The Influence of the Chemical Composition of Natural Waters about the Triclocarban Sorption on Pristine and Irradiated MWCNTs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of Natural Surface Waters
2.3. Chromatographic Analytical Conditions
2.4. Inductively Coupled Plasma-Optical Emission Spectrometry Method (ICP-OES)
2.5. Ion Chromatography Method
2.6. Preparation of TCC Solution
2.7. Preparation of Aqueous Suspensions of Pristine and Irradiated MWCNTs
2.8. The Adsorption Experiments
- ➢
- q (mg/g) is the sorption capacity of TCC,
- ➢
- C0 (mg/L) and Cx (mg/L) are the initial and steady-state concentrations of TCC in solution,
- ➢
- V (L) the volume of the solution, and m (g) the mass of the adsorbent, respectively.
3. Results and Discussion
3.1. Characterization of Natural Surface Waters
3.2. TCC Adsorption Isotherms
- ➢
- qe [mg/g] is the sorption capacity of the sorbent at equilibrium,
- ➢
- Ce [mg/L is adsorbate concentration at equilibrium,
- ➢
- KF [(mg/g)/(mg/L)1/n] is Freundlich affinity coefficient
- ➢
- qe [mg/g] is the sorption capacity of the sorbent at equilibrium,
- ➢
- qm [mg/g] is the maximum adsorption capacity of the sorbent,
- ➢
- Ce [mg/L} is adsorbate concentration at equilibrium,
- ➢
- KL [L/mg] is the Langmuir equilibrium constant
3.3. Influence of Cations on the Adsorption Capacity of TCC on MWCNTs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halden, R.U.; Paull, D.H. Co-occurrence of triclocarban and triclosan in US water resources. Environ. Sci. Technol. 2005, 39, 1420–1426. [Google Scholar] [CrossRef] [PubMed]
- Données Technico-Économiques sur les Substances Chimiques en France: Triclocarban; INERIS: 2016; 32p. Available online: http://www.ineris.fr/substances/fr/ (accessed on 10 May 2019).
- Sharma, B.M.; Becanova, J.; Scheringer, M.; Sharma, A.; Bharat, G.K.; Whitehead, P.G.; Klanova, J.; Nizzetto, L. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci. Total Environ. 2019, 646, 1459–1467. [Google Scholar] [CrossRef]
- Zhao, J.L.; Ying, G.G.; Liu, Y.S.; Chen, F.; Yang, J.F.; Wang, L. Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: From source to the receiving environment. J. Hazard. Mater. 2010, 179, 215–222. [Google Scholar] [CrossRef]
- Brumovský, M.; Bečanová, J.; Kohoutek, J.; Borghini, M.; Nizzetto, L. Contaminants of emerging concern in the open sea waters of the Western Mediterranean. Environ. Pollut. 2017, 229, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Souchier, M.; Benali-Raclot, D.; Benanou, D.; Boireau, V.; Gomez, E.; Casellas, C.; Chiron, S. Screening triclocarban and its transformation products in river sediment using liquid chromatography and high resolution mass spectrometry. Sci. Total Environ. 2015, 502, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Healy, M.G.; Fenton, O.; Cormican, M.; Peyton, D.P.; Ordsmith, N.; Kimber, K.; Morrison, L. Antimicrobial compounds (triclosan and triclocarban) in sewage sludges, and their presence in runoff following land application. Ecotox. Environ. Safe. 2017, 142, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Lv, M.; Sun, Q.; Xu, H.; Lin, L.; Chen, M.; Yu, C.P. Occurrence and fate of triclosan and triclocarban in a subtropical river and its estuary. Mar. Pollut. Bull. 2014, 88, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Lehutso, R.F.; Daso, A.P.; Okonkwo, J.O. Occurrence and environmental levels of triclosan and triclocarban in selected wastewater treatment plants in Gauteng Province, South Africa. Emerg. Contam. 2017, 3, 107–114. [Google Scholar] [CrossRef]
- Halden, R.U.; Paull, D.H. Analysis of triclocarban in aquatic samples by liquid chromatography electrospray ionization mass spectrometry. Environ. Sci. Technol. 2004, 38, 4849–4855. [Google Scholar] [CrossRef]
- Snyder, E.H.; O’Connor, G.A.; McAvoy, D.C. Measured physicochemical characteristics and biosolids-borne concentrations of the antimicrobial Triclocarban (TCC). Sci. Total Environ. 2010, 408, 2667–2673. [Google Scholar] [CrossRef]
- Snyder, E.H.; O’Connor, G.A. Risk assessment of land-applied biosolids-borne triclocarban (TCC). Sci. Total Environ. 2013, 442, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Össurardóttir, Í.B.; Thorsteinsson, T.; Duan, M.; Másson, M. Cyclodextrin solubilization of the antibacterial agents triclosan and triclocarban: Effect of ionization and polymers. J. Incl. Phenom. Macrocycl. Chem. 2005, 52, 109–117. [Google Scholar] [CrossRef]
- Higgins, C.P.; Paesani, Z.J.; Chalew, T.E.; Halden, R.U. Bioaccumulation of triclocarban in Lumbriculus variegatus. Environ. Toxicol. Chem. 2009, 28, 2580–2586. [Google Scholar] [CrossRef] [PubMed]
- Macherius, A.; Lapen, D.R.; Reemtsma, T.; Rombke, J.; Topp, E.; Coors, A. Triclocarban, triclosan and its transformation product methyl triclosan in native earthworm species four years after a commercial-scale biosolids application. Sci. Total Environ. 2014, 472, 235–238. [Google Scholar] [CrossRef]
- Vimalkumar, K.; Arun, E.; Krishna-Kumar, S.; Poopal, R.K.; Nikhil, N.P.; Subramanian, A.; Babu-Rajendran, R. Occurrence of triclocarban and benzotriazole ultraviolet stabilizers in water, sediment, and fish from Indian rivers. Sci. Total Environ. 2018, 625, 1351–1360. [Google Scholar] [CrossRef]
- Sherburne, J.J.; Anaya, A.M.; Fernie, K.J.; Forbey, J.S.; Furlong, E.T.; Kolpin, D.W.; Dufty, A.M.; Kinney, C.A. Occurrence of Triclocarban and Triclosan in an Agro-ecosystem Following Application of Biosolids. Environ. Sci. Technol. 2016, 50, 13206–13214. [Google Scholar] [CrossRef]
- Prosser, R.S.; Lissemore, L.; Topp, E.; Sibley, P.K. Bioaccumulation of triclosan and triclocarban in plants grown in soils amended with municipal dewatered biosolids. Environ. Toxicol. Chem. 2014, 33, 975–984. [Google Scholar] [CrossRef]
- Ye, X.; Wong, L.-Y.; Dwivedi, P.; Zhou, X.; Jia, T.; Calafat, A.M. Urinary concentrations of the antibacterial agent triclocarban in United States residents: 2013–2014 National Health and Nutrition Examination Survey. Environ. Sci. Technol. 2016, 50, 13548–13554. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Wei, L.; Shi, Y.; Zhang, J.; Wu, Q.; Shao, B. Chinese population exposure to triclosan and triclocarban as measured via human urine and nails. Environ. Geochem. Health 2016, 38, 1125–1135. [Google Scholar] [CrossRef]
- Asimakopoulos, A.G.; Thomaidis, N.S.; Kannan, K. Widespread occurrence of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid esters (parabens), benzophenone type-UV filters, triclosan, and triclocarban in human urine from Athens, Greece. Sci. Total Environ. 2014, 470–471, 1243–1249. [Google Scholar] [CrossRef]
- Halden, R.U. On the Need and Speed of Regulating Triclosan and Triclocarban in the United States Environ. Sci. Technol. 2014, 48, 3603–3611. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.; Liang, B.; Kong, D.; Li, X.; Wang, A. Fate, risk and removal of triclocarban: A critical review. J. Hazard. Mater. 2020, 387, 121944. [Google Scholar] [CrossRef]
- Lozano, N.; Rice, C.P.; Ramirez, M.; Torrents, A. Fate of triclocarban in agricultural soils after biosolid applications. Environ. Sci. Pollut. Res. Int. 2018, 25, 222–232. [Google Scholar] [CrossRef]
- Adams, C.; Wang, Y.; Loftin, K.; Meyer, M. Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng. 2002, 128, 253–260. [Google Scholar] [CrossRef]
- Westerhoff, P.; Yoon, Y.; Snyder, S.; Wert, E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 2005, 39, 6649–6663. [Google Scholar] [CrossRef] [PubMed]
- Snyder, S.A.; Adham, S.; Redding, A.M.; Cannon, F.S.; DeCarolis, J.; Oppenheimer, J.; Wert, E.C.; Yoon, Y. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 2007, 202, 156–181. [Google Scholar] [CrossRef]
- Nam, S.-W.; Choi, D.-J.; Kim, S.-K.; Her, N.; Zoh, K.-D. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon. J. Hazard. Mater. 2014, 270, 144–152. [Google Scholar] [CrossRef]
- Schreiber, B.; Schmalz, V.; Brinkmann, T.; Worch, E. The effect of water temperature on the adsorption equilibrium of dissolved organic matter and atrazine on granular activated carbon. Environ. Sci. Technol. 2007, 41, 6448–6453. [Google Scholar] [CrossRef]
- Chang, S.; Waite, T.D.; Schäfer, A.I.; Fane, A.G. Adsorption of trace steroid estrogens to hydrophobic hollow fibre membranes. Desalination 2002, 146, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Kimura, K.; Amy, G.; Drewes, J.; Watanabe, Y. Adsorption of hydrophobic compounds onto NF/RO membranes: An artifact leading to overestimation of rejection. J. Membr. Sci. 2003, 221, 89–101. [Google Scholar] [CrossRef]
- Wang, X.Q.; Thibodeaux, L.J.; Valsaraj, K.T.; Reible, D.D. Efficiency of capping contaminated bed sediments in situ. 1. Laboratory-scale experiments on diffusion-adsorption in the capping layer. Environ. Sci. Technol. 1991, 25, 1578–1584. [Google Scholar] [CrossRef]
- Yu, K.; Yi, S.; Li, B.; Guo, F.; Peng, X.; Wang, Z.; Wu, Y.; Alvarez-Cohen, L.; Zhang, T. An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community. Microbiome 2019, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, I. New generation adsorbents for water treatment. Chem. Rev. 2012, 112, 5073–5091. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, H.; Ang, H.-M.; Tadé, M.O. Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem. Eng. J. 2013, 226, 336–347. [Google Scholar] [CrossRef]
- Ion, A.C.; Ion, I.; Culetu, A.; Gherase, D. Carbon-Based Nanomaterials. Environmental Applications; Academiei Romane: Bucharest, Romania; Volume 19, 2012; pp. 31–57. [Google Scholar]
- Shi, B.; Zhuang, X.; Yan, X.; Lu, J.; Tang, H. Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes. J. Environ. Sci. 2010, 22, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, X.; Cao, Z.; Zhan, Y.; Shi, X.; Yang, Y.; Zhou, J.; Xu, J. Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J. Hazard. Mater. 2016, 310, 235–245. [Google Scholar] [CrossRef]
- Ding, H.; Li, X.; Wang, J.; Zhang, X.; Chen, C. Adsorption of chlorophenols from aqueous solutions by pristine and surface functionalized single-walled carbon nanotubes. J. Environ. Sci. 2016, 43, 187–198. [Google Scholar] [CrossRef]
- Ion, I.; Senin, R.M.; Ivan, G.R.; Doncea, S.M.; Henning, M.P.; Politowski, I.; Ion, A.C. Adsorption of Triclocarban on Pristine and Irradiated MWCNTs in Aqueous Solutions. Rev. Chim. Buchar. 2019, 70, 2835–2842. [Google Scholar] [CrossRef]
- Ion, A.C.; Ivan, G.R.; Ion, I. Treatment Techniques for Organic Micropollutants Removal from Waters; Academiei Romane: Bucharest, Romania, 2020; Volume 28, pp. 118–133. [Google Scholar]
- Senin, R.M.; Ion, I.; Oprea, O.; Stoica, R.; Ganea, R.; Ion, A.C. Sorption of Bisphenol A in Aqueous Solutions on Irradiated and as-Grown Multiwalled Carbon Nanotubes. Rev. Chim. 2018, 69, 1233–1239. [Google Scholar] [CrossRef]
- Ion, I.; Culetu, A.; Costa, J.; Luca, C.; Ion, A.C. Polyvinyl chloride-based membranes of 3,7,11-tris (2-pyridylmethyl)-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene as a Pb(II)-selective sensor. Desalination 2010, 259, 38–43. [Google Scholar] [CrossRef]
- Ion, A.C.; Ion, I.; Antonisse, M.M.G.; Snelink-Rüuel, B.H.M.; Reinhoudt, D.N. Characteristics of fluoride-selective electrode with uranyl salophen receptors in aqueous solutions. Russ. J. Gen. Chem. 2001, 71, 159–161. [Google Scholar] [CrossRef]
- Calin, M.R.; Radulescu, I.; Ion, A.C.; Sirbu, F. Radiochemical investigations on natural mineral waters from Bucovina region, Romania. Rom. J. Phys. 2016, 61, 1051–1066. [Google Scholar]
- Ion, I.; Ivan, G.R.; Senin, R.M.; Doncea, S.M.; Capra, L.; Modrogan, C.; Oprea, O.; Stinga, G.; Orbulet, O.; Ion, A.C. Adsorption of triclocarban (TCC) onto fullerene C60 in simulated environmental aqueous conditions. Sep. Sci. Technol. 2019, 54, 2759–2772. [Google Scholar] [CrossRef]
- Ivan, G.R.; Capra, L.; Ion, I.; Ion, A.C. Effects of pH, temperature, ionic strength and organic matter on triclocarban solubility. J. Environ. Eng. Landsc. Manag. 2021, 29, 244–250. [Google Scholar] [CrossRef]
- Capra, L.; Manolache, M.; Ion, I.; Ion, A.C. Validation of a method for determination of antimony in drinking water by ICP-OES. Univ. Politeh. Buchar. Sci. Bull. Ser. B—Chem. Mater. Sci. 2016, 78, 103–112. Available online: https://www.scientificbulletin.upb.ro/SeriaB (accessed on 20 April 2020).
- Gotovac, S.; Hattori, Y.; Noguchi, D.; Miyamoto, J.; Kanamaru, M.; Utsumi, S.; Kanoh, H.; Kaneko, K. Phenanthrene adsorption from solution on single wall carbon nanotubes. J. Phys. Chem. B 2006, 110, 16219–16224. [Google Scholar] [CrossRef]
- Hamdaoui, O.; Naffrechoux, E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J. Hazard. Mater. 2007, 147, 381–394. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef] [Green Version]
- Ion, I.; Bogdan, D.; Mincu, M.M.; Ion, A.C. Modified exfoliated carbon nanoplatelets as sorbents for ammonium from natural mineral waters. Molecules 2021, 26, 3541. [Google Scholar] [CrossRef]
- Ren, X.; Chen, C.; Nagatsu, M.; Wang, X. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem. Eng. J. 2011, 170, 395–410. [Google Scholar] [CrossRef]
- Pan, B.; Xing, B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 2008, 42, 9005–9013. [Google Scholar] [CrossRef] [PubMed]
- Sheng, G.D.; Shao, D.D.; Ren, X.M.; Wang, X.Q.; Li, J.X.; Chen, Y.X.; Wang, X.K. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 2010, 178, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Anand, D.; Zhang, X.; Talapatra, S. Adsorption and desorption of chlorinated compounds from pristine and thermally treated multiwalled carbon nanotubes. J. Phys. Chem. C 2011, 115, 4552–4557. [Google Scholar] [CrossRef]
- Anjum, H.; Johari, K.; Gnanasundaram, N.; Ganesapillai, M.; Arunagiri, A.; Regupathi, I.; Thanabalan, M. A review on adsorptive removal of oil pollutants (BTEX) from wastewater using carbon nanotubes. J. Mol. Liq. 2019, 277, 1005–1025. [Google Scholar] [CrossRef]
- El-Sayed, M.E.A. Nanoadsorbents for water and wastewater remediation. Sci. Total Environ. 2020, 739, 139903. [Google Scholar] [CrossRef]
Natural Surface Water | pH | EC, mS/cm | Na+, mg/L | K+, mg/L | Ca2+, mg/L | Mg2+, mg/L | Mn2+, mg/L | Fe2+, mg/L | HCO3-, mg/L | SO42−, mg/L |
---|---|---|---|---|---|---|---|---|---|---|
A1 | 7.67 | 1.37 | 6.86 | 3.93 | 287 | 79.3 | <0.01 | 8.60 | 1305 | 22.9 |
A2 | 7.33 | 1.19 | 180 | 8.22 | 130 | 28.7 | 0.07 | 7.37 | 1044 | 9.33 |
A3 | 8.21 | 1.00 | 59.3 | 3.46 | 192 | 48.7 | <0.01 | 6.03 | 914 | 8.49 |
Natural Surface Water | Langmuir | Freundlich | Langmuir | Freundlich | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
KL, L/mg | qm, mg/g | R2 | KF | n | R2 | KL, L/mg | qm, mg/g | R2 | KF | n | R2 | |
Pristine MWCNTs | Irradiated MWCNTs | |||||||||||
A1 | 0.42 | 4.10 | 0.9963 | 1.26 | 1.98 | 0.9850 | 0.30 | 4.28 | 0.9975 | 1.08 | 1.89 | 0.9872 |
A2 | 0.55 | 3.12 | 0.9946 | 1.11 | 2.08 | 0.9813 | 0.41 | 3.16 | 0.9968 | 0.97 | 2.03 | 0.9857 |
A3 | 0.35 | 5.57 | 0.9938 | 1.47 | 1.89 | 0.9810 | 0.30 | 5.57 | 0.9948 | 1.36 | 1.87 | 0.9817 |
Natural Surface Water | Langmuir | Freundlich | Langmuir | Freundlich | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
KL, L/mg | qm, mg/g | R2 | KF | n | R2 | KL, L/mg | qm, mg/g | R2 | KF | n | R2 | |
Pristine MWCNTs | Irradiated MWCNTs | |||||||||||
A1 | 0.25 | 11.7 | 0.9981 | 2.32 | 1.56 | 0.9916 | 0.20 | 11.12 | 0.9985 | 1.98 | 1.46 | 0.9945 |
A2 | 0.33 | 8.67 | 0.9966 | 2.38 | 2.09 | 0.9805 | 0.18 | 9.41 | 0.9978 | 1.75 | 1.84 | 0.9877 |
A3 | 0.95 | 8.42 | 0.9898 | 3.72 | 2.28 | 0.9696 | 1.09 | 7.48 | 0.9540 | 3.50 | 2.57 | 0.9540 |
Natural Surface Water | qe, mg/g | Na+, mg/L | K+, mg/L | Ca2+, mg/L | Mg2+, mg/L | |||
---|---|---|---|---|---|---|---|---|
Pristine MWCNTs, 5 °C | Pristine MWCNTs, 25 °C | Irradiated MWCNTs, 5 °C | Irradiated MWCNTs, 25 °C | |||||
A1 | 3.1 | 6.5 | 2.9 | 6.4 | 6.86 | 3.93 | 287 | 79.3 |
A2 | 2.2 | 6.2 | 2.1 | 6.9 | 180 | 8.22 | 130 | 28.7 |
A3 | 3.9 | 6.8 | 3.8 | 6.6 | 59.3 | 3.46 | 192 | 48.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivan, G.R.; Ion, I.; Capra, L.; Oprea, O.; Ion, A.C. The Influence of the Chemical Composition of Natural Waters about the Triclocarban Sorption on Pristine and Irradiated MWCNTs. Separations 2023, 10, 46. https://doi.org/10.3390/separations10010046
Ivan GR, Ion I, Capra L, Oprea O, Ion AC. The Influence of the Chemical Composition of Natural Waters about the Triclocarban Sorption on Pristine and Irradiated MWCNTs. Separations. 2023; 10(1):46. https://doi.org/10.3390/separations10010046
Chicago/Turabian StyleIvan, Georgeta Ramona, Ion Ion, Luiza Capra, Ovidiu Oprea, and Alina Catrinel Ion. 2023. "The Influence of the Chemical Composition of Natural Waters about the Triclocarban Sorption on Pristine and Irradiated MWCNTs" Separations 10, no. 1: 46. https://doi.org/10.3390/separations10010046
APA StyleIvan, G. R., Ion, I., Capra, L., Oprea, O., & Ion, A. C. (2023). The Influence of the Chemical Composition of Natural Waters about the Triclocarban Sorption on Pristine and Irradiated MWCNTs. Separations, 10(1), 46. https://doi.org/10.3390/separations10010046