Skin and Syntax: Large Language Models in Dermatopathology
Abstract
:1. Introduction
2. Background
3. Advantages of LLMs in Dermatopathology
3.1. Automated Reporting: Revolutionizing the Generation of Pathology Reports
3.2. Continual Learning: Empowering LLMs to Assimilate and Provide Updated Medical Knowledge
3.3. Patient Education: Bridging the Gap by Simplifying Complex Dermatopathological Concepts
4. Case Studies and Real-World Applications
4.1. Diagnostic Support: How LLMs Can Assist in Identifying Rare or Atypical Presentations
4.2. Research: Accelerating Literature Reviews and Hypotheses Generation Using LLMs
4.3. Teaching and Training: LLMs as a Tool for Educating Novice Dermatopathologists
5. Discussion
5.1. Bias and Ethics
5.2. Data Privacy
5.3. Dependence vs. Assistance
5.4. Technical Limitations
6. Future Directions
6.1. Interdisciplinary Collaboration
6.2. Personalized Medicine
6.3. Expansion to Other Pathology Sub-Disciplines
7. Guidelines for Implementation
7.1. Training and Onboarding: Ensuring Understanding and Trust
7.2. Ongoing Evaluation: Continuous Assessment of LLMs
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dermatology Diagnostic Devices and Therapeutics Market Size, Report By 2032 Precedence Research. Available online: www.precedenceresearch.com/press-release/dermatology-diagnostic-devices-and-therapeutics-market#:~:text=The%20global%20dermatology%20diagnostic%20devices,conditions%2C%20dermatology%20equipment%20is%20required (accessed on 4 August 2023).
- De, A.; Sarda, A.; Gupta, S.; Das, S. Use of artificial intelligence in dermatology. Indian J. Dermatol. 2020, 65, 352. [Google Scholar] [CrossRef]
- Kaul, V.; Enslin, S.; Gross, S.A. History of artificial intelligence in medicine. Gastrointest. Endosc. 2020, 92, 807–812. [Google Scholar] [CrossRef]
- Voytovich, L.; Greenberg, C. Natural language processing: Practical Applications in Medicine and Investigation of Contextual Autocomplete. Acta Neurochir Suppl. 2022, 134, 207–214. [Google Scholar]
- Trajanov, D.; Trajkovski, V.; Dimitrieva, M.; Dobreva, J.; Jovanovik, M.; Klemen, M.; Žagar, A.; Robnik-Šikonja, M. Review of Natural Language Processing in Pharmacology. Pharmacol. Rev. 2023, 75, 714–738. [Google Scholar] [CrossRef]
- Locke, S.; Bashall, A.; Al-Adely, S.; Moore, J.; Wilson, A.; Kitchen, G.B. Natural language processing in medicine: A review. Trends Anaesth. Crit. Care 2021, 38, 4–9. [Google Scholar] [CrossRef]
- Ibraheim, M.K.; Gupta, R.; Gardner, J.M.; Elsensohn, A. Artificial Intelligence in Dermatopathology: An Analysis of Its Practical Application. Dermatopathology 2023, 10, 93–94. [Google Scholar] [CrossRef] [PubMed]
- WedMD Editorial Contributors; Medically Reviewed by Sabrina Felson. What Is a Dermatopathologist? Available online: https://www.webmd.com/a-to-z-guides/what-is-a-dermatopathologist (accessed on 15 July 2023).
- Wells, A.; Patel, S.; Lee, J.B.; Motaparthi, K. Artificial intelligence in dermatopathology: Diagnosis, education, and research. J. Cutan. Pathol. 2021, 48, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Stagner, A.M.; Tahan, S.R.; Nazarian, R.M. Changing Trends in Dermatopathology Case Complexity: A 9-Year Academic Center Experience. Arch. Pathol. Lab. Med. 2020, 145, 144–1147. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, C.; Phillips, R.; Laheru, D.; Fisher, R. P30 Declining staff numbers and increasing workload: Is there a solution? Br. J. Dermatol. 2023, 188 (Suppl. S4), ljad113-058. [Google Scholar] [CrossRef]
- Jartarkar, S.R.; Cockerell, C.J.; Patil, A.; Kassir, M.; Babaei, M.; Weidenthaler–Barth, B.; Grabbe, S.; Goldust, M. Artificial intelligence in Dermatopathology. J. Cosmet. Dermatol. 2023, 22, 1163–1167. [Google Scholar] [CrossRef]
- Velez, N.; Jukic, D.; Ho, J. Evaluation of 2 whole-slide imaging applications in dermatopathology. Hum. Pathol. 2008, 39, 1341–1349. [Google Scholar] [CrossRef]
- Niazi, M.K.K.; Parwani, A.V.; Gurcan, M.N. Digital pathology and artificial intelligence. Lancet Oncol. 2019, 20, e253–e261. [Google Scholar] [CrossRef]
- Choi, H.S.; Song, J.Y.; Shin, K.H.; Chang, J.H.; Jang, B.S. Developing prompts from large language model for extracting clinical information from pathology and ultrasound reports in breast cancer. Radiat. Oncol. J. 2023, 41, 209–216. [Google Scholar] [CrossRef]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthcare J. 2021, 8, e188. [Google Scholar] [CrossRef]
- Karabacak, M.; Margetis, K. Embracing Large Language Models for Medical Applications: Opportunities and Challenges. Cureus 2023, 15, 1–5. [Google Scholar] [CrossRef]
- Introducing GPTs. Open AI. Available online: https://openai.com/blog/introducing-gpts (accessed on 26 December 2023).
- Smith, S.D.; Reimann, J.D.; Horn, T.D. Communication between dermatologists and dermatopathologists via the pathology requisition: Opportunities to improve patient care. JAMA Dermatol. 2021, 157, 1033–1034. [Google Scholar] [CrossRef]
- El Saadawi, G.M.; Tseytlin, E.; Legowski, E.; Jukic, D.; Castine, M.; Fine, J.; Gormley, R.; Crowley, R.S. A natural language intelligent tutoring system for training pathologists: Implementation and evaluation. Adv. Health Sci. Educ. 2008, 13, 709–722. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, R.; Nguyen, D.; Choi, S.; Gabel, C.; Leonard, N.; Yim, K.; O’Donnell, P.; Elaba, Z.; Deng, A.; et al. Assessing the ability of an artificial intelligence chatbot to translate dermatopathology reports into patient-friendly language: A cross-sectional study. J. Am. Acad. Dermatol. 2023, 90, 397–399. [Google Scholar] [CrossRef]
- Elkassem, A.A.; Smith, A.D. Potential use cases for ChatGPT in radiology reporting. Am. J. Roentgenol. 2023, 221, 373–376. [Google Scholar] [CrossRef]
- Reeves, P.T.; Packett, A.C.; Burklow, C.S.; Echelmeyer, S.; Larson, N.S. Development and assessment of a low-health-literacy, pictographic adrenal insufficiency action plan. J. Pediatr. Endocrinol. Metab. 2022, 35, 205–215. [Google Scholar] [CrossRef]
- Liopyris, K.; Gregoriou, S.; Dias, J.; Stratigos, A.J. Artificial intelligence in dermatology: Challenges and perspectives. Dermatol. Ther. 2022, 12, 2637–2651. [Google Scholar] [CrossRef]
- Steele, L.; Velazquez-Pimentel, D.; Thomas, B.R. Do AI models recognise rare, aggressive skin cancers? An assessment of a direct-to-consumer application in the diagnosis of Merkel cell carcinoma and amelanotic melanoma. J. Eur. Acad. Dermatol. Venereol. 2021, 35, e877–e879. [Google Scholar] [CrossRef]
- ChatGPT. Image Inputs for ChatGPT—FAQ. Available online: https://help.openai.com/en/articles/8400551-image-inputs-for-chatgpt-faq (accessed on 26 December 2023).
- Zhou, J.; He, X.; Sun, L.; Xu, J.; Chen, X.; Chu, Y.; Zhou, L.; Liao, X.; Zhang, B.; Gao, X. SkinGPT-4: An interactive dermatology diagnostic system with visual large language model. medRxiv 2023. [Google Scholar] [CrossRef]
- Chan, S.; Reddy, V.; Myers, B.; Thibodeaux, Q.; Brownstone, N.; Liao, W. Machine learning in dermatology: Current applications, opportunities, and limitations. Dermatol. Ther. 2020, 10, 365–386. [Google Scholar] [CrossRef]
- Khullar, G.; Chandra, M. Virtual dermatopathology: A potential educational tool during COVID-19 pandemic. Dermatologic Therapy 2020, 33, e13755. [Google Scholar] [CrossRef]
- Matin, R.N.; Linos, E.; Rajan, N. Leveraging large language models in dermatology. Br. J. Dermatol. 2023, 189, 253–254. [Google Scholar] [CrossRef]
- Abd-Alrazaq, A.; AlSaad, R.; Alhuwail, D.; Ahmed, A.; Healy, P.M.; Latifi, S.; Aziz, S.; Damseh, R.; Alrazak, S.A.; Sheikh, J. Large Language Models in Medical Education: Opportunities, Challenges, and Future Directions. JMIR Med. Educ. 2023, 9, e48291. [Google Scholar] [CrossRef]
- Omiye, J.A.; Lester, J.C.; Spichak, S.; Rotemberg, V.; Daneshjou, R. Large language models propagate race-based medicine. npj Digit. Med. 2023, 6, 195. [Google Scholar] [CrossRef]
- Smith, V.; Shamsabadi, A.S.; Ashurst, C.; Weller, A. Identifying and mitigating privacy risks stemming from language models: A survey. arXiv 2023, arXiv:2310.01424. [Google Scholar]
- What AI’s Changing Landscape Means for Pathology. Julianna Ianni. PROSCIA. Available online: https://proscia.com/what-ais-changing-landscape-means-for-pathology/ (accessed on 28 April 2023).
- Nakagawa, K.; Moukheiber, L.; Celi, L.; Patel, M.; Mahmood, F.; Gondim, D.; Hogarth, M.; Levenson, R. AI in Pathology: What could possibly go wrong? In Seminars in Diagnostic Pathology; WB Saunders: Philadelphia, PA, USA, 2023. [Google Scholar]
- Thirunavukarasu, A.J.; Ting, D.S.; Elangovan, K.; Gutierrez, L.; Tan, T.F.; Ting, D.S. Large language models in medicine. Nat. Med. 2023, 29, 1930–1940. [Google Scholar] [CrossRef]
- Kim, J.K.; Chua, M.; Rickard, M.; Lorenzo, A. ChatGPT and large language model (LLM) chatbots: The current state of acceptability and a proposal for guidelines on utilization in academic medicine. J. Pediatr. Urol. 2023, 19, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Gao, C.A.; Liebovitz, D.M.; Carvalho, A.M.; Ahmad, F.S.; Luo, Y.; MacDonald, N.; Holmes, K.L.; Kho, A. An exploratory survey about using ChatGPT in education, healthcare, and research. medRxiv, 2023; preprint. [Google Scholar] [CrossRef] [PubMed]
Types | Examples |
---|---|
Diagnostic Support | Reviewing the literature for the histopathological findings in malignant proliferating trichilemmal tumors. |
Research | Generating an outline based on ideas for a manuscript. |
Teaching and Training | Generating questions based on a histopathological slide to check understanding. |
Patient Education | Explaining a pathology report indicating nodular basal cell carcinoma to a patient. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, A.; Wahood, S.; Guermazi, D.; Brem, C.E.; Saliba, E. Skin and Syntax: Large Language Models in Dermatopathology. Dermatopathology 2024, 11, 101-111. https://doi.org/10.3390/dermatopathology11010009
Shah A, Wahood S, Guermazi D, Brem CE, Saliba E. Skin and Syntax: Large Language Models in Dermatopathology. Dermatopathology. 2024; 11(1):101-111. https://doi.org/10.3390/dermatopathology11010009
Chicago/Turabian StyleShah, Asghar, Samer Wahood, Dorra Guermazi, Candice E. Brem, and Elie Saliba. 2024. "Skin and Syntax: Large Language Models in Dermatopathology" Dermatopathology 11, no. 1: 101-111. https://doi.org/10.3390/dermatopathology11010009
APA StyleShah, A., Wahood, S., Guermazi, D., Brem, C. E., & Saliba, E. (2024). Skin and Syntax: Large Language Models in Dermatopathology. Dermatopathology, 11(1), 101-111. https://doi.org/10.3390/dermatopathology11010009