation of Primary and Secondary Benzylic Alcohols at Room Temperature. Chem. Comm. 2013, 49, 7908–7910. [Google Scholar] [CrossRef]
- Abdel-Kader, M.S.; Omar, A.A.; Abdel-Salam, N.A.; Stermitz, F.R. Erythroxan diterpenes from Fagonia species. Phytochemistry 1994, 36, 1431–1433. [Google Scholar] [CrossRef]
- Mahata, S.; Sahu, A.; Shukla, P.; Rai, A.; Singh, M.; Rai, V. The novel and efficient reduction of graphene oxide using Ocimum sanctum L. leaf extract as an alternative renewable bio-resource. New J. Chem. 2018, 42, 19945–19952. [Google Scholar] [CrossRef]
- Abdel-Kader, M.; Hoch, J.; Berger, J.M.; Evans, R.; Miller, J.S.; Wisse, J.H.; Mamber, S.W.; Dalton, J.M.; Kingston, D.G. Two bioactive saponins from Albizia subdimidiata from the Suriname rainforest. J. Nat. Prod. 2001, 64, 536–539. [Google Scholar] [CrossRef]
- Seo, D.J.; Nguyen, D.M.C.; Kim, T.H.; Kim, K.Y.; Jung, W.J. Nematode-antagonistic effects of Cinnamomum aromaticum extracts and a purified compound against Meloidogyne incognita. Nematology 2012, 14, 913–924. [Google Scholar]
- Abdel-Kader, M.S.; Rehman, N.U.; Alghafis, M.A.; Al-Matri, M.A. Brochodilator Phenylpropanoid Glycosides from the Seeds of Prunus mahaleb L. Rec. Nat. Prod. 2022, 5, 443–453. [Google Scholar] [CrossRef]
- Rehman, N.U.; Khan, A.U.; Alkharfy, K.M.; Gilani, A.H. Pharmacological basis for the medicinal use of Lepidium sativum in airways disorders. Evid.-Based Complement. Altern. Med. 2012, 2021, 596524. [Google Scholar]
- Hamilton, T.C.; Weir, S.W.; Weston, T.H. Comparison of the effects of BRL34915 and verapamil on electrical and mechanical activity in rat portal vein. Br. J. Pharmacol. 1986, 88, 103–111. [Google Scholar] [CrossRef]
- Kishii, K.; Morimoto, T.; Nakajima, N.; Yamazaki, K.; Tsujitani, M.; Takayanagi, I. Effect of LP-805, a novel vasorelaxant agent, a potassium channel opener on rat thoracic aorta. Gen. Pharmacol. 1992, 23, 347–353. [Google Scholar] [CrossRef]
- Gopalakrishnan, M.; Buckner, S.A.; Shieh, C.C.; Fey, T.; Fabiyi, A.; Whiteaker, K.L.; Taber, R.D.; Milicic, I.; Daza, A.V.; Scott, V.E.S.; et al. In-vitro and in-vivo characterization of a novel naphthylamide ATP-sensitive K+ channel opener, A-151892. Br. J. Pharmacol. 2004, 143, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Frank, H.; Puschmann, A.; Schusdziarra, V.; Allescher, H.D. Functional evidence for a glibenclamide-sensitive K+ channel in rat ileal smooth muscle. Eur. J. Pharmacol. 1994, 271, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.P.; McCurrie, J.R.; Wood, D. Comparative effects of K+ channel modulating agents on contractions of rat intestinal smooth muscle. Eur. J. Pharmacol. 1996, 297, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.J.; Raeburn, D. RP 49356 and cromakalim relax airway smooth muscle in-vitro by opening a sulphonylurea-sensitive K+ channel: A comparison with nifedipine. J. Pharmacol. Exp. Therap. 1991, 256, 480–485. [Google Scholar]
- Deitmer, P.; Golenhofen, K.; Noack, T. Comparison of the relaxing effects of cicletanine and cromakalim on vascular smooth muscle. J. Cardiovasc. Pharmacol. 1992, 20, 35–42. [Google Scholar]
- Moura, R.S.D.; Mello, R.F.D.; Daguinaga, S. Inhibitory effect of cromakalim in human detrusor muscle is mediated by glibenclamide-sensitive potassium channels. J. Urol. 1993, 149, 1174–1177. [Google Scholar] [CrossRef]
- Empfield, J.R.; Russell, K.; Trainor, D.A. Potassium channel openers: Therapeutic possibilities. Pharm. News 1995, 6, 23–27. [Google Scholar]
- Poggioli, R.; Benelli, A.; Arletti, R.; Cavazzuti, E.; Bertolini, A. K+ channel openers delay intestinal transit and have antidiarrheal activity. Eur. J. Pharmacol. 1995, 287, 207–209. [Google Scholar] [CrossRef]
- Shieh, C.C.; Coghlan, M.; Sullivan, J.P.; Gopalakrishnan, M. Potassium channels: Molecular defects, diseases and therapeutic opportunities. Pharmacol. Rev. 2000, 52, 557–593. [Google Scholar]
- Cook, N.S. The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol. Sci. 1988, 9, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.agri.ruh.ac.lk/Departments/Engineering/cinnamon/Agronomy.htm (accessed on 8 March 2023).
- Available online: https://k-agriculture.com/vietnam-cinnamon-production-the-most-complete-information/#Main_growing_areas_of_Vietnam_cinnamon_production (accessed on 8 March 2023).
C. verum | C. cassia | C. loureiroi | |
---|---|---|---|
Sample weight (g) | 100 | 100 | 100 |
Oil weight (g) | 2.72 ± 0.079 | 2.2 ± 0.094 | 2.5 ± 0.082 |
Total % Yield (W/W) | 2.72% | 2.2% | 2.5% |
Components | RT (min) | Estimated RI | Literature RI | Area % | ||
---|---|---|---|---|---|---|
Ceylon Cin | China Cin | Vietnam Cin | ||||
(E)-Cinnamaldehyde (1) | 17.9662 | 1266 | 1266 | 94.70 | 99.99 | 97.52 |
Cinnamyl acetate (2) | 20.7994 | 1415 | 1418 | 1.668 | - | - |
2-Methoxycinnamaldehyde (3) | 24.4865 | 1509 | 1512 | 0.493 | - | - |
Total % Yield | 96.864 | 99.99 | 97.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, N.U.; Albaqami, F.F.; Salkini, M.A.A.; Farahat, N.M.; Alharbi, H.H.; Almuqrin, S.M.; Abdel-Kader, M.S.; Sherif, A.E. Comparative GC Analysis, Bronchodilator Effect and the Detailed Mechanism of Their Main Component—Cinnamaldehyde of Three Cinnamon Species. Separations 2023, 10, 198. https://doi.org/10.3390/separations10030198
Rehman NU, Albaqami FF, Salkini MAA, Farahat NM, Alharbi HH, Almuqrin SM, Abdel-Kader MS, Sherif AE. Comparative GC Analysis, Bronchodilator Effect and the Detailed Mechanism of Their Main Component—Cinnamaldehyde of Three Cinnamon Species. Separations. 2023; 10(3):198. https://doi.org/10.3390/separations10030198
Chicago/Turabian StyleRehman, Najeeb Ur, Faisal F. Albaqami, Mohammad Ayman A. Salkini, Noureldin M. Farahat, Hatim H. Alharbi, Saad M. Almuqrin, Maged S. Abdel-Kader, and Asmaa E. Sherif. 2023. "Comparative GC Analysis, Bronchodilator Effect and the Detailed Mechanism of Their Main Component—Cinnamaldehyde of Three Cinnamon Species" Separations 10, no. 3: 198. https://doi.org/10.3390/separations10030198
APA StyleRehman, N. U., Albaqami, F. F., Salkini, M. A. A., Farahat, N. M., Alharbi, H. H., Almuqrin, S. M., Abdel-Kader, M. S., & Sherif, A. E. (2023). Comparative GC Analysis, Bronchodilator Effect and the Detailed Mechanism of Their Main Component—Cinnamaldehyde of Three Cinnamon Species. Separations, 10(3), 198. https://doi.org/10.3390/separations10030198