Treatment of Produced Water Using Prepared Activated Carbon-Based Sewage Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Sewage Sludge Sample for Activated Carbon
2.2. Adsorption Study
3. Results and Discussion
3.1. Characterization of Prepared Activated Carbon-Based Sewage Sludge
3.2. Produced Water Treatment Using Commercial AC
3.3. Produced Water Treatment Using Pure Sewage Sludge
3.4. Produced Water Treatment Using Prepared AC from Sludge without Chemical Activation
3.5. Produced Water Treatment Using Prepared AC from Sludge Activated with ZnCl2
3.6. Produced Water Treatment Using Prepared AC from Sludge Activated with NaOH
3.7. Produced Water Treatment Using Prepared AC from Sludge Activated with KOH
3.8. Adsorption of Metals in Produced Water
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blanchard, R. The Status of Global Oil Production: 2023 Update. 2023. Available online: https://www.resilience.org/stories/2023-04-19/the-status-of-global-oil-production-2023-update/ (accessed on 3 March 2023).
- Produced Water Society. Global Hydrocarbon Production. 2020. Available online: https://www.producedwatersociety.com/ (accessed on 18 December 2019).
- Duraisamy, R.T.; Beni, A.H.; Henni, A. State of the Art Treatment of Produced Water, 1st ed.; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Al Dawery, S.; AbdulMajeed, W.; Al Shukaili, S.; Thotireddy, C.; Al Amri, I. Produced Water Deoxygenation: Investigation of Nitrogen PurgingScheme-Parametric Study. Eng. Technol. J. 2022, 40, 1090–1104. [Google Scholar] [CrossRef]
- Amakiri, K.T.; Ogolo, N.A.; Angelis-Dimakis, A.; Albert, O. Physicochemical assessment and treatment of produced water: A case study in Niger delta Nigeria. Pet. Res. 2023, 8, 87–95. [Google Scholar] [CrossRef]
- Alipour, Z.; Azari, A. COD removal from industrial spent caustic wastewater: A review. J. Environ. Chem. Eng. 2022, 8, 103678. [Google Scholar] [CrossRef]
- Global Water Intelligence. 2020. Available online: https://producedwatermiddleeast.com/index.php/2019/11/08/five-things-i-learned-at-pws-middle-east-2019/ (accessed on 10 October 2022).
- Abbas, A.J.; Gzar, H.A.; Rahi, M.N. Oilfield-produced water characteristics and treatment technologies: A mini-review. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2022; Volume 1058, p. 12063. [Google Scholar]
- Li, X.; Muraleedaaran, S.; Li, L.; Lee, R. A humidification-dehumidification process for produced water purification. Desalination Water Treat. 2010, 20, 51–59. [Google Scholar] [CrossRef]
- Martínez, S.B.; Pérez-Parra, J.; Suay, R. Use of ozone in wastewater treatment to produce water suitable for irrigation. Water Resour. Manag. 2011, 25, 2109–2124. [Google Scholar] [CrossRef]
- Igunnu, E.T.; Chen, G.Z. Produced water treatment technologies. Int. J. Low-Carbon Technol. 2014, 9, 157–177. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, G.; Cheng, G.; Wang, Y.; Fu, H. Hardness, COD and turbidity removals from produced water by electrocoagulation pretreatment prior to reverse osmosis membranes. Desalination 2014, 344, 454–462. [Google Scholar] [CrossRef]
- Hayatbakhsh, M.; Sadrzadeh, M.; Pernitsky, D.; Bhattacharjee, S.; Hajinasiri, J. Treatment of an in situ oil sands produced water by polymeric membranes. Desalination Water Treat. 2016, 57, 14869–14887. [Google Scholar] [CrossRef]
- Jiménez, S.; Andreozzi, M.; Micó, M.M.; Álvarez, M.G.; Contreras, S. Produced water treatment by advanced oxidation processes. Sci. Total Environ. 2019, 666, 12–21. [Google Scholar] [CrossRef]
- Rodriguez, A.Z.; Wang, H.; Hu, L.; Zhang, Y.; Xu, P. Treatment of produced water in the permian basin for hydraulic fracturing: Comparison of different coagulation processes and innovative filter media. Water 2020, 12, 770. [Google Scholar] [CrossRef]
- Rio, S.; Faur-Brasquet, C.; Le Coq, L.; Le Cloirec, P. Production and characterization of adsorbent materials from industrial waste. Adsorption 2005, 11, 793–798. [Google Scholar] [CrossRef]
- Lamastra, L.; Suciu, N.A.; Trevisan, M. Sewage sludge for sustainable agriculture: Contaminants’ contents and potential use as fertilizer. Chem. Biol. Technol. Agric. 2018, 5, 10. [Google Scholar] [CrossRef]
- Saad, E.M.; Elshaarawy, R.F.; Mahmoud, S.A.; El-Moselhy, K.M. New Ulva lactuca Algae Based Chitosan Bio-composites for Bioremediation of Cd(II) Ions. J. Bioresour. Bioprod. 2021, 6, 223–242. [Google Scholar] [CrossRef]
- Obey, G.; Adelaide, M.; Ramaraj, R. Biochar Derived from Non-customized Matamba Fruit Shell as an Adsorbent for Wastewater Treatment. J. Bioresour. Bioprod. 2022, 7, 109–115. [Google Scholar] [CrossRef]
- Yao, N.; Wang, X.; Yang, Z.; Zhao, P.; Meng, X. Characterization of solid and liquid carbonization products of polyvinyl chloride (PVC) and investigation of the PVC-derived adsorbent for the removal of organic compounds from water. J. Hazard. Mater. 2023, 456, 131687. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.; Ansari, Z.; Anwer, A.H.; Kim, S.H.; Nasar, A.; Shoeb, M.; Mashkoor, F. A review on metal-organic frameworks for the removal of hazardous environmental contaminants. Sep. Purif. Technol. 2023, 305, 122416. [Google Scholar]
- Bian, Y.; Yuan, Q.; Zhu, G.; Ren, B.; Hursthouse, A.; Zhang, P. Recycling of waste sludge: Preparation and application of sludge-based activated carbon. Int. J. Polym. Sci. 2018, 2018, 8320609. [Google Scholar] [CrossRef]
- Biswas, S.; Mishra, U. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column. BioMed Res. Int. 2016, 2016, 5762781. [Google Scholar] [CrossRef]
- Nageeb, M.; Rashed, M.S. Heavy Metals Removal from Wastewater by Adsorption on Modified Physically Activated Sewage Sludge. Arch. Org. Inorg. Chem. Sci. 2018, 1, 18–25. [Google Scholar] [CrossRef]
- Gupta, A.; Garg, A. Recycling of Sewage Sludge as Adsorbent for the Purification of Wastewater, Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai, India. In Proceedings of the 5th International Conference on Sustainable Energy and Environmental Sciences (SEES 2016), Singapore, 22–23 February 2016. [Google Scholar]
- Aliakbari, Z.; Younesi, H.; Ghoreyshi, A.A.; Bahramifar, N.; Heidari, A. Production and characterization of sewage-sludge based activated carbons under different post-activation conditions. Waste Biomass Valorization 2018, 9, 451–463. [Google Scholar] [CrossRef]
- Abioye, A.M.; Ani, F.N. Advancement in the production of activated carbon from biomass using microwave heating. J. Teknol. 2017, 79, 79–88. [Google Scholar]
- Zaker, A.; Chen, Z.; Wang, X.; Zhang, Q. Microwave-assisted pyrolysis of sewage sludge: A review. Fuel Process. Technol. 2019, 187, 84–104. [Google Scholar] [CrossRef]
- Li, Y.H.; Chang, F.M.; Huang, B.; Song, Y.P.; Zhao, H.Y.; Wang, K.J. Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage. Fuel 2020, 266, 117053. [Google Scholar] [CrossRef]
- dos Reis, G.S.; Wilhelm, M.; de Almeida Silva, T.C.; Rezwan, K.; Sampaio, C.H.; Lima, E.C.; de Souza SM, G.U. The use of design of experiments for the evaluation of the production of surface rich activated carbon from sewage sludge via microwave and conventional pyrolysis. Appl. Therm. Eng. 2016, 93, 590–597. [Google Scholar] [CrossRef]
- Boudrahem, F.; Aissani Benissad, F.; Ait Amar, H. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. J. Environ. Manag. 2009, 90, 3031–3039. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.L.; Lin, Y.; Chai, L.; Min, X.; Wang, Y.; Yan, F.; Pu, W. Biosorption behaviors of Cu2+, Zn2+, Cd2+ and mixture by waste activated sludge. Trans. Nonferrous Met. Soc. China 2006, 16, 1431–1435. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Xia, S.; Zhao, J.; Chovelon, J.M.; Renault, N.J. Biosorption of Cu (II) and Pb (II) from aqueous solutions by dried activated sludge. Miner. Eng. 2006, 19, 968–971. [Google Scholar] [CrossRef]
- Nan, H.; Yin, J.; Yang, F.; Luo, Y.; Zhao, L.; Cao, X. Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration participation of calcium. Environ. Pollut. 2021, 287, 11756. [Google Scholar] [CrossRef]
Metal | Concentration mg/L |
---|---|
Ca | 3.417 |
Cd | 3.804 |
Co | 3.852 |
Mg | 3.852 |
Mn | 3.734 |
Na | 33.01 |
Types of Adsorbents | Crystallinity Structures % | Amorphous Structures% |
---|---|---|
Commercial AC | 44.6 | 55.4 |
Pure sludge | 15.2 | 84.8 |
Prepared AC without chemical activation at 500 °C | 15.8 | 84.2 |
Prepared AC activated with ZnCl2 at 500 °C | 18.1 | 81.9 |
Prepared AC activated with NaOH at 500 °C | 23.6 | 76.4 |
Prepared AC activated with KOH at 500 °C | 17.1 | 82.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Dawery, S.K.; Al-Sawai, M.K.; Al Muzami, G.M.S.; Annamareddy, S.H.K.; Al Dawari, M.S.; Harharah, R.H.; Harharah, H.N.; Amari, A. Treatment of Produced Water Using Prepared Activated Carbon-Based Sewage Sludge. Separations 2023, 10, 519. https://doi.org/10.3390/separations10100519
Al Dawery SK, Al-Sawai MK, Al Muzami GMS, Annamareddy SHK, Al Dawari MS, Harharah RH, Harharah HN, Amari A. Treatment of Produced Water Using Prepared Activated Carbon-Based Sewage Sludge. Separations. 2023; 10(10):519. https://doi.org/10.3390/separations10100519
Chicago/Turabian StyleAl Dawery, Salam K., Maroa K. Al-Sawai, Ghatara M. S. Al Muzami, Sri Hari K. Annamareddy, Muataz S. Al Dawari, Ramzi H. Harharah, Hamed N. Harharah, and Abdelfattah Amari. 2023. "Treatment of Produced Water Using Prepared Activated Carbon-Based Sewage Sludge" Separations 10, no. 10: 519. https://doi.org/10.3390/separations10100519
APA StyleAl Dawery, S. K., Al-Sawai, M. K., Al Muzami, G. M. S., Annamareddy, S. H. K., Al Dawari, M. S., Harharah, R. H., Harharah, H. N., & Amari, A. (2023). Treatment of Produced Water Using Prepared Activated Carbon-Based Sewage Sludge. Separations, 10(10), 519. https://doi.org/10.3390/separations10100519