Reduced Income and Its Associations with Physical Inactivity, Unhealthy Habits, and Cardiac Complications in the Hypertensive Population
Abstract
:1. Introduction
2. Material and Methods
2.1. Design
2.2. Participants
2.3. Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mozaffarian, D. Global scourge of cardiovascular disease. J. Am. Coll. Cardiol. 2017, 70, 26–28. [Google Scholar] [CrossRef] [PubMed]
- Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005, 365, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Ridwanah, A.A.; Megatsari, H.; Laksono, A.D. Hypertension in Indonesia in 2018: An ecological analysis. Indian J. Forensic Med. Toxicol. 2021, 15, 2073–2079. [Google Scholar] [CrossRef]
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 2020, 395, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Vera-Romero, O.E.; Vera-Romero, F.M. Evaluación del nivel socioeconómico: Presentación de una escala adaptada en una población de Lambayeque. Rev. Del Cuerpo Médico Hosp. Nac. Almanzor Aguinaga Asenjo 2013, 6, 41–45. [Google Scholar]
- Deaton, C.; Froelicher, E.S.; Wu, L.H.; Ho, C.; Shishani, K.; Jaarsma, T. The Global burden of cardiovascular disease. Eur. J. Cardiovasc. Nurs. 2011, 10, S5–S13. [Google Scholar] [CrossRef] [PubMed]
- Gheorghe, A.; Griffiths, U.; Murphy, A.; Legido-Quigley, H.; Lamptey, P.; Perel, P. The economic burden of cardiovascular disease and hypertension in low- and middle-income countries: A systematic review. BMC Public Health 2018, 18, 975. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Racial/Ethnic disparities in the awareness, treatment, and control of hypertension—United States, 2003–2010. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 351–355. [Google Scholar]
- Abba, M.S.; Nduka, C.U.; Anjorin, S.; Mohamed, S.F.; Agogo, E.; Uthman, O.A. Influence of contextual socioeconomic position on hypertension risk in low- and middle-income countries: Disentangling context from composition. BMC Public Health 2021, 21, 2218. [Google Scholar] [CrossRef]
- Cois, A.; Ehrlich, R. Analysing the socioeconomic determinants of hypertension in South Africa: A structural equation modelling approach. BMC Public Health 2014, 14, 414. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Social Determinants of Health (SDOH). Healthy People 2030. Available online: https://health.gov/healthypeople/priority-areas/social-determinants-health (accessed on 30 July 2024).
- De Mestral, C.; Stringhini, S. Socioeconomic status and cardiovascular disease: An update. Curr. Cardiol. Rep. 2017, 19, 115. [Google Scholar] [CrossRef]
- Lu, J.; Lu, Y.; Wang, X.; Li, X.; Linderman, G.C.; Wu, C.; Cheng, X.; Mu, L.; Zhang, H.; Liu, J.; et al. Prevalence, awareness, treatment, and control of hypertension in China: Data from 1·7 million adults in a population-based screening study (China PEACE million persons project). Lancet 2017, 390, 2549–2558. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Wang, L.; Zhang, M.; Zhao, Z.; Zhang, X.; Li, C.; Zhou, M. The effect gap of hypertension health management services in poverty and non-poverty counties on the hypertension control: Evidence from China chronic diseases risk factors surveillance. J. Health Popul. Nutr. 2023, 42, 38. [Google Scholar] [CrossRef]
- Wood, W.; Quinn, J.M.; Kashy, D.A. Habits in everyday life: Thought, emotion, and action. J. Pers. Soc. Psychol. 2002, 83, 1281–1297. [Google Scholar] [CrossRef] [PubMed]
- Rippe, J.M. Lifestyle Medicine: The health promoting power of daily habits and practices. Am. J. Lifestyle Med. 2018, 12, 499–512. [Google Scholar] [CrossRef]
- Salvy, S.-J.; Miles, J.N.V.; Shih, R.A.; Tucker, J.S.; D’Amico, E.J. Neighborhood, family and peer-level predictors of obesity-related health behaviors among young adolescents. J. Pediatr. Psychol. 2016, 42, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Chokshi, D.A. Income, poverty, and health inequality. JAMA 2018, 319, 1312. [Google Scholar] [CrossRef]
- Cunningham, C.; O’ Sullivan, R.; Caserotti, P.; Tully, M.A. Consequences of physical inactivity in older adults: A systematic review of reviews and meta-analyses. Scand. J. Med. Sci. Sports 2020, 30, 816–827. [Google Scholar] [CrossRef] [PubMed]
- Jayedi, A.; Soltani, S.; Abdolshahi, A.; Shab-Bidar, S. Healthy and unhealthy dietary patterns and the risk of chronic disease: An umbrella review of meta-analyses of prospective cohort studies. Br. J. Nutr. 2020, 124, 1133–1144. [Google Scholar] [CrossRef]
- Sohi, I.; Franklin, A.; Chrystoja, B.; Wettlaufer, A.; Rehm, J.; Shield, K. The global impact of alcohol consumption on premature mortality and health in 2016. Nutrients 2021, 13, 3145. [Google Scholar] [CrossRef]
- Hawes, A.; Smith, G.; McGinty, E.; Bell, C.; Bower, K.; LaVeist, T.; Gaskin, D.; Thorpe, R. Disentangling race, poverty, and place in disparities in physical activity. Int. J. Environ. Res. Public Health 2019, 16, 1193. [Google Scholar] [CrossRef] [PubMed]
- Vilar-Compte, M.; Burrola-Méndez, S.; Lozano-Marrufo, A.; Ferré-Eguiluz, I.; Flores, D.; Gaitán-Rossi, P.; Teruel, G.; Pérez-Escamilla, R. Urban poverty and nutrition challenges associated with accessibility to a healthy diet: A global systematic literature review. Int. J. Equity Health 2021, 20, 40. [Google Scholar] [CrossRef]
- Glass, J.E.; Rathouz, P.J.; Gattis, M.; Joo, Y.S.; Nelson, J.C.; Williams, E.C. Intersections of poverty, race/ethnicity, and sex: Alcohol consumption and adverse outcomes in the United States. Soc. Psychiatry Psychiatr. Epidemiol. 2017, 52, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Beech, B.M.; Ford, C.; Thorpe, R.J.; Bruce, M.A.; Norris, K.C. Poverty, racism, and the public health crisis in America. Front. Public Health 2021, 9, 699049. [Google Scholar] [CrossRef] [PubMed]
- Sells, M.L.; Blum, E.; Perry, G.S.; Eke, P.; Presley-Cantrell, L. Excess burden of poverty and hypertension, by race and ethnicity, on the prevalence of cardiovascular disease. Prev. Chronic. Dis. 2023, 20, 230065. [Google Scholar] [CrossRef]
- Silva, R.A.R.; Sakon, P.O.R. Auto percepção do estado de saúde de hipertensos. Rev. Enferm. UFPE Line 2018, 12, 1826. [Google Scholar] [CrossRef]
- National Center for Health. Statistics about the National Health and Nutrition Examination Survey. 2023. Available online: https://www.cdc.gov/nchs/nhanes/index.htm (accessed on 20 April 2024).
- Akinbami, L.; Chen, T.; Davy, O.; Ogden, C.; Fink, S.; Clark, J. National health and nutrition examination survey, 2017–March 2020 prepandemic file: Sample design, estimation, and analytic guidelines. Vital Health Stat. 2022, 2, 35593699. [Google Scholar]
- Chen, T.C.; Clark, J.; Riddles, M.K.; Mohadjer, L.K.; Fakhouri, T.H.I. National health and nutrition examination survey, 2015−2018: Sample design and estimation procedures. Natl. Cent. Health Stat. 2020, 2, 33663649. [Google Scholar]
- Bull, F.C.; Maslin, T.S.; Armstrong, T. Global physical activity questionnaire (GPAQ): Nine country reliability and validity study. J. Phys. Act. Health 2009, 6, 790–804. [Google Scholar] [CrossRef]
- Pärna, K.; Ringmets, I. Comparison of socioeconomic differences in self-perceived health in Estonia and Finland. Scand. J. Public Health 2010, 38, 129–134. [Google Scholar] [CrossRef]
- Pavão, A.L.B.; Werneck, G.L.; Campos, M.R. Autoavaliação do estado de saúde e a associação com fatores sociodemográficos, hábitos de vida e morbidade na população: Um inquérito nacional. Cad. Saúde Pública 2013, 29, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Dvorak, R.G.; Schuett, M.A.; Van Riper, C.J. Understanding spatial variation of physical inactivity across the continental United States. Landsc. Urban Plan. 2017, 168, 61–71. [Google Scholar] [CrossRef]
- Hohl, A.; Lotfata, A. A geographical analysis of socioeconomic and environmental drivers of physical inactivity in post pandemic cities: The case study of Chicago, IL, USA. Urban Sci. 2022, 6, 28. [Google Scholar] [CrossRef]
- Lobonţ, O.-R.; Nicolescu, A.-C.; Moldovan, N.-C.; Kuloğlu, A. The effect of socioeconomic factors on crime rates in Romania: A macro-level analysis. Econ. Res.-Ekon. Istraživanja 2017, 30, 91–111. [Google Scholar] [CrossRef]
- Mir Mohamad Tabar, S.A.; Noghani, M. Unemployment and crime in developing countries: A meta-analysis in Iran. Crime Law Soc. Change 2019, 72, 327–338. [Google Scholar] [CrossRef]
- Rees-Punia, E.; Hathaway, E.D.; Gay, J.L. Crime, perceived safety, and physical activity: A meta-analysis. Prev. Med. 2018, 111, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Darmon, N. The economics of obesity: Dietary energy density and energy cost. Am. J. Clin. Nutr. 2005, 82, 265S–273S. [Google Scholar] [CrossRef] [PubMed]
- Slawson, D.L.; Fitzgerald, N.; Morgan, K.T. Position of the academy of nutrition and dietetics: The role of nutrition in health promotion and chronic disease prevention. J. Acad. Nutr. Diet. 2013, 113, 972–979. [Google Scholar] [CrossRef]
- Kimokoti, R.W.; Millen, B.E. Diet, the global obesity epidemic, and prevention. J. Am. Diet. Assoc. 2011, 111, 1137–1140. [Google Scholar] [CrossRef]
- Burgoine, T.; Sarkar, C.; Webster, C.J.; Monsivais, P. Examining the interaction of fast-food outlet exposure and income on diet and obesity: Evidence from 51,361 UK biobank participants. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 71. [Google Scholar] [CrossRef]
- Amerzadeh, M.; Takian, A.; Pouraram, H.; Akbari Sari, A.; Ostovar, A. Economic barriers and gaps to reach the desirable consumption of salt, sugar, and fat in Iran: A qualitative study. J. Health Popul. Nutr. 2023, 42, 8. [Google Scholar] [CrossRef]
- Yarmohammadi, P.; Morowatisharifabad, M.A.; Rahaei, Z.; Khayyatzadeh, S.S.; Madadizadeh, F. Nutrition literacy and its related demographic factors among workers of Taraz steel company, Chaharmahal and Bakhtiari, Iran. Front. Public Health 2022, 10, 911619. [Google Scholar] [CrossRef]
- Nilsen, S.M.; Krokstad, S.; Holmen, T.L.; Westin, S. Adolescents’ health-related dietary patterns by parental socio-economic position, the Nord-Trøndelag health study (HUNT). Eur. J. Public Health 2010, 20, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- Maguire, E.R.; Burgoine, T.; Penney, T.L.; Forouhi, N.G.; Monsivais, P. Does exposure to the food environment differ by socioeconomic position? comparing area-based and person-centred metrics in the Fenland study, UK. Int. J. Health Geogr. 2017, 16, 33. [Google Scholar] [CrossRef] [PubMed]
- Asrani, S.K.; Mellinger, J.; Arab, J.P.; Shah, V.H. Reducing the global burden of alcohol-associated liver disease: A blueprint for action. Hepatology 2021, 73, 2039–2050. [Google Scholar] [CrossRef] [PubMed]
- Grant, B.F.; Chou, S.P.; Saha, T.D.; Pickering, R.P.; Kerridge, B.T.; Ruan, W.J.; Huang, B.; Jung, J.; Zhang, H.; Fan, A. Prevalence of 12-month alcohol use, high-risk drinking, and dsm-iv alcohol use disorder in the United States, 2001–2002 to 2012–2013: Results from the national epidemiologic survey on alcohol and related conditions. JAMA Psychiatry 2017, 74, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Dang, K.; Hirode, G.; Singal, A.K.; Sundaram, V.; Wong, R.J. Alcoholic liver disease epidemiology in the United States: A retrospective analysis of 3 US databases. Off. J. Am. Coll. Gastroenterol. ACG 2020, 115, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Hashimoto, H. Associations of education and income with heavy drinking and problem drinking among men: Evidence from a population-based study in Japan. BMC Public Health 2019, 19, 420. [Google Scholar] [CrossRef]
- Andersson, L.M.C.; Twum-Antwi, A.; Staland-Nyman, C.; Van Rooyen, D.R. Prevalence and socioeconomic characteristics of alcohol disorders among men and women in the Eastern Cape province, South Africa. Health Soc. Care Community 2018, 26, e143–e153. [Google Scholar] [CrossRef]
- Sharma, N.; Toor, D. Impact of socio-economic factors on increased risk and progression of rheumatic heart disease in developing nations. Curr. Infect. Dis. Rep. 2019, 21, 21. [Google Scholar] [CrossRef]
- Woolhandler, S.; Himmelstein, D.U. The relationship of health insurance and mortality: Is lack of insurance deadly? Ann. Intern. Med. 2017, 167, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Lawson, C.A.; Zaccardi, F.; Squire, I.; Okhai, H.; Davies, M.; Huang, W.; Mamas, M.; Lam, C.S.; Khunti, K.; Kadam, U.T. Risk factors for heart failure: 20-year population-based trends by sex, socioeconomic status, and ethnicity. Circ. Heart Fail. 2020, 13, e006472. [Google Scholar] [CrossRef]
- Kurup, A.S. Equity, Social Determinants and Public Health Programmes; World Health Organization: Geneva, Switzerland, 2010; ISBN 92-4-156397-4. [Google Scholar]
- Wang, S.; Zhai, H.; Wei, L.; Shen, B.; Wang, J. Socioeconomic status predicts the risk of stroke death: A systematic review and meta-analysis. Prev. Med. Rep. 2020, 19, 101124. [Google Scholar] [CrossRef] [PubMed]
- Hamad, R.; Penko, J.; Kazi, D.S.; Coxson, P.; Guzman, D.; Wei, P.C.; Mason, A.; Wang, E.A.; Goldman, L.; Fiscella, K. Association of low socioeconomic status with premature coronary heart disease in US adults. JAMA Cardiol. 2020, 5, 899–908. [Google Scholar] [CrossRef]
- Seeman, T.; Epel, E.; Gruenewald, T.; Karlamangla, A.; Mcewen, B.S. Socio-economic differentials in peripheral biology: Cumulative allostatic load. Ann. N. Y. Acad. Sci. 2010, 1186, 223–239. [Google Scholar] [CrossRef] [PubMed]
- Gruenewald, T.L.; Karlamangla, A.S.; Hu, P.; Stein-Merkin, S.; Crandall, C.; Koretz, B.; Seeman, T.E. History of socioeconomic disadvantage and allostatic load in later life. Soc. Sci. Med. 2012, 74, 75–83. [Google Scholar] [CrossRef]
- Mnatzaganian, G.; Lee, C.M.Y.; Robinson, S.; Sitas, F.; Chow, C.K.; Woodward, M.; Huxley, R.R. socioeconomic disparities in the management of coronary heart disease in 438 general practices in Australia. Eur. J. Prev. Cardiol. 2021, 28, 400–407. [Google Scholar] [CrossRef]
Variable | General Population (n = 6120) | Males (n = 3188) | Females (n = 2932) | p * | |||
---|---|---|---|---|---|---|---|
Age | |||||||
Mean (SD) | 58.98 (14.83) | 58.74 (15.02) | 59.25 (14.62) | - | |||
Median (IQR) | 61.00 (60) | 61.00 (60) | 61.00 (60) | 0.325 | |||
Family income under the poverty threshold | General Population (n = 6120) | Males (n = 3188) | Females (n = 2932) | p | |||
No | 4869 | 79.6% | 2586 | 81.1% | 2283 * | 77.9% | 0.002 * |
Yes | 1251 | 20.4% | 602 | 18.9% | 649 * | 22.1% | |
Physically inactive | General Population (n = 6120) | Males (n = 3188) | Females (n = 2932) | p | |||
No | 4869 | 79.6% | 2586 | 81.1% | 2283 * | 77.9% | <0.001 * |
Yes | 1251 | 20.4% | 602 | 18.9% | 649 * | 22.1% | |
Health perceived as negative | General Population (n = 6120) | Males (n = 3188) | Females (n = 2932) | p | |||
No | 2091 | 34.2% | 1038 | 32.6% | 1053 * | 35.9% | 0.006 |
Yes | 4029 | 65.8% | 2150 | 67.4% | 1879 * | 64.1% | |
Unhealthy Diet | General Population (n = 6120) | Males (n = 3188) | Females (n = 2932) | p | |||
No | 2011 | 32.9% | 963 | 30.2% | 1048 * | 35.7% | <0.001 * |
Yes | 4109 | 67.1% | 2225 | 69.8% | 1884 * | 64.3% | |
Being an alcohol drinker or having been a drinker | General Population (n = 6120) | Males (n = 3188) | Females (n = 2932) | p | |||
No | 4843 | 79.1% | 2221 | 69.7% | 2622 * | 89.4% | <0.001 * |
Yes | 1277 | 20.9% | 967 | 30.3% | 310 * | 10.6% | |
Congestive Heart Failure | General Population (n = 6120) | Males (n = 3188) | Females (n = 2932) | p | |||
No | 5670 | 92.6% | 2937 | 92.1% | 2733 | 93.2% | 0.104 |
Yes | 450 | 7.4% | 251 | 7.9% | 199 | 6.8% | |
Coronary Heart disease | General Population (n = 6120) | Males (n = 3188) | Females (n = 2932) | p | |||
No | 5601 | 91.5% | 2838 | 89.0% | 2763 * | 94.2% | <0.001 * |
Yes | 519 | 8.5% | 350 | 11.0% | 169 * | 5.8% | |
Angina Pectoris | General Population (n = 6120) | Males (n = 3188) | Females (n = 2932) | p | |||
No | 5809 | 94.9% | 3003 | 94.2% | 2806 * | 95.7% | 0.007 |
Yes | 311 | 5.1% | 185 | 5.8% | 126 * | 4.3% | |
Heart Attack | General Population (n = 6120) | Males (n = 3188) | Females (n = 2932) | p | |||
No | 5590 | 91.3% | 2835 | 88.9% | 2755 * | 94.0% | 0.001 * |
Yes | 530 | 8.7% | 353 | 11.1% | 177 * | 6.0% | |
Stroke | General Population (n = 6120) | Males (n = 3188) | Females (n = 2932) | p | |||
No | 5610 | 91.7% | 2925 | 91.8% | 2685 | 91.6% | 0.805 |
Yes | 510 | 8.3% | 263 | 8.2% | 247 | 8.4% |
Equal/Above Poverty Threshold | Under Poverty Threshold | X2 | Phi | p-Value | |||
---|---|---|---|---|---|---|---|
Physical Inactivity | N | (%) | N | (%) | |||
No | 3300 | 67.8% | 764 * | 61.1% | 20.06 | −0.057 | <0.001 |
Yes | 1569 | 32.2% | 487 * | 38.9% | |||
Health perceived as negative | |||||||
No | 3425 | 70,3% | 604 * | 48.3% | 215.36 | −0.188 | <0.001 |
Yes | 1444 | 29,7% | 647 * | 51.7% | |||
Unhealthy diet | |||||||
Yes | 3400 | 69,8% | 709 * | 56.7% | 78.07 | −0.113 | <0.001 |
No | 1469 | 30,2% | 542 * | 43.3% | |||
Being an alcohol drinker or former drinker | |||||||
No | 3948 | 81.1% | 895 * | 71.5% | 54.88 | −0.095 | <0.001 |
Yes | 921 | 18.9% | 356 * | 28.5% |
Equal/Above Poverty Threshold | Under Poverty Threshold | X2 | Phi | p-Value | |||
---|---|---|---|---|---|---|---|
Congestive Heart Failure | N | (%) | N | (%) | |||
No | 4537 | 93.2% | 1133 * | 90.6% | 9.98 | 0.040 | 0.002 * |
Yes | 332 | 6.8% | 118 * | 9.4% | |||
Coronary heart disease | |||||||
No | 4460 | 91.6% | 1141 | 91.2% | 0.198 | 0.006 | 0.656 |
Yes | 409 | 8.4% | 110 | 8.8% | |||
Angina pectoris | |||||||
No | 4633 | 95.2% | 1176 | 94.0% | 2.720 | 0.021 | 0.099 |
Yes | 236 | 4.8% | 75 | 6.0% | |||
Heart attack | |||||||
No | 4478 | 92.0% | 1112 * | 88.9% | 11.94 | 0.044 | 0.001 * |
Yes | 391 | 8.0% | 139 * | 11.1% | |||
Stroke | |||||||
No | 4490 | 92.2% | 1120 * | 89.5% | 9.41 | 0.039 | 0.02 * |
Yes | 379 | 7.8% | 131 * | 10.5% |
95% CI | ||||||||
---|---|---|---|---|---|---|---|---|
Suffering Any of the Studied Cardiac Pathologies (Yes) | B | S.E. | Wald | df | Sig. | Exp (B) | Lower | Upper |
Age | 0.055 | 0.003 | 370.939 | 1 | <0.001 | 1.057 | 1.051 | 1.063 |
Gender (female) | −0.388 | 0.071 | 30.085 | 1 | <0.001 | 0.678 | 0.590 | 0.779 |
Race (Mexican American) | 57.330 | 5 | <0.001 | |||||
Race (Other Hispanic) | −0.848 | 0.217 | 15.324 | 1 | <0.001 | 0.428 | 0.280 | 0.655 |
Race (Non-Hispanic White) | −0.489 | 0.211 | 5.395 | 1 | 0.020 | 0.613 | 0.406 | 0.926 |
Race (Non-Hispanic Black) | −0.014 | 0.183 | 0.006 | 1 | 0.939 | 0.986 | 0.688 | 1.412 |
Race (Non-Hispanic Asian) | −0.198 | 0.187 | 1.127 | 1 | 0.288 | 0.820 | 0.569 | 1.182 |
Race (Other Race and Multiracial) | −0.774 | 0.247 | 9.809 | 1 | 0.002 | 0.461 | 0.284 | 0.749 |
Physically inactive (no) | −0.248 | 0.071 | 12.293 | 1 | <0.001 | 0.780 | 0.679 | 0.896 |
Health perceived as negative (no) | −1.075 | 0.072 | 226.051 | 1 | <0.001 | 0.341 | 0.297 | 0.393 |
Family income under the poverty threshold (no) | −0.320 | 0.083 | 14.751 | 1 | <0.001 | 0.726 | 0.617 | 0.855 |
Being an alcohol drinker or having been a drinker (no) | −0.315 | 0.081 | 15.075 | 1 | <0.001 | 0.730 | 0.622 | 0.856 |
Constant | −3.038 | 0.258 | 138.434 | 1 | <0.001 | 0.048 | ||
Unhealthy Diet † | 0.191 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrasco-Marcelo, L.; Pereira-Payo, D.; Mendoza-Muñoz, M.; Pastor-Cisneros, R. Reduced Income and Its Associations with Physical Inactivity, Unhealthy Habits, and Cardiac Complications in the Hypertensive Population. Eur. J. Investig. Health Psychol. Educ. 2024, 14, 2300-2313. https://doi.org/10.3390/ejihpe14080153
Carrasco-Marcelo L, Pereira-Payo D, Mendoza-Muñoz M, Pastor-Cisneros R. Reduced Income and Its Associations with Physical Inactivity, Unhealthy Habits, and Cardiac Complications in the Hypertensive Population. European Journal of Investigation in Health, Psychology and Education. 2024; 14(8):2300-2313. https://doi.org/10.3390/ejihpe14080153
Chicago/Turabian StyleCarrasco-Marcelo, Lucía, Damián Pereira-Payo, María Mendoza-Muñoz, and Raquel Pastor-Cisneros. 2024. "Reduced Income and Its Associations with Physical Inactivity, Unhealthy Habits, and Cardiac Complications in the Hypertensive Population" European Journal of Investigation in Health, Psychology and Education 14, no. 8: 2300-2313. https://doi.org/10.3390/ejihpe14080153
APA StyleCarrasco-Marcelo, L., Pereira-Payo, D., Mendoza-Muñoz, M., & Pastor-Cisneros, R. (2024). Reduced Income and Its Associations with Physical Inactivity, Unhealthy Habits, and Cardiac Complications in the Hypertensive Population. European Journal of Investigation in Health, Psychology and Education, 14(8), 2300-2313. https://doi.org/10.3390/ejihpe14080153