Determination of Cordycepin Using a Stability-Indicating Greener HPTLC Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation and Chromatographic Procedures
2.3. Calibration Curve and Quality Control (QC) Sample for CDN
2.4. Sample Processing for the Assay of CDN in Laboratory-Developed Nanoemulsion
2.5. Analytical Method Validation
2.6. Forced Degradation/Selectivity Studies
2.7. Application of Current Protocol in the Determination of CDN in Laboratory-Developed Nanoemulsion
2.8. Assessment of Eco-Friendliness of Protocol
3. Results and Discussion
3.1. Analytical Method Development
3.2. Analytical Method Validation
3.3. Selectivity and Forced Degradation Studies
3.4. Application of Current Protocol in the Determination of CDN in Laboratory-Developed Nanoemulsion
3.5. Assessment of Eco-Friendliness of Protocol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhandari, A.K.; Negi, J.S.; Bisht, V.K.; Rana, C.S.; Bharti, M.K.; Singh, N. Chemical constituent, inorganic elements and properties of Cordyceps sinensis—A review. Nat. Sci. 2010, 8, 253–256. [Google Scholar] [CrossRef]
- Cunningham, K.G.; Hutchinson, S.A.; Manson, W.; Spring, F.S. Cordycepin, a metabolic product from cultures of Cordyceps militaris (Linn.) link. Part I. Isolation and characterisation. J. Chem. Soc. 1951, 2299–2300. [Google Scholar] [CrossRef]
- Shashidhar, M.G.; Giridhar, P.; Udaya Sankar, K.; Manohar, B. Bioactive principles from Cordyceps sinensis: A potent food supplement—A review. J. Funct. Foods 2013, 5, 1013–1030. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Li, S.P.; Xiang, J.J.; Lai, C.M.; Yang, F.Q.; Gao, J.L.; Wang, Y.T. Qualitative and quantitative determination of nucleosides, bases and their analogues in natural and cultured Cordyceps by pressurized liquid extraction and high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESIMS/MS). Anal. Chim. Acta 2006, 567, 218–228. [Google Scholar] [CrossRef]
- Yu, H.M.; Wang, B.-S.; Huang, S.C.; Duh, P.-D. Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. J. Agric. Food Chem. 2006, 54, 3132–3138. [Google Scholar] [CrossRef]
- Dias, C.; Ayyanar, M.; Amalraj, S.; Khanal, P.; Subramaniyan, V.; Das, S.; Gandhale, P.; Biswa, V.; Ali, R.; Gurav, N.; et al. Biogenic synthesis of zinc oxide nanoparticles using mushroom fungus Cordyceps militaris: Characterization and mechanistic insights of therapeutic investigation. J. Drug Deliv. Sci. Technol. 2022, 73, E103444. [Google Scholar] [CrossRef]
- Eiamthawon, K.; Kaewkod, T.; Bovonsombut, S.; Tragoolpua, Y. Efficacy of Cordyceps militaris extracts against some skin pathogenic bacterial and antioxidant activity. J. Fungi 2022, 8, 327. [Google Scholar] [CrossRef]
- Tan, L.; Song, X.; Ren, Y.; Wang, M.; Guo, C.; Guo, D.; Guo, Y.; Li, Y.; Cao, Z.; Deng, Y. Anti-inflammatory effects of cordycepin: A review. Phytother. Res. 2021, 35, 1284–1297. [Google Scholar] [CrossRef]
- Schmidt, K.; Li, Z.; Schubert, B.; Huang, B.; Stoyanova, S.; Hamburger, M. Screening of entomopathogenic Deuteromycetes for activities on targets involved in degenerative diseases of the central nervous system. J. Ethnopharmacol. 2003, 89, 251–260. [Google Scholar] [CrossRef]
- Nakamura, K.; Konoha, K.; Yoshikawa, N.; Yamaguchi, Y.; Kagota, S.; Shinozuka, K.; Kunitomo, M. Effect of cordycepin (3’-deoxyadenosine) on hematogenic lung metastatic model mice. In Vivo 2005, 19, 137–141. [Google Scholar]
- Dai, G.; Bao, T.; Xu, C.; Cooper, R.; Zhu, J.-S. CordyMax Cs-4 improves steady-state bioenergy status in mouse liver. J. Altern. Complementary Med. 2001, 7, 231–240. [Google Scholar] [CrossRef]
- Lee, J.S.; Hong, E.K. Immunostimulating activity of the polysaccharides isolated from Cordyceps militaris. Int. Immunopharmacol. 2011, 11, 1226–1233. [Google Scholar] [CrossRef]
- Lim, L.; Lee, C.; Chang, E. Optimization of solid state culture conditions for the production of adenosine, cordycepin, and D-mannitol in fruiting bodies of medicinal caterpillar fungus Cordyceps militaris (L.:Fr.) link (Ascomycetes). Int. J. Med. Mushrooms 2012, 14, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Weil, M.K.; Chen, A.P. PARP inhibitor treatment in ovarian and breast cancer. Curr. Probl. Cancer 2011, 35, 7–50. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Burger, P.; Vogel, M.; Friese, K.; Bruüning, A. The nucleoside antagonist cordycepin causes DNA double strand breaks in breast cancer cells. Invest. New Drugs 2012, 30, 1917–1925. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Lue, M.-Y.; Pan, T.-M. Determination of adenosine, cordycepin and ergosterol contents in cultivated Antrodia camphorata by HPLC method. J. Food Drug Anal. 2005, 13, 338–342. [Google Scholar] [CrossRef]
- Huang, L.; Li, Q.; Chen, Y.; Wang, X.; Zhou, X. Determination and analysis of cordycepin and adenosine in the products of Cordyceps spp. Afr. J. Microbiol. Res. 2009, 3, 957–961. [Google Scholar]
- Kumar, H.; Spandana, M. Simultaneous extraction, determination and analysis of adenosine, cordycepin and other derivatives of Cordyceps sinensis of Nepal by new validated HPLC method. J. Pharmacog. Phytochem. 2013, 2, 43–45. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Li, F.; Cai, H.; Sun, W.; Chen, X.; Gao, H.; Shen, W. Determination of cordycepin content of Cordyceps militaris recombinant rice by high performance liquid chromatography. Trop. J. Pharm. Res. 2016, 15, 2235–2239. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Cai, G.; He, Y.; Tong, G. Separation of cordycepin from Cordyceps militaris fermentation supernatant using preparative HPLC and evaluation of its antibacterial activity as an NAD+-dependent DNA ligase inhibitor. Exp. Ther. Med. 2016, 12, 1812–1816. [Google Scholar] [CrossRef]
- Choi, J.; Paje, L.A.; Kwon, B.; Noh, J.; Lee, S. Quantitative analysis of cordycepin in Cordyceps militaris under different extraction methods. J. Appl. Biol. Chem. 2021, 64, 153–158. [Google Scholar] [CrossRef]
- Wangboonskul, J.; Amnuoypol, S.; Sangvatanakul, P. Analytical method development for quantitation of adenosine and cordycepin in cordyceps and related products. Pharm. Sci. Asia 2020, 47, 357–365. [Google Scholar] [CrossRef]
- Chernthong, N.; Noisakul, S.; Saraphanchotiwitthaya, A.; Sripalakit, P. Validation and application of HPLC method for determination of cordycepin and adenosine in dietary supplements. Asia-Pac. J. Sci. Technol. 2022, 27, 1–9. [Google Scholar] [CrossRef]
- Huang, L.F.; Guo, F.Q.; Liang, Y.Z.; Chen, B.M. Determination of adenosine and cordycepin in Cordyceps sinensis and C. militarris with HPLC-ESI-MS. Chin. J. Chin. Mater. Med. 2004, 29, 762–764. [Google Scholar]
- Xie, J.-W.; Huang, L.-F.; Hu, W.; He, Y.-B.; Wong, K.P. Analysis of the main nucleosides in Cordyceps sinensis by LC/ESI-MS. Molecules 2010, 15, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Qian, Z.; Zou, Y.; Tan, G.; Li, W.; Lei, Q.; Li, R.; Lan, D. A simple, rapid, sensitive and eco-friendly LC-MS/MS method for simultaneous determination of free cordycepin and isocordycepin in 10 different kinds of Cordyceps. Acta Chromatogr. 2022. [Google Scholar] [CrossRef]
- Tain, Y.; Wang, C.-X.; Qian, Z.-M.; Li, Z.; Zhou, M.-X.; Sun, W.-Y.; Yao, X.-S.; Li, W.-J.; Gao, H. Simultaneous determination of cordycepin and 2'-deoxyadenosine in Cordyceps genus by online SPE-HPLC. Chin. J. Chin. Mater. Med. 2017, 24, 1932–1938. [Google Scholar] [CrossRef]
- Qian, Z.; Li, S. Analysis of Cordyceps by multi-column liquid chromatography. Acta Pharm. Sin. B 2017, 7, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Quan, N.V.; Iuchi, Y.; Anh, L.H.; Hasan, M.; Xuan, T.D. Simple isolation of cordycepin from Cordyceps militaris by dual-normal phase column chromatography and its potential for making kombucha functional products. Separations 2022, 9, 290. [Google Scholar] [CrossRef]
- Fu, F.; Chen, L.; Cao, Q. Separation and determination of cordycepin and adenosine in artificial Cordyceps sinensis Mycelium by gradient UPLC. IOP Conf. Ser. Mater. Sci. Eng. 2018, 394, E022019. [Google Scholar] [CrossRef] [Green Version]
- Qi, S.; Guan, H.; Wang, Y.; Fang, Q.; Cheng, X.; Liu, P.; Wei, H.; Liu, W. Simultaneous determination of cordycepin and its metabolite 3′-deoxyinosine in rat whole blood by ultra-high-performance liquid chromatography coupled with Q exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometry and its application to accurate pharmacokinetic studies. J. Sep. Sci. 2022. [Google Scholar] [CrossRef]
- Ma, K.-W.; Chau, F.-T.; Wu, J.-Y. Analysis of the nucleoside content of Cordyceps sinensis using the stepwise gradient elution technique of thin-layer chromatography. Chin. J. Chem. 2004, 22, 85–91. [Google Scholar] [CrossRef]
- Wu, D.-T.; Cheong, K.-L.; Wang, L.-Y.; Lv, G.-P.; Ju, Y.-J.; Feng, K.; Zhao, J.; Li, S.P. Characterization and discrimination of polysaccharides from different species of Cordyceps using saccharide mapping based on PACE and HPTLC. Carbohydr. Polym. 2014, 103, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Khan, W.; Ahmad, S.; Misra, K. Supercritical carbon dioxide extracts of Cordyceps sinensis: Chromatography-based metabolite profiling and protective efficacy against hypobaric hypoxia. Front. Pharmacol. 2021, 12, E628924. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.K.; Chou, C.-H.; Tzeng, Y.-M. A simple and rapid method for identification and determination of cordycepin in Cordyceps militaris by capillary electrophoresis. Anal. Chim. Acta 2006, 566, 253–258. [Google Scholar] [CrossRef]
- Singpoonga, N.; Rittiron, R.; Seang-on, B.; Chaiprasart, P. Determination of adenosine and cordycepin concentrations in Cordyceps militaris fruiting bodies using near-infrared spectroscopy. ACS Omega 2020, 5, 27235–27244. [Google Scholar] [CrossRef] [PubMed]
- Li, S.G.; Hyun, S.-H.; Sung, G.-H.; Choi, H.K. Simple and rapid determination of cordycepin in Cordyceps militaris fruiting bodies by quantitative nuclear magnetic resonance spectroscopy. Anal. Lett. 2014, 47, 1031–1042. [Google Scholar] [CrossRef]
- Abdelrahman, M.M.; Abdelwahab, N.S.; Hegazy, M.A.; Fares, M.Y.; El-Sayed, G.M. Determination of the abused intravenously administered madness drops (tropicamide) by liquid chromatography in rat plasma; an application to pharmacokinetic study and greenness profile assessment. Microchem. J. 2020, 159, E105582. [Google Scholar] [CrossRef]
- Duan, X.; Liu, X.; Dong, Y.; Yang, J.; Zhang, J.; He, S.; Yang, F.; Wang, Z.; Dong, Y. A green HPLC method for determination of nine sulfonamides in milk and beef, and its greenness assessment with analytical eco-scale and greenness profile. J. AOAC Int. 2020, 103, 1181–1189. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE-Analytical GREEnness metric approach and software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Alam, P.; Salem-Bekhit, M.M.; Al-Joufi, F.A.; Alqarni, M.H.; Shakeel, F. Quantitative analysis of cabozantinib in pharmaceutical dosage forms using green RP-HPTLC and green NP-HPTLC methods: A comparative evaluation. Sustain. Chem. Pharm. 2021, 21, E100413. [Google Scholar] [CrossRef]
- Foudah, A.I.; Shakeel, F.; Alqarni, M.H.; Alam, P. A rapid and sensitive stability-indicating green RP-HPTLC method for the quantitation of flibanserin compared to green NP-HPTLC method: Validation studies and greenness assessment. Microchem. J. 2021, 164, E105960. [Google Scholar] [CrossRef]
- International Conference on Harmonization (ICH), Q2 (R1): Validation of Analytical Procedures–Text and Methodology, Geneva, Switzerland. 2005. Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 20 November 2022).
- Abushal, A.S.; Aleanizy, F.S.; Alqahtani, F.Y.; Shakeel, F.; Iqbal, M.; Haq, N.; Alsarra, I.A. Self-nanoemulsifying drug delivery system (SNEDDS) of apremilast: In vitro evaluation and pharmacokinetics studies. Molecules 2022, 27, 3085. [Google Scholar] [CrossRef]
- Mahdi, W.A.; Alam, P.; Alshetaili, A.; Alshehri, S.; Ghoneim, M.M.; Shakeel, F. Product development studies of cranberry seed oil nanoemulsion. Processes 2022, 10, 393. [Google Scholar] [CrossRef]
- Alam, P.; Shakeel, F.; Ali, A.; Alqarni, M.H.; Foudah, A.I.; Aljarba, T.M.; Alkholifi, F.K.; Alshehri, S.; Ghoneim, M.M.; Ali, A. Simultaneous determination of caffeine and paracetamol in commercial formulations using greener normal-phase and reversed-phase HPTLC methods: A contrast of validation parameters. Molecules 2022, 27, 405. [Google Scholar] [CrossRef]
- Haq, N.; Iqbal, M.; Alanazi, F.K.; Alsarra, I.A.; Shakeel, F. Applying green analytical chemistry for rapid analysis of drugs: Adding health to pharmaceutical industry. Arabian J. Chem. 2017, 10, S777–S785. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Linearity range (ng/band) | 50–1000 |
Regression equation | y = 11.718x + 294.98 |
R2 | 0.9978 |
R | 0.9988 |
SE of slope | 0.27 |
SE of intercept | 1.29 |
95% CI of slope | 10.53–12.91 |
95% CI of intercept | 289.41–300.54 |
LOD ± SD (ng/band) | 16.92 ± 0.14 |
LOQ ± SD (ng/band) | 50.76 ± 0.42 |
Parameters | Values |
---|---|
Rf | 0.77 ± 0.02 |
As | 1.02 ± 0.01 |
N/m | 5321 ± 4.92 |
Conc. (ng/band) | Conc. Found (ng/band) ± SD | Recovery (%) | RSD (%) |
---|---|---|---|
Intra-day accuracy | |||
100 | 101.14 ± 1.17 | 101.14 | 1.15 |
500 | 491.23 ± 4.02 | 98.24 | 0.81 |
1000 | 988.71 ± 7.57 | 98.87 | 0.76 |
Inter-day accuracy | |||
100 | 98.45 ± 1.19 | 98.45 | 1.20 |
500 | 508.41 ± 4.32 | 101.68 | 0.84 |
1000 | 992.54 ± 7.87 | 99.25 | 0.79 |
Conc. (ng/band) | Intra-Day Precision | Inter-Day Precision | ||||
---|---|---|---|---|---|---|
Conc. (ng/band) ± SD | SE | RSD (%) | Conc. (ng/band) ± SD | SE | (%) RSD | |
100 | 99.13 ± 1.01 | 0.41 | 1.01 | 98.02 ± 1.10 | 0.44 | 1.12 |
500 | 488.74 ± 3.89 | 1.58 | 0.79 | 486.32 ± 3.98 | 1.62 | 0.81 |
1000 | 1012.31 ± 7.86 | 3.20 | 0.77 | 987.41 ± 7.94 | 3.24 | 0.80 |
Conc. (ng/band) | Mobile Phase Composition (Ethanol–Water) | Results | ||||
---|---|---|---|---|---|---|
Original | Used | Level | Conc. (ng/band) ± SD | RSD (%) | Rf | |
77:23 | +2.0 | 489.31 ± 3.92 | 0.80 | 0.76 | ||
500 | 75:25 | 75:25 | 0.0 | 498.45 ± 4.28 | 0.85 | 0.77 |
73:27 | −2.0 | 508.94 ± 4.42 | 0.86 | 0.78 |
Stress Condition | Number of Degradation Products (Rf) | CDN Rf | CDN Remaining (ng/band) | CDN Recovered (%) |
---|---|---|---|---|
1M HCl | 2 (0.69, 0.86) | ND | 0.00 | 0.00 ± 0.00 |
1M NaOH | 3 (0.21, 0.69, 0.82) | 0.77 | 405.70 | 81.14 ± 1.97 |
30% H2O2 | 4 (0.48, 0.62, 0.69, 0.82) | 0.76 | 284.00 | 56.80 ± 1.38 |
Photolytic | 0 | 0.77 | 500.00 | 100 ± 0.00 |
Thermal | 0 | 0.77 | 500.00 | 100 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, P.; Shakeel, F.; Alqarni, M.H.; Foudah, A.I.; Aljarba, T.M.; Alam, A.; Ghoneim, M.M.; Asdaq, S.M.B.; Alshehri, S.; Iqbal, M. Determination of Cordycepin Using a Stability-Indicating Greener HPTLC Method. Separations 2023, 10, 38. https://doi.org/10.3390/separations10010038
Alam P, Shakeel F, Alqarni MH, Foudah AI, Aljarba TM, Alam A, Ghoneim MM, Asdaq SMB, Alshehri S, Iqbal M. Determination of Cordycepin Using a Stability-Indicating Greener HPTLC Method. Separations. 2023; 10(1):38. https://doi.org/10.3390/separations10010038
Chicago/Turabian StyleAlam, Prawez, Faiyaz Shakeel, Mohammed H. Alqarni, Ahmed I. Foudah, Tariq M. Aljarba, Aftab Alam, Mohammed M. Ghoneim, Syed Mohammed Basheeruddin Asdaq, Sultan Alshehri, and Muzaffar Iqbal. 2023. "Determination of Cordycepin Using a Stability-Indicating Greener HPTLC Method" Separations 10, no. 1: 38. https://doi.org/10.3390/separations10010038
APA StyleAlam, P., Shakeel, F., Alqarni, M. H., Foudah, A. I., Aljarba, T. M., Alam, A., Ghoneim, M. M., Asdaq, S. M. B., Alshehri, S., & Iqbal, M. (2023). Determination of Cordycepin Using a Stability-Indicating Greener HPTLC Method. Separations, 10(1), 38. https://doi.org/10.3390/separations10010038