Analysis of Sugars in Honey Samples by Capillary Zone Electrophoresis Using Fluorescence Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instrumentation
2.3. Sample Preparation for Fluorescence Detection
3. Results and Discussion
3.1. CZE Separations of APTS-Labeled Carbohydrates
3.2. Analysis of Sugars in Honey Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and health: A review of recent clinical research. Phcog. Res. 2017, 9, 121–127. [Google Scholar] [PubMed]
- Machado de-Melo, A.A.; Bicudo de Almeida-Muradian, L.; Sancho, M.T.; Pascual-Mate, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 2018, 57, 5–37. [Google Scholar] [CrossRef]
- Asquieri, E.R.; Gomes de Moura, A.S.; Dianiny de Cassia, S.M.; Batista, R.D. Comparison of titulometric and spectrophotometric approaches towards the determination of total soluble and insoluble carbohydrates in foodstuff. Carpathian J. Food Sci. Technol. 2019, 11, 69–79. [Google Scholar]
- BeMiller, J.N. Chapter 10-Carbohydrate Analysis, Food Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 147–177. [Google Scholar]
- Slimestad, R.; Vagen, I.M. Thermal stability of glucose and other sugar aldoses in normal phase high performance liquid chromatography. J. Chromatogr. A 2006, 1118, 281–284. [Google Scholar] [CrossRef]
- Cordella, C.; Militao, J.S.L.T.; Clement, M.C.; Drajnudela, P.; Cabrol-Bass, D. Detection and quantification of honey adulteration via direct incorporation of sugar syrups or bee-feeding: Preliminary study using high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and chemometrics. Anal. Chim. Acta 2005, 531, 239–248. [Google Scholar] [CrossRef]
- Hetricka, E.M.; Kramer, T.T.; Risleya, D.S. Evaluation of a hydrophilic interaction liquid chromatography design space for sugars and sugar alcohols. J. Chromatogr. A 2017, 1489, 65–74. [Google Scholar] [CrossRef]
- Weiβ, K.; Alt, M. Determination of single sugars, including inulin, in plants and feed materials by high-performance liquid chromatography and refraction index detection. Fermentation 2017, 3, 36. [Google Scholar]
- Al-Sanea, M.M.; Gamal, M. Critical analytical review: Rare and recent applications of refractive index detector in HPLC chromatographic drug analysis. Microchem. J. 2022, 178, 107339. [Google Scholar] [CrossRef]
- Jalaludin, I.; Kim, J. Comparison of ultraviolet and refractive index detections in the HPLC analysis of sugars. Food Chem. 2021, 365, 130514. [Google Scholar] [CrossRef]
- Suzuki, S.; Honda, S. A tabulated review of capillary electrophoresis of carbohydrates. Electrophoresis 1998, 19, 2539–2560. [Google Scholar] [CrossRef]
- Rassi, Z.E. Recent developments in capillary electrophoresis and capillary electrochromatography of carbohydrate species. Electrophoresis 1999, 20, 3134–3144. [Google Scholar] [CrossRef]
- Lu, G.; Crihfield, C.L.; Gattu, S.; Veltri, L.M.; Holland, L.A. Capillary electrophoresis separations of glycans. Chem. Rev. 2018, 118, 7867–7885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arentoft, A.M.; Michaelsen, S.; Sorensen, H. Determination of oligosaccharides by capillary zone electrophoresis. J. Chromatogr. A 1993, 652, 517–524. [Google Scholar] [CrossRef]
- Honda, S. Separation of neutral carbohydrates by capillary electrophoresis. J. Chromatogr. A 1996, 720, 337–351. [Google Scholar] [CrossRef]
- Mantovani, V.; Galeotti, F.; Maccari, F.; Volpi, N. Recent advances in capillary electrophoresis separation of monosaccharides, oligosaccharides, and polysaccharides. Electrophoresis 2018, 39, 179–189. [Google Scholar] [CrossRef]
- Soga, T.; Serwe, M. Determination of carbohydrates in food samples by capillary electrophoresis with indirect UV detection. Food Chem. 2000, 69, 339–344. [Google Scholar] [CrossRef]
- Kakehia, K.; Funakuboa, T.; Suzukia, S.; Odaa, Y.; Kitada, Y. 3-Aminobenzamide and 3-aminobenzoic acid, tags for capillary electrophoresis of complex carbohydrates with laser-induced fluorescent detection. J. Chromatogr. A 1999, 863, 205–218. [Google Scholar] [CrossRef]
- Carvalho, A.Z.; da Silva, J.A.F.; do Lago, C.L. Determination of mono- and disaccharides by capillary electrophoresis with contactless conductivity detection. Electrophoresis 2003, 24, 2138–2143. [Google Scholar] [CrossRef]
- Campa, C.; Coslovi, A.; Flamigni, A.; Rossi, M. Overview on advances in capillary electrophoresis-mass spectrometry of carbohydrates: A tabulated review. Electrophoresis 2006, 27, 2027–2050. [Google Scholar] [CrossRef]
- Starr, C.M.; Masada, R.I.; Hague, C.; Skop, E.; Klock, J.C. Fluorophore-assisted carbohydrate electrophoresis in the separation, analysis, and sequencing of carbohydrates. J. Chromatogr A 1996, 720, 295–321. [Google Scholar] [CrossRef]
- Paulus, A.; Klockow, A. Detection of carbohydrates in capillary electrophoresis. J. Chromatogr. A 1996, 720, 353–376. [Google Scholar] [CrossRef] [PubMed]
- Guttman, A. Analysis of monosaccharide composition by capillary electrophoresis. J. Chromatogr. A 1997, 763, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Olajos, M.; Hajos, P.; Guenther, K.; Bonn, G.K.; Guttman, A. Sample preparation for the analysis of complex carbohydrates by multicapillary gel electrophoresis with light emitting diode induced fluorescence detection. Anal. Chem. 2008, 80, 4241–4246. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, R.; Senn, J.P. Quantification of polysaccharides in water using capillary electrophoresis. Int. J. Environ. Anal. Chem. 2005, 85, 177–198. [Google Scholar] [CrossRef]
- Rizelio, V.M.; Tenfen, L.; Silveira, R.; Valdemiro, L.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Development of a fast capillary electrophoresis method for determination of carbohydrates in honey samples. Talanta 2012, 93, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, M.A.; Jacksen, J.; Emmer, A.; Centurion, M.E. Capillary electrophoresis method for the simultaneous determination of carbohydrates and proline in honey samples. Microchem. J. 2016, 129, 1–4. [Google Scholar] [CrossRef]
- Lua, Y.; Hub, Y.; Wangc, T.; Yanga, X.; Zhaoc, Y. Rapid determination and quantitation of compositional carbohydrates to identify honey by capillary zone electrophoresis. J. Food 2017, 15, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Liang, P.; Sun, M.; He, P.; Zhang, L.; Chen, G. Determination of carbohydrates in honey and milk by capillary electrophoresis in combination with graphene–cobalt microsphere hybrid paste electrodes. Food Chem. 2016, 190, 64–70. [Google Scholar] [CrossRef]
- Chen, F.T.; Dobashi, T.S.; Evangelista, R.A. Quantitative analysis of sugar constituents of glycoproteins by capillary electrophoresis. Glycobiology 1998, 8, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Volpi, N. Capillary Electrophoresis of Carbohydrates, from Monosaccharides to Complex Polysaccharides; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Horvath, J.; Dolnik, V. Polymer wall coatings for capillary electrophoresis. Electrophoresis 2001, 22, 644–655. [Google Scholar] [CrossRef]
- Hamm, M.; Wang, Y.; Rustandi, R.R. Characterization of N-Linked glycosylation in a monoclonal antibody produced in NS0 cells using capillary electrophoresis with laser-induced fluorescence detection. Pharmaceuticals 2013, 6, 393–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunz, S.C.; Rapp, E.; Neususs, C. Capillary electrophoresis/mass spectrometry of APTS-labeled glycans for the identification of unknown glycan species in capillary electrophoresis/laser-induced fluorescence systems. Anal. Chem. 2013, 85, 10218–10224. [Google Scholar] [CrossRef] [PubMed]
- Manikis, I.; Thrasivoulou, A. The relation of physicochemical characteristics of honey and the crystallization sensitive parameters. Apiacta 2001, 36, 106–112. [Google Scholar]
- Gamal, M.; Naguib, I.A.; Panda, D.S.; Abdallah, F. Comparative study of four greenness assessment tools for selection of greenest analytical method for assay of hyoscine N-butyl bromide. Anal. Methods 2021, 13, 369–380. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness metric approach and software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Plotka-Wasylka, J.; Wojnowsk, W. Complementary green analytical procedure index (ComplexGAPI) and software. Green Chem. 2021, 23, 8657–8665. [Google Scholar] [CrossRef]
Glucose | Fructose | ||
---|---|---|---|
Regression equation | 0.078x − 0.2736 | 0.044x − 11.39 | |
Correlation coefficient | 0.9988 | 0.9916 | |
LOD (ng/mL) | 8.89 | 8.76 | |
LOQ (ng/mL) | 29.6 | 29.2 | |
Range (ng/mL) | 30–1000 | 30–1000 | |
RSD %, (N = 5) | time | 0.496 | 0.509 |
area | 2.48 | 2.82 | |
Theoretical plate number | 110,140 | 215,657 |
Concentration (m/m%) | |||
---|---|---|---|
Phacelia honey | Acacia honey | Honeydew honey | |
Glucose | 37.8 ± 1.5 | 26.7 ± 1.1 | 19 ± 0.76 |
Fructose | 32.7 ± 1.3 | 43.2 ± 1.7 | 27.1 ± 1 |
Fructose/Glucose | 0.86 | 1.61 | 1.42 |
n = 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrasi, M.; Gyemant, G.; Sajtos, Z.; Nagy, C. Analysis of Sugars in Honey Samples by Capillary Zone Electrophoresis Using Fluorescence Detection. Separations 2023, 10, 150. https://doi.org/10.3390/separations10030150
Andrasi M, Gyemant G, Sajtos Z, Nagy C. Analysis of Sugars in Honey Samples by Capillary Zone Electrophoresis Using Fluorescence Detection. Separations. 2023; 10(3):150. https://doi.org/10.3390/separations10030150
Chicago/Turabian StyleAndrasi, Melinda, Gyongyi Gyemant, Zsofi Sajtos, and Cynthia Nagy. 2023. "Analysis of Sugars in Honey Samples by Capillary Zone Electrophoresis Using Fluorescence Detection" Separations 10, no. 3: 150. https://doi.org/10.3390/separations10030150
APA StyleAndrasi, M., Gyemant, G., Sajtos, Z., & Nagy, C. (2023). Analysis of Sugars in Honey Samples by Capillary Zone Electrophoresis Using Fluorescence Detection. Separations, 10(3), 150. https://doi.org/10.3390/separations10030150