Valorization of Olive Leaves through Polyphenol Recovery Using Innovative Pretreatments and Extraction Techniques: An Updated Review
Abstract
:1. Introduction
2. Olive Leaves
3. Pretreatment of Olive Leaves
3.1. Pretreatment by Drying
3.2. Pretreatment by Infrared Radiation
3.3. Intensification of Vaporization by Decompression to the Vacuum” (IVDV)
4. Conventional Solvent Extraction (CSE)
5. Emerging and Innovative Technologies
5.1. Ultrasound-Assisted Extraction (UAE)
5.2. Microwave-Assisted Extraction (MAE)
5.3. Pulsed Electric Fields (PEFs) and High-Voltage Electrical Discharges (HVEDs)
5.4. Supercritical Fluid Extraction (SFE)
5.5. Infrared-Assisted Extraction (IAE)
5.6. Pressurized Liquid Extraction (PLE)
6. Industrial Applications
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Acar-Tek, N.; Aǧagündüz, D. Olive Leaf (Olea europaea L. folium): Potential Effects on Glycemia and Lipidemia. Ann. Nutr. Metab. 2020, 76, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, A.; Hanif, M.A.; Ayub, M.A.; Bhatti, I.A.; Romdhane, M. Olive. Med. Plants South Asia 2020, 40, 541–555. [Google Scholar] [CrossRef]
- Oliveira, A.L.S.; Gondim, S.; Gómez-García, R.; Ribeiro, T.; Pintado, M. Olive leaf phenolic extract from two Portuguese cultivars–bioactivities for potential food and cosmetic application. J. Environ. Chem. Eng. 2021, 9, 106175. [Google Scholar] [CrossRef]
- Selim, S.; Albqmi, M.; Al-Sanea, M.M.; Alnusaire, T.S.; Almuhayawi, M.S.; AbdElgawad, H.; Al Jaouni, S.K.; Elkelish, A.; Hussein, S.; Warrad, M.; et al. Valorizing the usage of olive leaves, bioactive compounds, biological activities, and food applications: A comprehensive review. Front. Nutr. 2022, 9, 1008349. [Google Scholar] [CrossRef]
- Kaltsa, O.; Grigorakis, S.; Lakka, A.; Bozinou, E.; Lalas, S.; Makris, D.P. Green Valorization of Olive Leaves to Produce Polyphenol-Enriched Extracts Using an Environmentally Benign Deep Eutectic Solvent. AgriEngineering 2020, 2, 226–239. [Google Scholar] [CrossRef]
- Bonacci, S.; Di Gioia, M.L.; Costanzo, P.; Maiuolo, L.; Tallarico, S.; Nardi, M. Natural deep eutectic solvent as extraction media for the main phenolic compounds from olive oil processing wastes. Antioxidants 2020, 9, 513. [Google Scholar] [CrossRef]
- Suárez Montenegro, Z.J.; Álvarez-Rivera, G.; Mendiola, J.A.; Ibáñez, E.; Cifuentes, A. Extraction and mass spectrometric characterization of terpenes recovered from olive leaves using a new adsorbent-assisted supercritical CO2 process. Foods 2021, 10, 1301. [Google Scholar] [CrossRef]
- Vural, N.; Algan Cavuldak, Ö.; Kenar, A.; Akay, M.A. Green alcoholic solvent and UAE extraction of oleuropein from the Olea europaea L. leaves: Experimental design, optimization, and comparison with Pharmacopoeia method. Sep. Sci. Technol. 2020, 55, 1813–1828. [Google Scholar] [CrossRef]
- Hadrich, F.; Mahmoudi, A.; Chamkha, M.; Isoda, H.; Sayadi, S. Olive Leaves Extract and Oleuropein Improve Insulin Sensitivity in 3T3-L1 Cells and in High-Fat Diet-Treated Rats via PI3K/AkT Signaling Pathway. Oxid. Med. Cell. Longev. 2023, 2023, 6828230. [Google Scholar] [CrossRef]
- Romero-M., J.M.; Navarro-Hortal, M.D.; Forbes-Hern, T.Y.; Elio, I.; Battino, M.; Garc, R.; Quiles, J.L. Exploring the Antioxidant, Neuroprotective, and Anti-Inflammatory Potential of Olive Leaf Extracts from Spain, Portugal, Greece, and Italy. Antioxidants 2023, 12, 1538. [Google Scholar] [CrossRef]
- Innosa, D.; Bennato, F.; Ianni, A.; Martino, C.; Grotta, L.; Pomilio, F.; Martino, G. Influence of olive leaves feeding on chemical-nutritional quality of goat ricotta cheese. Eur. Food Res. Technol. 2020, 246, 923–930. [Google Scholar] [CrossRef]
- Khattab, H.A.H.; Moselhy, S.S.; Aljafri, A.A.O. Olive leaves extract alleviate diabetic nephropathy in diabetic male rats: Impact on oxidative stress and protein glycation. Int. J. Pharm. Res. Sci. 2020, 9, 130–141. [Google Scholar]
- Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind. Crops Prod. 2018, 124, 382–388. [Google Scholar] [CrossRef]
- Cho, W.Y.; Kim, D.H.; Lee, H.J.; Yeon, S.J.; Lee, C.H.; Khan, M.K. Journal of Food Quality Evaluation of Effect of Extraction Solvent on Selected Properties of Olive Leaf Extract. J. Food Qual. 2020, 2020, 3013649. [Google Scholar] [CrossRef]
- El, S.N.; Karakaya, S. Olive tree (Olea europaea) leaves: Potential beneficial effects on human health. Nutr. Rev. 2009, 67, 632–638. [Google Scholar] [CrossRef]
- Coppa, C.F.S.C.; Gonçalves, B.L.; Lee, S.H.I.; Nunes, V.M.R.; Rodrigues, C.B.G.C.E.C.; Oliveira, C.A.F. Extraction of oleuropein from olive leaves and applicability in foods. Qual. Assur. Saf. Crop. Foods 2020, 12, 50–62. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, S.; Luo, J.; Qu, J.; Feng, S.; Chen, T.; Zhou, L.; Yuan, M.; Yang, H.; Li, T.; et al. Preparation of hydroxytyrosol by acid hydrolysis from olive leaves. Separations 2021, 8, 159. [Google Scholar] [CrossRef]
- Fares, R.; Bazzi, S.; Baydoun, S.E.; Abdel-Massih, R.M. The Antioxidant and Anti-Proliferative Activity of the Lebanese Olea europaea Extract. Plant Foods Hum. Nutr. 2011, 66, 58–63. [Google Scholar] [CrossRef]
- Jung, Y.C.; Kim, H.W.; Min, B.K.; Cho, J.Y.; Son, H.J.; Young Lee, J.A.; Kim, J.Y.; Kwon, S.B.; Li, Q.; Lee, H.W. Inhibitory Effect of Olive Leaf Extract on Obesity in High-fat Diet-induced Mice. In Vivo 2019, 33, 707–715. [Google Scholar] [CrossRef]
- del Mar Contreras, M.; Lama-Muñoz, A.; Gutiérrez-Pérez, J.M.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Integrated process for sequential extraction of bioactive phenolic compounds and proteins from mill and field olive leaves and effects on the lignocellulosic profile. Foods 2019, 8, 531. [Google Scholar] [CrossRef]
- Contreras, M.D.M.; Gómez-Cruz, I.; Romero, I.; Castro, E. Olive Pomace-Derived Biomasses Fractionation through a Two-Step Extraction Based on the Use of Ultrasounds: Chemical Characteristics. Foods 2021, 10, 111. [Google Scholar] [CrossRef] [PubMed]
- Guinda, A.; Rada, M.; Delgado, T.; Gutiérrez-adánez, P.; Castellanio, J.M. Pentacyclic Triterpenoids from Olive Fruit and Leaf. J. Agric. Food Chem. 2010, 58, 9685–9691. [Google Scholar] [CrossRef] [PubMed]
- Guebebia, S.; Ben, K.; Yahia, Y.; Romdhane, M.; Elfalleh, W. Effect of genotype and extraction method on polyphenols content, phenolic acids, and flavonoids of olive leaves (Olea europaea L. subsp. europaea). Int. J. Plant Based Pharm. 2022, 2, 17–24. [Google Scholar]
- Kaparakou, E.H.; Kanakis, C.D.; Cebri, C.; Alonso, G.L.; Tarantilis, P.A. Quantitative Determination of the Main Phenolic Compounds, Antioxidant Activity, and Toxicity of Aqueous Extracts of Olive Leaves of Greek and Spanish Genotypes. Hortic. Artic. 2023, 9, 55. [Google Scholar] [CrossRef]
- Medfai, W.; Contreras, M.D.M.; Lama-Muñoz, A.; Mhamdi, R.; Oueslati, I.; Castro, E. How Cultivar and Extraction Conditions Affect Antioxidants Type and Extractability for Olive Leaves Valorization. ACS Sustain. Chem. Eng. 2020, 8, 5107–5118. [Google Scholar] [CrossRef]
- Kabbash, E.M.; Abdel-Shakour, Z.T.; El-Ahmady, S.H.; Wink, M.; Ayoub, I.M. Comparative metabolic profiling of olive leaf extracts from twelve different cultivars collected in both fruiting and flowering seasons. Sci. Rep. 2023, 13, 1–13. [Google Scholar] [CrossRef]
- Mechi, D.; Baccouri, B.; Martín-Vertedor, D.; Abaza, L. Bioavailability of Phenolic Compounds in Californian-Style Table Olives with Tunisian Aqueous Olive Leaf Extracts. Molecules 2023, 28, 707. [Google Scholar] [CrossRef]
- Lorini, A.; Aranha, B.C.; Antunes, B.D.F.; Otero, D.M.; Jacques, A.C.; Zambiazi, R.C. Metabolic profile of olive leaves of different cultivars and collection times. Food Chem. 2021, 345, 128758. [Google Scholar] [CrossRef]
- Canabarro, N.I.; Mazutti, M.A.; Ferreira, C. Drying of olive (Olea europaea L.) leaves on a conveyor belt for supercritical extraction of bioactive compounds: Mathematical modeling of drying / extraction operations and analysis of extracts. Ind. Crop. Prod. 2019, 136, 140–151. [Google Scholar] [CrossRef]
- Abi-Khattar, A.-M.; Rajha, H.N.; Maroun, R.G.; Abdel-Massih, R.M.; Louka, N.; Debs, E. Green extraction of polyphenols from olive leaves using ired-irrad® as a pretreatment. In Proceedings of the 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC), Marrakech, Morocco, 29–30 June 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Abi-Khattar, A.-M.; Rajha, H.N.; Abdel-Massih, R.M.; Habchi, R.; Maroun, R.G.; Debs, E.; Louka, N. “Intensification of vaporization by decompression to the Vacuum” (IVDV), a novel technology applied as a pretreatment to improve polyphenols extraction from olive leaves. Food Chem. 2020, 342, 128236. [Google Scholar] [CrossRef]
- Wang, B.; Shen, S.; Qu, J.; Xu, Z.; Feng, S.; Chen, T.; Ding, C. Optimizing total phenolic and oleuropein of Chinese olive (Olea europaea) leaves for enhancement of the phenols content and antioxidant activity. Agronomy 2021, 11, 686. [Google Scholar] [CrossRef]
- Caballero, A.S.; Romero-García, J.M.; Castro, E.; Cardona, C.A. Supercritical fluid extraction for enhancing polyphenolic compounds production from olive waste extracts. J. Chem. Technol. Biotechnol. 2020, 95, 356–362. [Google Scholar] [CrossRef]
- Ünlü, A.E. Green and Non-Conventional Extraction of Bioactive Compounds from Olive Leaves: Screening of Novel Natural Deep Eutectic Solvents and Investigation of Process Parameters. Waste Biomass Valorization 2021, 12, 5329–5346. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, J.; Yang, J. Optimization of ultrasound-assisted aqueous two phase extraction of polyphenols from olive leaves. Prep. Biochem. Biotechnol. 2020, 51, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.D.M.; Lama-Muñoz, A.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Valorization of olive mill leaves through ultrasound-assisted extraction. Food Chem. 2020, 314, 126218. [Google Scholar] [CrossRef]
- Kashaninejad, M.; Sanz, M.T.; Blanco, B.; Beltrán, S.; Niknam, S.M. Freeze dried extract from olive leaves: Valorisation, extraction kinetics and extract characterization. Food Bioprod. Process. 2020, 124, 196–207. [Google Scholar] [CrossRef]
- Martiny, T.R.; Dotto, G.L.; Raghavan, V.; De Moraes, C.C.; Da Rosa, G.S. Freezing effect on the oleuropein content of olive leaves extracts obtained from microwave-assisted extraction. Int. J. Environ. Sci. Technol. 2021, 16, 10375–10380. [Google Scholar] [CrossRef]
- Martiny, T.R.; Raghavan, V.; De Moraes, C.C.; Da Rosa, G.S.; Dotto, G.L. Optimization of green extraction for the recovery of bioactive compounds from Brazilian olive crops and evaluation of its potential as a natural preservative. J. Environ. Chem. Eng. 2021, 9, 105130. [Google Scholar] [CrossRef]
- Martín-García, B.; Pimentel-Moral, S.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Segura-Carretero, A. A Box-Behnken design for optimal green extraction of compounds from olive leaves that potentially activate the AMPK pathway. Appl. Sci. 2020, 10, 4620. [Google Scholar] [CrossRef]
- Pappas, V.M.; Lakka, A.; Palaiogiannis, D.; Athanasiadis, V.; Bozinou, E.; Ntourtoglou, G.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Optimization of pulsed electric field as standalone “green” extraction procedure for the recovery of high value-added compounds from fresh olive leaves. Antioxidants 2021, 10, 1554. [Google Scholar] [CrossRef]
- Taamalli, A.; Feriani, A.; Lozano-Sanchez, J.; Ghazouani, L.; El Mufti, A.; Allagui, M.S.; Segura-Carretero, A.; Mhamdi, R.; Arraéz-Roman, D. Potential hepatoprotective activity of super critical carbon dioxide olive leaf extracts against CCl4-induced liver damage. Foods 2020, 9, 804. [Google Scholar] [CrossRef] [PubMed]
- Andrejč, D.C.; Butinar, B.; Knez, Ž.; Tomažič, K.; Marevci, M.K. The Effect of Drying Methods and Extraction Techniques on Oleuropein Content in Olive Leaves. Plants 2022, 11, 865. [Google Scholar] [CrossRef] [PubMed]
- Baysal, G.; Kasapbaşı, E.E.; Yavuz, N.; Hür, Z.; Genç, K.; Genç, M. Determination of theoretical calculations by DFT method and investigation of antioxidant, antimicrobial properties of olive leaf extracts from different regions. J. Food Sci. Technol. 2021, 58, 1909–1917. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Zhang, C.; Liu, L.; Xu, Z.; Chen, T.; Zhou, L.; Yuan, M.; Li, T.; Ding, C. Comparison of phenolic compounds in olive leaves by different drying and storage methods. Separations 2021, 8, 156. [Google Scholar] [CrossRef]
- Doğan, S.; Kocatürk, B.; Kara, S.; Dġken, M.E.; Doğan, M. The effects of drying methods and gamma irradiations on total phenolic and flavonoid amounts, antioxidant capacities and phenolic compound contents of olive leaves. Agrociencia 2021, 55, 10. [Google Scholar]
- Riadh, M.H.; Ahmad, S.A.B.; Marhaban, M.H.; Soh, A.C. Infrared Heating in Food Drying: An Overview. Dry. Technol. 2015, 33, 322–335. [Google Scholar] [CrossRef]
- Rajha, H.N.; Debs, E.G.; Maroun, R.G.; Louka, N.M. System for Extracting, Separating or Treating Products through Infrared Radiation. Adequacy between the Properties of Infrared Radiation and those of the Processed Products. 11296 L, November 2017. [Google Scholar]
- Xiang, B.; Zhou, X.; Qin, D.; Li, C.; Xi, J. Infrared assisted extraction of bioactive compounds from plant materials: Current research and future prospect. Food Chem. 2022, 371, 131192. [Google Scholar] [CrossRef]
- Richardson, P. Thermal Technologies in Food Processing; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780429962400. [Google Scholar]
- Debs, E.G.; Rajha, H.N.; Rizk, R.A.; Francis, H.M.; Mrad, R.H.; Maroun, R.G.; Louka, N.M. Dispositif de Mise, des Installations, Sous Pression de Vapeur Elevée Avec une Élévation de la Pression Ultra Rapide “ÉPUR”. Application à l’Intensification de la Vaporisation par Détente vers le Vide “IVDV”. 11666 L, May 2019. [Google Scholar]
- Mrad, R.; Debs, E.; Maroun, R.G.; Louka, N. Multiple optimization of chemical components and texture of purple maize expanded by IVDV treatment using the response surface methodology. Food Chem. 2014, 165, 60–69. [Google Scholar] [CrossRef]
- Mrad, R.; Rouphael, M.; Maroun, R.G.; Louka, N. Effect of expansion by “Intensification of Vaporization by Decompression to the Vacuum” (IVDV) on polyphenol content, expansion ratio, texture and color changes of Australian chickpea. LWT—Food Sci. Technol. 2014, 59, 874–882. [Google Scholar] [CrossRef]
- Nader, J.; Charbel, A.; Louka, N. Expansion of partially defatted peanuts by a new texturizing process called “Intensification of Vaporization by Decompression to the Vacuum” (IVDV). Innov. Food Sci. Emerg. Technol. 2017, 41, 179–187. [Google Scholar] [CrossRef]
- de Almeida Pontes, P.V.; Ayumi Shiwaku, I.; Maximo, G.J.; Caldas Batista, E.A. Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from olive leaves: Extraction optimization and solvent characterization. Food Chem. 2021, 352, 129346. [Google Scholar] [CrossRef] [PubMed]
- Mitar, A.; Prlić Kardum, J. Intensification of Mass Transfer in the Extraction Process with a Nanofluid Prepared in a Natural Deep Eutectic Solvent. Chem. Eng. Technol. 2020, 43, 2286–2294. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Grigorakis, S.; Lalas, S.; Makris, D.P. Highly Efficient Extraction of Antioxidant Polyphenols from Olea europaea Leaves Using an Eco-friendly Glycerol/Glycine Deep Eutectic Solvent. Waste Biomass Valorization 2018, 9, 1985–1992. [Google Scholar] [CrossRef]
- Akli, H.; Grigorakis, S.; Kellil, A.; Loupassaki, S.; Makris, D.P.; Calokerinos, A.; Mati, A.; Lydakis-simantiris, N. Extraction of Polyphenols from Olive Leaves Employing Deep Eutectic Solvents: The Application of Chemometrics to a Quantitative Study on Antioxidant Compounds. Appl. Sci. 2022, 12, 831. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Palaiogiannis, D.; Poulianiti, K.; Bozinou, E.; Lalas, S.I.; Makris, D.P. Extraction of Polyphenolic Antioxidants from Red Grape Pomace and Olive Leaves: Process Optimization Using a Tailor-Made Tertiary Deep Eutectic Solvent. Sustainsbility 2022, 14, 6864. [Google Scholar] [CrossRef]
- Houasni, A.; Grigorakis, S.; Kellil, A.; Makris, D.P. Organosolv Treatment/Polyphenol Extraction from Olive Leaves (Olea europaea L.) Using Glycerol and Glycerol-Based Deep Eutectic Solvents: Effect on Metabolite Stability. Biomass 2022, 2, 46–61. [Google Scholar] [CrossRef]
- Aliyari, M.A.; Salami, M.; Hosseini, E.; Emam-Djomeh, Z.; Karboune, S.; Waglay, A. Biophysical, Rheological, and Functional Properties of Complex of Sodium Caseinate and Olive Leaf Aqueous Polyphenolic Extract Obtained Using Ultrasound-Assisted Extraction. Food Biophys. 2021, 16, 325–336. [Google Scholar] [CrossRef]
- Giacometti, J.; Milovanović, S.; Jurcić Momcilović, D.; Bubonja-Sonje, M. Evaluation of antioxidant activity of olive leaf extract obtained by ultrasound-assisted extraction and their antimicrobial activity against bacterial pathogens from food. Int. J. Food Sci. Technol. 2021, 56, 4843–4850. [Google Scholar] [CrossRef]
- Aliyari, M.A.; Rezaei, K. Improving the biological value of olive and soybean oil blends with olive leaf extract obtained by ultrasound-assisted extraction towards the preparation of a sauce product. Life 2021, 11, 974. [Google Scholar] [CrossRef]
- Alcántara, C.; Žugčić, T.; Abdelkebir, R.; García-Pérez, J.V.; Jambrak, A.R.; Lorenzo, J.M.; Collado, M.C.; Granato, D.; Barba, F.J. Effects of Ultrasound-Assisted Extraction and Solvent on the Phenolic Profile, Bacterial Growth, and Anti-Inflammatory/Antioxidant Activities of Mediterranean Olive and Fig Leaves Extracts. Molecules 2020, 25, 1718. [Google Scholar] [CrossRef]
- Rombaut, N.; Chave, T.; Nikitenko, S.I.; Maâtaoui, M.E.; Fabiano-Tixier, A.S.; Chemat, F. Modification of olive leaves’ surface by ultrasound cavitation. Correlation with polyphenol extraction enhancement. Appl. Sci. 2021, 11, 232. [Google Scholar] [CrossRef]
- Abi-Khattar, A.-M.; Boussetta, N.; Rajha, H.N.; Abdel-Massih, R.M.; Louka, N.; Maroun, R.G.; Vorobiev, E.; Debs, E. Mechanical damage and thermal effect induced by ultrasonic treatment in olive leaf tissue. Impact on polyphenols recovery. Ultrason. Sonochem. 2022, 82, 105895. [Google Scholar] [CrossRef]
- Martín-García, B.; De Montijo-Prieto, S.; Jiménez-Valera, M.; Carrasco-Pancorbo, A.; Ruiz-Bravo, A.; Verardo, V.; Gómez-Caravaca, A.M. Comparative Extraction of Phenolic Compounds from Olive Leaves Using a Sonotrode and an Ultrasonic Bath and the Evaluation of Both Antioxidant and Antimicrobial Activity. Antioxidants 2022, 11, 558. [Google Scholar] [CrossRef] [PubMed]
- Conte, P.; Pulina, S.; Caro, A.D.; Fadda, C.; Urgeghe, P.P.; De Bruno, A.; Difonzo, G.; Caponio, F.; Romeo, R.; Piga, A. Gluten-Free Breadsticks Fortified with Phenolic-Rich Extracts from Olive Leaves and Olive Mill Wastewater. Foods 2021, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Kırbaşlar, Ş.İ.; Şahin, S. Recovery of bioactive ingredients from biowaste of olive tree (Olea europaea) using microwave-assisted extraction: A comparative study. Biomass Convers. Biorefinery 2021, 13, 2849–2861. [Google Scholar] [CrossRef]
- Sánchez-Gutiérrez, M.; Bascón-Villegas, I.; Rodríguez, A.; Pérez-Rodríguez, F.; Fernández-Prior, Á.; Rosal, A.; Carrasco, E. Valorisation of Olea europaea L. Olive leaves through the evaluation of their extracts: Antioxidant and antimicrobial activity. Foods 2021, 10, 966. [Google Scholar] [CrossRef] [PubMed]
- Darvishzadeh, P.; Orsat, V. Microwave-assisted extraction of antioxidant compounds from Russian olive leaves and flowers: Optimization, HPLC characterization and comparison with other methods. J. Appl. Res. Med. Aromat. Plants 2022, 27, 100368. [Google Scholar] [CrossRef]
- da Rosa, G.S.; Martiny, T.R.; Dotto, G.L.; Vanga, S.K.; Parrine, D.; Gariepy, Y.; Lefsrud, M.; Raghavan, V. Eco-friendly extraction for the recovery of bioactive compounds from Brazilian olive leaves. Sustain. Mater. Technol. 2021, 28, 3–8. [Google Scholar] [CrossRef]
- Christen, P.; Kaufmann, B. Recent Extraction Techniques for Natural Products: Microwave-assisted Extraction and Pressurised Solvent Extraction. Phytochem. Anal. 2002, 113, 105–113. [Google Scholar] [CrossRef]
- Pappas, V.M.; Lakka, A.; Palaiogiannis, D.; Bozinou, E.; Ntourtoglou, G.; Batra, G.; Athanasiadis, V.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Use of pulsed electric field as a low-temperature and high-performance “green” extraction technique for the recovery of high added value compounds from olive leaves. Beverages 2021, 7, 45. [Google Scholar] [CrossRef]
- Žuntar, I.; Putnik, P.; Kovacevic, D.B.; Nutrizio, M.; Šupljika, F.; Poljanec, A.; Dubrovic, I.; Barba, F.J.; Jambrak, A.R. Phenolic and Antioxidant Analysis of Olive Leaves Extracts (Olea europaea L.) Obtained by High Voltage Electrical Discharges (HVED). Foods 2019, 8, 248. [Google Scholar] [CrossRef] [PubMed]
- Boussetta, N.; Vorobiev, E.; Deloison, V.; Pochez, F.; Falcimaigne-Cordin, A.; Lanoisellé, J.L. Valorisation of grape pomace by the extraction of phenolic antioxidants: Application of high voltage electrical discharges. Food Chem. 2011, 128, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Rajha, H.N.; Boussetta, N.; Louka, N.; Maroun, R.G.; Vorobiev, E. Electrical, mechanical, and chemical effects of high-voltage electrical discharges on the polyphenol extraction from vine shoots. Innov. Food Sci. Emerg. Technol. 2015, 31, 60–66. [Google Scholar] [CrossRef]
- Yekefallah, M.; Raofie, F. Preparation of potent antioxidant nanosuspensions from olive leaves by Rapid expansion of supercritical solution into aqueous solutions (RESSAS). Ind. Crops Prod. 2020, 155, 112756. [Google Scholar] [CrossRef]
- Bastante, C.C.; Cardoso, L.C.; Serrano, C.M.; Ossa, E.J.M. De Supercritical impregnation of olive leaf extract to obtain bioactive films effective in cherry tomato preservation. Food Packag. Shelf Life 2019, 21, 100338. [Google Scholar] [CrossRef]
- Bastante, C.C.; Cardoso, L.C.; Ponce, M.T.F.; Serrano, C.M.; Ossa-Fernández, E.J.M. De Characterization of olive leaf extract polyphenols loaded by supercritical solvent impregnation into PET / PP food packaging films. J. Supercrit. Fluids 2018, 140, 196–206. [Google Scholar] [CrossRef]
- Baldino, A.L.; Porta, G.D.; Sesti, L.; Reverchon, E.; Adami, R. Concentrated Oleuropein Powder from Olive Leaves using Alcoholic Extraction. J. Supercrit. Fluids 2017, 133, 65–69. [Google Scholar] [CrossRef]
- Ogundele, O.M.; Kayitesi, E. Influence of infrared heating processing technology on the cooking characteristics and functionality of African legumes: A review. J. Food Sci. Technol. 2019, 56, 1669–1682. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Abi-Khattar, A.-M.; Rajha, H.N.; Abdel-Massih, R.M.; Maroun, R.G.; Louka, N.; Debs, E. Intensification of Polyphenol Extraction from Olive Leaves Using Ired-Irrad®, an Environmentally- Friendly Innovative Technology. Antioxidants 2019, 8, 227. [Google Scholar] [CrossRef]
- Rajha, H.N.; Mhanna, T.; El Kantar, S.; El Khoury, A.; Louka, N.; Maroun, R.G. Innovative process of polyphenol recovery from pomegranate peels by combining green deep eutectic solvents and a new infrared technology. LWT 2019, 111, 138–146. [Google Scholar] [CrossRef]
- Raafat, K.; El-Darra, N.; Saleh, F.A.; Rajha, H.N.; Maroun, R.G.; Louka, N. Infrared-Assisted Extraction and HPLC-Analysis of Prunus armeniaca L. Pomace and Detoxified-Kernel and their Antidiabetic Effects. Phytochem. Anal. 2018, 29, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Cheaib, D.; El Darra, N.; Rajha, H.N.; El Ghazzawi, I.; Maroun, R.G.; Louka, N. Biological activity of apricot byproducts polyphenols using solid–liquid and infrared-assisted technology. J. Food Biochem. 2018, 42, 102212. [Google Scholar] [CrossRef]
- Rajha, H.N.; Abi-Khattar, A.-M.; El Kantar, S.; Boussetta, N.; Lebovka, N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Comparison of aqueous extraction efficiency and biological activities of polyphenols from pomegranate peels assisted by infrared, ultrasound, pulsed electric fields and high-voltage electrical discharges. Innov. Food Sci. Emerg. Technol. 2019, 58, 102212. [Google Scholar] [CrossRef]
- El Kantar, S.; Rajha, H.N.; Maroun, R.G.; Louka, N. Intensification of polyphenols extraction from orange peels using infrared as a novel and energy saving pretreatment. J. Food Sci. 2020, 85, 414–420. [Google Scholar] [CrossRef]
- Cheaib, D.; El Darra, N.; Rajha, H.N.; El-Ghazzawi, I.; Maroun, R.G.; Louka, N. Effect of the extraction process on the biological activity of lyophilized apricot extracts recovered from apricot pomace. Antioxidants 2018, 7, 11. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; del Mar Contreras, M.; Espínola, F.; Moya, M.; de Torres, A.; Romero, I.; Castro, E. Extraction of oleuropein and luteolin-7-O-glucoside from olive leaves: Optimization of technique and operating conditions. Food Chem. 2019, 293, 161–168. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Contreras, M.D.M.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chem. 2020, 320, 126626. [Google Scholar] [CrossRef]
- Marcelo, J.; Eduardo, C.; Morais, L.; Silva, V.; Fernando, E.; Cardozo-filho, L. β-Cyclodextrin complexation of extracts of olive leaves obtained by pressurized liquid extraction. Ind. Crop. Prod. 2019, 129, 662–672. [Google Scholar] [CrossRef]
- Okur, I.; Namlı, S.; Oztop, M.H.; Alpas, H. High-Pressure-Assisted Extraction of Phenolic Compounds from Olive Leaves: Optimization and Comparison with Conventional Extraction. ACS Food Sci. Technol. 2023, 3, 161–169. [Google Scholar] [CrossRef]
- Marx, M.G.; Casal, S.; Rodrigues, N.; Cruz, R.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Impact of incorporating olive leaves during the industrial extraction of cv. Arbequina oils on the physicochemical–sensory quality and health claim fulfillment. Eur. Food Res. Technol. 2022, 248, 171–183. [Google Scholar] [CrossRef]
- Dauber, C.; Carreras, T.; González, L.; Gámbaro, A.; Ibañez, E.; Vieitez, I.; Valdés, A. Characterization and incorporation of extracts from olive leaves obtained through maceration and supercritical extraction in Canola oil: Oxidative stability evaluation. LWT 2022, 160, 113274. [Google Scholar] [CrossRef]
- Mechi, D.; Pérez-Nevado, F.; Montero-Fernández, I.; Baccouri, B.; Abaza, L.; Martín-Vertedor, D. Evaluation of Tunisian Olive Leaf Extracts to Reduce the Bioavailability of Acrylamide in Californian-Style Black Olives. Antioxidants 2023, 12, 117. [Google Scholar] [CrossRef]
- Cádiz-Gurrea, M.d.l.L.; Pinto, D.; Delerue-Matos, C.; Rodrigues, F. Olive fruit and leaf wastes as bioactive ingredients for cosmetics—A preliminary study. Antioxidants 2021, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.; Pimentel, F.B.; Oliveira, M.B.P.P. Olive by-products: Challenge application in cosmetic industry. Ind. Crops Prod. 2015, 70, 116–124. [Google Scholar] [CrossRef]
- Kesente, M.; Kavetsou, E.; Roussaki, M.; Blidi, S.; Loupassaki, S.; Chanioti, S.; Siamandoura, P.; Stamatogianni, C.; Philippou, E.; Papaspyrides, C.; et al. Encapsulation of olive leaves extracts in biodegradable PLA nanoparticles for use in cosmetic formulation. Bioengineering 2017, 4, 75. [Google Scholar] [CrossRef] [PubMed]
- Soliman, G.A.; Saeedan, A.S.; Abdel-Rahman, R.F.; Ogaly, H.A.; Abd-elsalam, R.M.; Abdel-kader, M.S. Olive leaves extract attenuates type II diabetes mellitus-induced testicular damage in rats: Molecular and biochemical study. Saudi Pharm. J. 2018, 27, 326–340. [Google Scholar] [CrossRef]
- Shen, Y.; Song, S.J.; Keum, N.; Park, T. Olive Leaf Extract Attenuates Obesity in High-Fat Diet-Fed Mice by Modulating the Expression of Molecules Involved in Adipogenesis and Thermogenesis. Evid.-Based Complement. Altern. Med. 2014, 2014, 971890. [Google Scholar] [CrossRef]
- Kaneko, Y.; Sano, M.; Seno, K.; Oogaki, Y.; Takahashi, H. Olive Leaf Extract (OleaVita) Suppresses Inflammatory Cytokine Production and NLRP3 Inflammasomes in Human Placenta. Nutrients 2019, 11, 970. [Google Scholar] [CrossRef]
- Hakemi, S.G.; Sharififar, F.; Haghpanah, T.; Babaee, A.; Eftekhar-Vaghefi, S.H. The Effects of Olive Leaf Extract on The Testis, Sperm Quality and Testicular Germ Cell Apoptosis in Male Rats Exposed to Busulfan. Int. J. Fertil. Steril. 2019, 13, 57–65. [Google Scholar] [CrossRef]
- Fayez, N.; Khalil, W.; Abdel-Sattar, E.; Abdel-Fattah, A.F.M. In vitro and in vivo assessment of the anti-inflammatory activity of olive leaf extract in rats. Inflammopharmacology 2023, 31, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
Extraction Conditions | Optimization and Optimal Conditions | Quantitative Analysis | Qualitative Analysis | Ref. | |
---|---|---|---|---|---|
CSE DES Compared to ethanol extraction 20 g/L 1 h 400 rpm | 22 central composite rotatable design Variables: For extractions using ethanol or DES: Temperature Percentage of added water Responses: Phenolic content Oleuropein content Optimal conditions: For extraction using DES: 50% water in relation to DES mass 54.1 °C For extraction using ethanol: 0.50% water (w/w) 54.1 °C | UHPLC-MS Maximal phenolic compound extraction: [Ch]Cl:acetic acid 470.03 mg/kg | Not studied | [55] | |
CSE DES LA-Gly (Lactic acid-glycin) (5:1) (w:w) 120 min 80 °C Compared to 70% (w/v) aqueous mixtures | Box–Behnken Variables: Proportion of DES/water (CDES) Stirring speed (SS) Liquid-to-solid ratio (RL/S) Responses: Phenolic content Optimal conditions: 78% w/v 500 rounds per minute 36 mL/g | Folin–Ciocalteu Total polyphenol yield: 98.77 mg GAE/g DM Total flavonoid cotent: 26.44 mg RtE/g DM HPLC | DPPH Antiradical Activity: 773.21 µmol DPPH/g DM Ferric-Reducing Power: 461.18 µmol AAE/g DM | [5] | |
Polyphenol | Content (mg/g DM) | ||||
Hydroxytyrosol | 8.2 | ||||
Rutin | 0.28 | ||||
Luteolin 7-O-glucoside | 2.59 | ||||
Apigenin 7-O-rutinoside | 0.36 | ||||
Luteolin 3′-O-glucoside | 0.36 | ||||
Oleuropein | 2.88 | ||||
Quercetin | 0.44 | ||||
Apigenin | 0.01 | ||||
Sum | 15.13 | ||||
CSE Three different natural deep eutectic solvents: NADES malic acid (Ma), D-fructose (Fru), glycerol (Gly) in a 1:1:1 molar ratio (MaFruGly) Nanofluid 70% EtOH | Not studied | Folin–Ciocalteu Polyphenol yield: NADES: ≈25 mg GAE/g DM Nanofluid: ≈20 mg GAE/g DM 70% EtOH: ≈28 mg GAE/g DM | Not studied | [56] | |
CSE 600 rpm 120 min 50 °C | Central composite design Variables: Concentration of the DES Liquid-to-solid ratio Responses: Total polyphenol yield (YTP) Optimal conditions: 80% (w/v) 32 mL/g | Folin- Ciocalteu Total polyphenol yield: 106.25 mg GAE/g DM Total flavonoid yield: ≈ 35 mg RtE/g DM LC–DAD–MS Detected compounds: Oleoside Luteolin derivative Luteolin di-glycoside Quercetin derivative Luteolin rutinoside Oleuropein isomer Apigenin rutinoside Oleuropein | DPPH Antiradical activity: 1097.8 μmol DPPH/g DM Ferric-reducing power: 445.1 μmol AAE/g DM | [57] |
Extraction Conditions | Optimization and Optimal Conditions | Quantitative Analysis | Qualitative Analysis | Ref. |
---|---|---|---|---|
UAE bath: 60 °C | Box–Behnken design Variables: Ultrasound power (150–270 W) Extraction time (10–50 min) Ethanol concentration (50–90% EtOH) Liquid/solid ratio (10–50 mL/g (v/w)) Responses: Total phenolic content Oleuropein content Optimal parameters 260.47 W 10 min 53.27% 30 mL/mg | Folin–Ciocalteu Total phenolic content in optimal conditions: 197.32 mg/g DM HPLC detected compounds: Oleuropein Rutin Luteolin-4′-O-glucoside Apigenin-7-O-glucoside Luteolin Quercetin Apigenin Oleuropein content under optimal conditions: 74.68 mg/g | DPPH Antioxidant activity: EC50 of OE: 0.29 mg/mL Cell viability (%) Anticancer activity: Polyphenols (150–200 μM) induced apoptosis in HeLa cells | [32] |
UAE bath 140 W 60 min 37 kHz 55–75 °C Acoustic energy density 35 W/L Solvent: Comparison between UAE with control: 50% (v/v) aqueous methanol (30 mL g−1, 75 °C) and NADESs: | Central composite design Variables: Amount of NADES (8.61–90%) NADES and liquid-to-solid ratio Responses: Total polyphenol yield Total flavonoid yield Antiradical activity Optimal parameters: Choline chloride–fructose–water (5:2:5) 42.69% 40.66 mL/g | Folin–Ciocalteu Total phenolic content in optimal conditions: 187.31 mg GAE/g DM Total flavonoid content in optimal conditions: 12.75 ApE/g DM HPLC-MS Detected compounds highest amount: Oleuropein: GFW: 1630.80 mg/kg DM Caffeic acid: GFW: 112.77 mg/kg DM | DPPH Antioxidant activity in optimal conditions: 480 µmol DPPH/g DM | [34] |
Glucose–fructose–sucrose–water (1:1:1:11) | ||||
Glucose–fructose–water (1:1:11) | ||||
Glucose–sucrose–water (1:1:11) | ||||
Fructose–sucrose–water (1:1:11) | ||||
Choline chloride (ChCl)–glucose–water (5:2:5) | ||||
ChCl–fructose–water (5:2:5) | ||||
ChCl–sucrose–water (4:1:4) | ||||
ChCl–lactic acid (1:2) | ||||
ChCl–malonic acid (1:1) | ||||
ChCl–ethylene glycol (1:2) | ||||
ChCl–glycerol (1:2) | ||||
UAE bath 3 cycles (30 min each) distilled water 1:20 (w/v) 35 ± 5 °C | Not studied | Folin–Ciocalteu Total phenolic content: 20.19 mg GAE/g DM GC-MS Detected compounds: Oleuropein Tyrosol Syringic acid Benzoic acid Allopurinolphthalic acid | Sodium caseinate–olive leaf extract complexes DPPH Antioxidant activity: ≈40% ABTS Antioxidant activity: ≈80% | [61] |
UAE bath 75% 40 kHz 60 °C 60 min 1:20 (w:v) 80% EtOH Comparison with conventional extraction (CSE) | Not studied | Folin–Ciocalteu Total phenolic content: CSE: 59.03 mg GAE/g DM UAE: 68.89 mg GAE/g DM Total flavonoid content: CSE 28.49 mg RE/g DM UAE 35.39 mg RE/g DM UHPLC analysis: Total extracted compounds: CSE: 1265.99 mg/100 g DM UAE: 1411.10 mg/100 g DM | Antioxidant activity: ABTS CSE: 258.82 μm TE/g DM UAE: 295.80 μm TE/g DM FRAP CSE: 552.05 μm TE/g DM UAE: 619.48 μm TE/g DM CUPRAC CSE: 1130.00 μm TE/g DM UAE: 1371.25 μm TE/g DM EC50 of DPPH radical scavenging CSE: 0.29 mg/mL UAE: 0.10 mg/mL | [62] |
UAE bath 40 kHz Distilled water 1:20 (w/v) 90 min 35 ± 5 °C | Not studied | Folin–Ciocalteu Total phenolic content: 27 mg GAE/g DMs | Oxidative stability Microbiological Properties: Delay microbial growth during storage | [63] |
UAE probe (UP400S) 1. Distilled water (100%, v/v) 2. Hydro-alcoholic solution (50%, v/v) For both all conditions are the same and compared with conventional extraction 40 °C 10 min Ratio of 2% (w/v) CSE: same conditions but with ultrasound replaced by stirring at 1200 rpm | Not studied | Folin–Ciocalteu Total Phenolic content: higher total phenolic content with hydroethanolic solutions CSE: 25.4 mg GAE/g DM UAE: 22.2 mg GAE/g DM TOF-LC-MS-MS | Antioxidant capacity Anti-inflammatory effects Bacterial growth inhibition | [64] |
UAE bath 210 W Compared with simple ethanol maceration extraction | Box–Behnken design (BBD) Variables: Ultrasonic extraction time (80–160 min) Hydrochloric acid concentration (0.8–1.6 mol/L) Liquid-to-material ratio (40–60 mL/g) Responses: Hydroxytyrosol yield (mg/g) Optimal extraction conditions: Ultrasonication time: 120 min Hydrochloric acid concentration: 1.60 mol/L Liquid-to-material ratio: 60.00 mL/g | Yield of hydroxytyrosol in optimal conditions: 14.11 mg/g Concentration of hydroxytyrosol: Before purification: 2.27% After purification: 9.25% | Not studied | [17] |
Comparison Ultrasound-assisted aqueous two-phase extraction (UAATPE) ultrasonic processor Comparison with ultrasound-assisted extraction and aqueous two-phase extraction | Box–Behnken design for UAATPE Variables: Ethanol concentration (32–38%) (NH4)2SO4 concentrations (26–32%) pH (5.5–7.5) Extraction temperature (30–50 °C) Responses: Polyphenols yield (mg/g) Oleuropein content (mg/L) Optimal conditions: 35% (w/w) ethanol 29% (w/w) (NH4)2SO4 pH 6.7 45 °C | Folin–Ciocalteu Total phenolic content: Maximum polyphenol content in optimal conditions: 34.06 mg/g HPLC Oleuropein Yield: Maximum oleuropein yield in optimal conditions: 44.13 mg/L | DPPH Radical scavenging activity 51.7% | [35] |
UAE probe A single leaf was subjected to an ultrasonic field sonicated systematically on the lower surface side (abaxial) 20 kHz Maximal amplitude (100%) Continuous mode Specific delivered energy: 0.36 W/mL 20 ± 3 °C (maintained using a chiller) 80% EtOH Durations: 5 min, 15 min, and 60 min Compared to control | Not studied | Folin–Ciocalteu Total phenolic content: Maximal response after 60 min 48.75 µg eq. oleuropein/mL Control: 1.46 µg eq. oleuropein/mL Oleuropein content: 28.16 µg/mL | Not studied | [65] |
UAE bath 40 kHz Compared to control | Central composite design Variables: Solid/liquid ratio (2–15%) Extraction time (10–50) Ethanol concentration (40–100%) Responses: Total extraction yield (%) Oleuropein content (mg/100 g) Total phenol content (mg GAE/100 g) Antioxidant activity (µmol TE/100 g) Optimal conditions: Solid-to-liquid ratio: 5.9% Ethanol concentration: 47% Extraction time: 50 min | Total extraction yield: 16.3% Folin–Ciocalteu Total phenolic content: 2227 mg GAE/100 g DM RP-HPLC-UV Oleuropein content: 419 mg/100 g DM | TEAC Antioxidant activity: 12095 μmol TE/100 g DM | [36] |
UAE probe 20 kHz Amplitude: 79 µm 1/20 (w/v) 50 °C | Not studied | HPLC Maximal oleuropein content: 31 mg/g DM Maximal luteolin-7-O glucoside content: 4.1 mg/g DM Folin–Ciocalteu Total phenolic content: 113 mg GAE/g FDE Flavonoids assay Total flavonoids content: 13.2 mg QE/g FDE | Antioxidant activity: FRAP 435 mg Fe2+g FDE DPPH 694.2 mg Trolox/g FDE ABTS 230.4 mg Trolox/g FDE | [37] |
UAE bath 3 cycles 30 min each 35 ± 5 °C 1/20 (w/v) | Not studied | Folin–Ciocalteu Total phenolic content: 134.7 mg GAE/g DM | DPPH Antioxidant activity: 4.26% per mg of extract | [68] |
UAE probe 24 kHz 100, 200, and 400 W | Not studied | Folin–Ciocalteu Total phenolic content: 100 W: 4.28 mg GAE/g DM 200 W: 11.19 mg GAE/g DM 400 W: 25.57 mg GAE/g DM | Not studied | [66] |
Extraction Conditions | Optimization and Optimal Conditions | Quantitative Analysis | Qualitative Analysis | Ref. |
---|---|---|---|---|
MAE 2.45 GHz 1000 W 1:50 (w:v) Distilled water | Factorial design 23 Variables: Irradiation times (2–6 min) pH (3–9) Temperatures (60–100 °C) After extraction, extracts were analyzed directly (fresh extract) or after freezing at –20 °C for one week Responses: Oleuropein content of fresh extract (mg/g) Oleuropein content of frozen extract (mg/g) Optimal conditions were found in fresh extract: Temperature: 60 °C Time: 6 min pH: 9 | HPLC Oleuropein in optimal conditions: 15.607 mg/g DM | Not studied | [38] |
MAE 2.45 GHz 1000 W 1:50 (w:v) Distilled water | Central composite rotational design Variables: Irradiation times (2–6 min) pH (3–9) Temperatures (60–100 °C) Responses: TPC (mg GAE/g DM) Antioxidant activity (%) Optimal conditions: Temperature: 100 °C Time: 2 min pH: 6 | Folin–Ciocalteu Total phenolic content in optimal conditions: 103.87 mg GAE/g DM HPLC Oleuropein in optimal conditions: 11.59 mg/g DM | DPPH Antioxidant activity in optimal conditions: 92.87% MIC Antimicrobial activity against E. coli in optimal conditions: 50 mg/mL | [39] |
MAE 1500 W 1:10 (w:v) Ethanol/Water | Box–Behnken design Variables: Extraction time (5–40 min) Temperature (50–150 °C) Percentage of ethanol (0–100% (v/v)) Responses: Total compounds Total AMPK bioactive compounds Optimal conditions for total compounds and oleuropein: 22.5 min 123 °C 100% ethanol Optimal conditions for total AMPK bioactive compounds: 23 min 111 °C 42% ethanol/water (v/v) Multiple response optimal conditions: 23 min 111 °C 100% ethanol | HPLC Total compounds in optimal conditions: 74.24 mg/g DM Oleuropein in optimal conditions: 60.00 mg/g DM Total AMPK bioactive compounds in optimal conditions: 9.5 mg/g DM Multiple response Total compounds: 74.39 mg/g DM Total AMPK bioactive compounds: 9 mg/g DM | Not studied | [40] |
MAE 2.45 GHz 900 W max | Central composite design Variables: Microwave power (150–250 W) Extraction time (0.5–1.5 min) Solvent volume (50–100 mL) Responses: Total polyphenol ingredient (TPI) Total flavonoid ingredient (TFI) Antioxidant activity (AA) Optimal conditions: 230 W 1.5 min 63.16 mL of 30% acetonitrile solution | Folin–Ciocalteu Optimal TPI: 10.45 mg GAE/g DM Colorimetric method Optimal TFI: 9.69 mg CE/g DM | DPPH Optimal antioxidant activity: 96.34% | [69] |
Extraction Conditions | Optimization and Optimal Conditions | Quantitative Analysis | Qualitative Analysis | Ref. | |
---|---|---|---|---|---|
PEF Rectangular chamber | Variables: Field intensity (fixed 1 kV cm−1) Pulse period (1000 μs) Extraction duration (30 min) Pulse duration (10–100 μs) Extraction solvent (0–100% EtOH) Responses: Total phenolic content Antioxidant activity Optimal conditions for total phenolic content: 1 kV cm−1 1000 μs 30 min 10 μs 25% EtOH Optimal conditions for antioxidant activity: 1 kV/cm 1000 μs 30 min 100 μs 75% EtOH | Folin–Ciocalteu Total phenolic content in optimal conditions: 20.75 mg GAE/g DM Control: 15.74 mg GAE/g DM HPLC Detected molecules: Quercetin-3-O-rutinoside Luteolin-7-O-glucoside Apigenin-7-O-rutinoside Luteolin-3′-O-glucoside Oleuropein | Differential Scanning Calorimetry Maximum antioxidant activity: Tmax: 569 °C | [74] | |
PEF Rectangular chamber 1:3 (w/v) 22 °C 25% v/v aqueous ethanol solvent Control: (Comparison with conventional method) | Experimental Design Variables: Field intensity (0.7–1 kV cm−1) Pulse duration (1–10 μs) Pulse period (100–1000 μs) Extraction duration (15–30 min) Responses: Total phenolic content Antioxidant activity Optimal conditions for total phenolic content: 0.85 kV cm−1 2 μs 100 μs 15 min Optimal conditions for antioxidant activity: 0.85 kV cm−1 10 µs 1000 µs 30 min | Folin–Ciocalteu Total phenolic content in optimal conditions: 24.80 mg GAE/g DM Control: 19.2 mg GAE/g DM HPLC Detected molecules: Luteolin diglucoside Quercetin-3-O-rutinoside Luteolin rutinoside Luteolin-7-O-glucoside Apigenin-7-O-rutinoside Luteolin-3′-O-glucoside Luteolin aglycone Oleuropein | Differential Scanning Calorimetry Maximum antioxidant activity: Tmax: 488 °C | [41] | |
HVED Rectangular chamber (Comparison with conventional method) | Multifactorial design 2 designs of 12 experiments (argon and nitrogen) | UPLC-MS/MS Detected molecules: Apigenin Diosmetin Hydroxytyrosol Luteolin Oleanolic Acid Oleuropein Quercentin 1- For argon Folin–Ciocalteu Maximal total phenolic content: 65.99 mg GAE/g 2- For nitrogen Folin–Ciocalteu Maximal total phenolic content: 47.21 mg GAE/g | 1—For argon DPPH Maximal antioxidant activity: 32.53 µmol TAE/g FRAP Maximal antioxidant activity: 443.36 µmol FE/g 2—For nitrogen DPPH Maximal antioxidant activity: 31.81 µmol FRAP Maximal antioxidant activity: 561.93 µmol FE/g | [75] | |
1—For argon Variables: Concentration of ethanol (0–50% EtOH) Voltage (15–20 kV) Treatment time (3–9 min) Responses: Total phenolic content Antioxidant activity Optimal conditions for total phenolic content: 50% ethanol 20 kV 9 min Conditions for maximal DPPH antioxidant activity: 50% ethanol 20 kV 3 min Conditions for maximal FRAP antioxidant activity: 50% ethanol 15 kV 9 min | 2—For nitrogen Variables: Concentration of ethanol (0–50% EtOH) Voltage (20–25 kV) Treatment time (3–9 min) Responses: Total phenolic content Antioxidant activity Optimal conditions for total phenolic content: 50% ethanol 20 kV 3 min Conditions for maximal DPPH antioxidant activity: 50% ethanol 25 kV 9 min Conditions for maximal FRAP antioxidant activity: 50% ethanol 25 kV 3 min |
Extraction Conditions | Optimization and Optimal Conditions | Quantitative Analysis | Qualitative Analysis | Ref. | |
---|---|---|---|---|---|
SFE 150 bar 40 °C Leaves and sea sand ratio: 1:1.5 (m/m) Solvent: CO2 and ethanol (6.6%) Solvent flow rate: 23 g/min 60 min | Not studied | HPLC-ESI-TOF/MS | Hepatoprotective effect of fresh and dried olive leaf extracts: Helped to improve liver fibrosis Both caused by CCl4 treatment | [42] | |
Phenolic compounds | Triterpenoids | ||||
Secologanoside Hydroxytyrosol Elenolic acid glucoside isomer 1 Vanillin Elenolic acid glucoside isomer 2 Ferulic acid Oleuropein isomer 1 Oleuropein isomer 2 Syringaresinol Pinoresinol Acetoxypinoresinol Diosmetin | Maslinic acid Oleanolic acid Ursolic acid | ||||
Major phenolic compound in fresh olive leaves: Acetoxypinoresinol: 37 µg per 30 mg of extract Major phenolic compound in dried olive leaves: Oleuropein: 42 µg per 30 mg of extract Extraction yields: Fresh leaves: 9.3% Dried leaves: 16.7% | |||||
SFE 250 bar 80 °C Leaves and glass beads mixture Solvent: CO2 80 min 6 g/min SFE was compared to Soxhlet extraction, in this case fresh leaves were used Ratio: 1/100 (w/v) Solvent: n-hexane 300 min | 3 condition compared: 1. 50 °C, 180 min 2. 60 °C, 120 min 3. 70 °C, 60 min | Folin–Ciocalteu Total phenolic content: 1. 32.2 mg GAE/g DM 2. 36.1 mg GAE/g DM 3. 30.2 mg GAE/g DM Extraction Yield: 1. 3.5% 2. 3% 3. 2.8% GC–MS Detected terpenoids: Farnesyl acetate Spathulenol Palmitic acid Methyl eicosanoate Octacosane γ-tocopherol Oleic acid β-Sitostenone γ-sitosterol Stigmasterol n-hexatriacontane Oleanolic acid Uvaol | DPPH Antioxidant activity AA: 1. 64% 2. 73% 3. 48% EC50: 1. 1.2 μgmL−1 2. 1.1 μgmL−1 3. 2.1 μgmL−1 | [29] | |
Enhanced Solvent Extraction 120 bar 80 °C Solvent: CO2 and ethanol (1:1) (v/v) 120 min 10 g/min | Not studied | UPLC-MS-ESI-QTOF Compounds: Luteolin-7-glucoside: 6.14 μg/mg extract Oleuropein: 55.47 μg/mg extract Verbascoside: 1.9 μg/mg extract Total polyphenols: 71.57 μg/mg extract | DPPH Antioxidant capacity (EC50): 42.9 μg/mL | [79] | |
SFE Three pressures were studied (200, 250, and 300 bar) 50 °C CO2, 60% ethanol (ratio 1:3 w/v solid:liquid) 60 min Comparison with solvent extraction (SE): 60% ethanol 1:20 (w/v) 25 °C 8 h | Not studied | Folin–Ciocalteu Total phenolic content: SFE-200 bar: 5.83 mg GAE/g DM SFE-250 bar: 9.76 mg GAE/g DM SFE-300 bar: 13.12 mg GAE/g DM SE: 11.28 mg GAE/g DM HPLC Detected compounds: Chlorogenic acid Ferulic acid Hydroxytyrosol Vanillin Vanillinic acid Quercetin Caffeic acid | DPPH EC50 SFE-200 bar: 274.91 μg/mL SFE-250 bar: 321.25 μg/mL SFE-300 bar: 365.18 μg/mL SE: 382.43 μg/mL | [33] | |
SFE 120 and 200 bar 55 and 80 °C CO2, 50% ethanol 120 min 10 g/min | Not studied | UPLC-ESI-TOF MS Detected compounds: Hydroxytyrosol Caffeic acid Apigenin Apigenin 7-glucoside Luteolin Luteolin-7-glucoside Verbascoside 3-hydroxytyrosol Rutin hydrate Quercetin Lucidumoside C Ligstroside Diosmetin Oleuropein Total polyphenols: 120 bar 55 °C: 362 ppm 120 bar 80 °C: 1647.23 ppm 200 bar 55 °C: 366 ppm 200 bar 80 °C: 597.6 ppm | DPPH AAI: 120 bar 55 °C: 0.36 μg DPPH/μg extract 120 bar 80 °C: 1.06 μg DPPH/μg extract 200 bar 55 °C: 0.42 μg DPPH/μg extract 200 bar 80 °C: 0.615 μg DPPH/μg extract | [80] | |
SFE Pressure (100–200 bar) Temperature (35–60 °C) CO2 density: (0.51–0.84 g/cm3) SC-CO2 flow rate: 40 g/min Liquid solution flow rate at 1 mL/min | Not studied | HPLC Detected compounds: Oleuropein Hydroxytyrosol 7-glucosides of luteolin Apigenin Verbascoside Maximal oleuropein (% w/w): 36% (35 °C, 150 bar, 0.84 g/cm3) | Not studied | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debs, E.; Abi-Khattar, A.-M.; Rajha, H.N.; Abdel-Massih, R.M.; Assaf, J.-C.; Koubaa, M.; Maroun, R.G.; Louka, N. Valorization of Olive Leaves through Polyphenol Recovery Using Innovative Pretreatments and Extraction Techniques: An Updated Review. Separations 2023, 10, 587. https://doi.org/10.3390/separations10120587
Debs E, Abi-Khattar A-M, Rajha HN, Abdel-Massih RM, Assaf J-C, Koubaa M, Maroun RG, Louka N. Valorization of Olive Leaves through Polyphenol Recovery Using Innovative Pretreatments and Extraction Techniques: An Updated Review. Separations. 2023; 10(12):587. https://doi.org/10.3390/separations10120587
Chicago/Turabian StyleDebs, Espérance, Anna-Maria Abi-Khattar, Hiba N. Rajha, Roula M. Abdel-Massih, Jean-Claude Assaf, Mohamed Koubaa, Richard G. Maroun, and Nicolas Louka. 2023. "Valorization of Olive Leaves through Polyphenol Recovery Using Innovative Pretreatments and Extraction Techniques: An Updated Review" Separations 10, no. 12: 587. https://doi.org/10.3390/separations10120587
APA StyleDebs, E., Abi-Khattar, A. -M., Rajha, H. N., Abdel-Massih, R. M., Assaf, J. -C., Koubaa, M., Maroun, R. G., & Louka, N. (2023). Valorization of Olive Leaves through Polyphenol Recovery Using Innovative Pretreatments and Extraction Techniques: An Updated Review. Separations, 10(12), 587. https://doi.org/10.3390/separations10120587