Psychometric Validity of the Areas of Work Life Scale (AWS) in Teachers and Healthcare Workers in México
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Six Areas of Work Life Scale (AWS)
2.2.2. Maslach Burnout Inventory General Survey (MBI-GS)
2.3. Procedures
2.3.1. Ethical Considerations
2.3.2. Analysis and Treatment of Potentially Biased Responses and Missing Values
2.3.3. Item Analysis
2.3.4. Internal Structure
Measurement Models
Measurement Equivalence
Reliability
2.3.5. Association with Variables and Partial Mediational Model
3. Results
3.1. Preliminary Analysis
3.1.1. IE/C Responses
3.1.2. Missing Values
3.2. Item Analysis
3.3. Internal Structure
3.3.1. Dimensionality
3.3.2. Inter-factorial Correlation
3.3.3. Reliability
3.3.4. Measurement Equivalence
3.4. Association with Variables and Partial Mediation Model Testing
Invariance of the Partial Mediation Model
4. Discussion
Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Parameters of the MBI-GS in This Study
EE | EFF | Cyn | ||||
F | Se | F | Se | F | se | |
MBI1 | 0.799 | |||||
MBI2 | 0.801 | 0.02 | ||||
MBI3 | 0.767 | 0.02 | ||||
MBI4 | 0.863 | 0.02 | ||||
MBI6 | 0.886 | 0.02 | ||||
MBI5 | 0.587 | |||||
MBI7 | 0.666 | 0.06 | ||||
MBI10 | 0.809 | 0.07 | ||||
MBI11 | 0.837 | 0.07 | ||||
MBI12 | 0.742 | 0.06 | ||||
MBI16 | 0.786 | 0.07 | ||||
MBI8 | 0.902 | |||||
MBI9 | 0.920 | 0.020 | ||||
MBI14 | 0.745 | 0.028 | ||||
MBI15 | 0.801 | 0.024 | ||||
Interfactorial correlations | ||||||
EE | 1.00 | |||||
EFF | −0.421 | 1.00 | ||||
Cyn | 0.711 | −0.663 | 1.00 | |||
Note. The parameters are standardized values. |
References
- World Health Organization (WHO). Mental Health at Work. Available online: https://www.who.int/news-room/fact-sheets/detail/mental-health-at-work (accessed on 10 November 2022).
- World Health Organization (WHO). Mental Health and COVID-19: Early Evidence of the Pandemic’s Impact: Scientific Brief. 2 March 2022. Available online: https://apps.who.int/iris/bitstream/handle/10665/352189/WHO-2019-nCoV-Sci-Brief-Mental-health-2022.1-eng.pdf?sequence=1&isAllowed=y (accessed on 10 November 2022).
- Farooq, S.; Tunmore, J.; Ali, W.; Ayub, M. Suicide, Self-Harm and Suicidal Ideation during COVID-19: A Systematic Review. Psychiatry Res. 2021, 306, 114–228. [Google Scholar] [CrossRef]
- Leo, C.G.; Sabina, S.; Tumolo, M.R.; Bodini, A.; Ponzini, G.; Sabato, E.; Mincarone, P. Burnout Among Healthcare Workers in the COVID 19 Era: A Review of the Existing Literature. Front. Public Health 2021, 9, 750529. [Google Scholar] [CrossRef] [PubMed]
- Vizheh, M.; Qorbani, M.; Arzaghi, S.M.; Muhidin, S.; Javanmard, Z.; Esmaeili, M. The Mental Health of Healthcare Workers in the COVID-19 Pandemic: A Systematic Review. J. Diabetes Metab. Disord. 2020, 19, 1967–1978. [Google Scholar] [CrossRef] [PubMed]
- Spoorthy, M.S.; Pratapa, S.K.; Mahant, S. Mental Health Problems Faced by Healthcare Workers Due to the COVID-19 Pandemic–A Review. Asian J. Psychiatr. 2020, 51, 102119. [Google Scholar] [CrossRef]
- Ozamiz-Etxebarria, N.; Mondragon, N.I.; Bueno-Notivol, J.; Pérez-Moreno, M.; Santabárbara, J. Prevalence of Anxiety, Depression, and Stress among Teachers during the COVID-19 Pandemic: A Rapid Systematic Review with Meta-Analysis. Brain Sci. 2021, 11, 1172. [Google Scholar] [CrossRef]
- Silva, D.F.O.; Cobucci, R.N.; Lima, S.C.V.C.; de Andrade, F.B. Prevalence of Anxiety, Depression, and Stress among Teachers during the COVID-19 Pandemic: A PRISMA-Compliant Systematic Review. Medicine 2021, 100, e27684. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, R.; Fiorilli, C.; Angelini, G.; Dozio, N.; Palazzi, C.; Palazzi, G.; Vitiello, B.; Schonfeld, I.S. Italian Version of the Occupational Depression Inventory: Validity, Reliability, and Associations with Health, Economic, and Work-Life Characteristics. Front. Psychiatry 2022, 13, 1061293. [Google Scholar] [PubMed]
- Juárez García, A.; Gil-Monte, P.R.; Merino-Soto, C.; García Rivas, J. Letter to the Editor. From a Polemic Paradox to a Proper Perspective of Job Burnout and Job Satisfaction. J. Neurosurg. 2019, 130, 1405–1406. [Google Scholar] [CrossRef]
- Schaufeli, W.B.; Leiter, M.P.; Maslach, C. Burnout: 35 Years of Research and Practice. Career Dev. Int. 2009, 14, 204–220. [Google Scholar] [CrossRef] [Green Version]
- Maslach, C.; Leiter, M.P. Understanding Burnout: New models. In The Handbook of Stress and Health; John Wiley & Sons Ltd.: Oxford, UK; Medford, MA, USA, 2017; pp. 36–56. [Google Scholar] [CrossRef]
- Leiter, M.P.; Maslach, C. Nurse Turnover: The Mediating Role of Burnout. J Nurs Manag. 2009, 17, 331–339. [Google Scholar] [CrossRef]
- World Health Organization (WHO). ICD-11 for Mortality and Morbidity Statistics. Available online: https://icd.who.int/browse11/l-m/en#/http://id.who.int/icd/entity/129180281 (accessed on 10 November 2022).
- International Labor Organization (ILO). Psychosocial Risks and Work-Related Stress. Available online: https://www.ilo.org/global/topics/safety-and-health-at-work/areasofwork/workplace-health-promotion-and-well-being/WCMS_108557/lang--en/index.htm (accessed on 11 November 2022).
- World Health Organization (WHO). Report: World Employment and Social Outlook: Trends. 2022. Available online: https://www.ilo.org/global/research/global-reports/weso/trends2022/WCMS_834081/lang--en/index.htm (accessed on 10 November 2022).
- Siegrist, J. Adverse Health Effects of Effort-Reward Imbalance at Work. In Theories of Organizational Stress; Cooper Cary, L., Ed.; Oxford University Press: Manchester, UK, 1998; pp. 190–204. ISBN 0198522797. [Google Scholar]
- Karasek, R.A. Job Demands, Job Decision Latitude, and Mental Strain: Implications for Job Redesign. Adm. Sci. Q. 1979, 24, 285. [Google Scholar] [CrossRef]
- Demerouti, E.; Nachreiner, F.; Bakker, A.B.; Schaufeli, W.B. The Job Demands-Resources Model of Burnout. J. Appl. Psychol. 2001, 86, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Alsalhe, T.A.; Chalghaf, N.; Guelmami, N.; Azaiez, F.; Bragazzi, N.L. Occupational Burnout Prevalence and Its Determinants Among Physical Education Teachers: A Systematic Review and Meta-Analysis. Front. Hum. Neurosci. 2021, 15, 553230. [Google Scholar] [PubMed]
- Shoman, Y.; El May, E.; Marca, S.C.; Wild, P.; Bianchi, R.; Bugge, M.D.; Caglayan, C.; Cheptea, D.; Gnesi, M.; Godderis, L.; et al. Predictors of Occupational Burnout: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 9188. [Google Scholar] [CrossRef] [PubMed]
- Aronsson, G.; Theorell, T.; Grape, T.; Hammarström, A.; Hogstedt, C.; Marteinsdottir, I.; Skoog, I.; Träskman-Bendz, L.; Hall, C. A Systematic Review Including Meta-Analysis of Work Environment and Burnout Symptoms. BMC Public Health 2017, 17, 264. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, K.; Muller Neff, D.; Pitman, S. Burnout in Mental Health Professionals: A Systematic Review and Meta-Analysis of Prevalence and Determinants. Eur. Psychiatry 2018, 53, 74–99. [Google Scholar] [CrossRef]
- Pijpker, R.; Vaandrager, L.; Veen, E.J.; Koelen, M.A. Combined Interventions to Reduce Burnout Complaints and Promote Return to Work: A Systematic Review of Effectiveness and Mediators of Change. Int. J. Environ. Res. Public Health 2020, 17, 55. [Google Scholar] [CrossRef] [Green Version]
- López-López, I.M.; Gómez-Urquiza, J.L.; Cañadas, G.R.; De la Fuente, E.I.; Albendín-García, L.; Cañadas-De la Fuente, G.A. Prevalence of Burnout in Mental Health Nurses and Related Factors: A Systematic Review and Meta-Analysis. Int. J. Ment. Health Nurs. 2019, 28, 1035–1044. [Google Scholar] [CrossRef]
- Leiter, M.P.; Maslach, C. Six Areas of Worklife: A Model of the Organizational Context of Burnout. J. Health Hum. Serv. Adm. 1999, 21, 472–489. [Google Scholar] [CrossRef]
- Maslach, C. A Multidimensional Theory of Burnout. Theor. Organ. Stress 1998, 68, 16. [Google Scholar]
- Leiter, M.P.; Maslach, C. A Mediation Model of Job Burnout. In Research Companion to Organizational Health Psychology; Edward Elgar Publishing: Cheltenham, UK, 2005; pp. 544–564. [Google Scholar] [CrossRef]
- Maslach, C.; Leiter, M.P. The Truth About Burnout, 1st ed.; John Wiley & Sons, Inc.: San Francisco, CA, USA, 1997; Volume 1, ISBN 0-7879-0874-6. [Google Scholar]
- Leiter, M.P.; Maslach, C. Areas of Work Life: A Structured Approach to Organizational Predictors of Job Burnout. In Emotional and Physiological Processes and Positive Intervention Strategies; Perrewé, P., Ganster, D.C., Eds.; Emerald Group Publishing Limited: Bingley UK, 2004; Volume 3, pp. 91–134. [Google Scholar] [CrossRef]
- Gascón, S.; Fueyo-Díaz, R.; Borao, L.; Leiter, M.P.; Fanlo-Zarazaga, Á.; Oliván-Blázquez, B.; Aguilar-Latorre, A. Value Conflict, Lack of Rewards, and Sense of Community as Psychosocial Risk Factors of Burnout in Communication Professionals (Press, Radio, and Television). Int. J. Environ. Res. Public Health 2021, 18, 365. [Google Scholar] [CrossRef] [PubMed]
- El-Gazar, H.E.; Abdelhafez, S.; Zoromba, M.A. Effects of the Areas of Worklife on Job Embeddedness: A National Cross-Sectional Study among Egyptian Nurses. BMC Nurs. 2022, 21, 353. [Google Scholar] [CrossRef]
- Ostrow, L.; Cook, J.; Salzer, M.; Pelot, M.; Burke-Miller, J. Predictors of Worklife Burnout among Mental Health Certified Peer Specialists. Am. J. Orthopsychiatry 2022, 92, 673–680. [Google Scholar] [CrossRef]
- Leiter, M.P.; Maslach, C. Pandemic Implications for Six Areas of Worklife. In Burnout While Working; Routledge: Abingdon, Oxfordshire, UK, 2022; pp. 21–37. [Google Scholar]
- Apaydin, E.A.; Rose, D.E.; Yano, E.M.; Shekelle, P.G.; McGowan, M.G.; Antonini, T.L.; Valdez, C.A.; Peacock, M.; Probst, L.; Stockdale, S.E. Burnout Among Primary Care Healthcare Workers During the COVID-19 Pandemic. J. Occup. Environ. Med. 2021, 63, 642–645. [Google Scholar]
- Gascón, S.; Leiter, M.P.; Stright, N.; Santed, M.A.; Montero-Marín, J.; Andrés, E.; Asensio-Martínez, A.; García-Campayo, J. A Factor Confirmation and Convergent Validity of the “ Areas of Worklife Scale” (AWS) to Spanish Translation. Health Qual. Life Outcomes 2013, 11, 63. [Google Scholar] [CrossRef] [Green Version]
- Brom, S.S.; Buruck, G.; Horváth, I.; Richter, P.; Leiter, M.P. Areas of Worklife as Predictors of Occupational Health—A Validation Study in Two German Samples. Burn. Res. 2015, 2, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Kitaoka, K.; Masuda, S.; Morikawa, Y.; Nakagawa, H. Japanese Version of the Areas of Worklife Survey (AWS): Six Mismatches between Person and Job Environment. Jpn. J. Adm. Sci. 2015, 28, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.T.; Kitaoka, K.; Sukigara, M.; Thai, A.L. Burnout Study of Clinical Nurses in Vietnam: Development of Job Burnout Model Based on Leiter and Maslach’s Theory. Asian Nurs. Res. (Korean Soc. Nurs. Sci.) 2018, 12, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Terelak, J.F.; Izwantowska, A. Adaptacja Kwestionariusza Obszary Życia Zawodowego (Areas of Worklife Survey) Christina Maslach i Michael Leiter. Stud. Psychol. Theor. Prax. 2009, 9, 223–232. Available online: https://bazhum.muzhp.pl/media/files/Studia_Psychologica/Studia_Psychologica-r2009-t-n9/Studia_Psychologica-r2009-t-n9-s223-232/Studia_Psychologica-r2009-t-n9-s223-232.pdf (accessed on 25 July 2023).
- Kaiser, H.F. A Second Generation Little Jiffy. Psychometrika 1970, 35, 401–415. [Google Scholar] [CrossRef]
- Lloret-Segura, S.; Ferreres-Traver, A.; Hernández-Baeza, A.; Tomás-Marco, I. El Análisis Factorial Exploratorio de Los Ítems: Una Guía Práctica, Revisada y Actualizada. An. Psicol./Ann. Psychol. 2014, 30, 1151–1169. [Google Scholar] [CrossRef]
- Matsunaga, M. How to Factor-Analyze Your Data Right: Do’s, Don’ts, and How-To’s. Int. J. Psychol. Res. 2010, 3, 97–110. [Google Scholar]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research; The Guilford Press: New York, NY, USA, 2015; ISBN 146251779X. [Google Scholar]
- Reise, S.P.; Widaman, K.F.; Pugh, R.H. Confirmatory Factor Analysis and Item Response Theory: Two Approaches for Exploring Measurement Invariance. Psychol. Bull. 1993, 114, 552–566. [Google Scholar] [CrossRef] [PubMed]
- Masluk, B.; Gascón Santos, S.; Albesa Cartagena, A.; Asensio Martinez, A.; Peck, E.; Leiter, M.P. “Areas of Worklife Scale” (AWS) Short Version (Spanish): A Confirmatory Factor Analysis Based on a Secondary School Teacher Sample. J. Occup. Med. Toxicol. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Dominguez Lara, S.A.; Fernández Arata, M.; Calderón de la Cruz, G.; Juárez García, A.; Merino Soto, C. Análisis de La Estructura Interna de La Escala de Las Áreas de La Vida Laboral (AWS) En Docentes de Escuelas Públicas de Lima. Rev. Iberoam. Diagnóstico Evaluación Psicológica 2021, 2, 19–33. [Google Scholar]
- de Winter, J.C.F.; Dodou, D.; Wieringa, P.A. Exploratory Factor Analysis with Small Sample Sizes. Multivar. Behav. Res. 2009, 44, 147–181. [Google Scholar] [CrossRef]
- Leiter & Maslach Areas of Worklife Survey (AWS)—Assessments, Tests|Mind Garden—Mind Garden. Available online: https://www.mindgarden.com/274-areas-of-worklife-survey (accessed on 12 November 2022).
- Gjersing, L.; Caplehorn, J.R.; Clausen, T. Cross-Cultural Adaptation of Research Instruments: Language, Setting, Time and Statistical Considerations. BMC Med. Res. Methodol. 2010, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Beaton, D.E.; Bombardier, C.; Guillemin, F.; Ferraz, M.B. Guidelines for the Process of Cross-Cultural Adaptation of Self-Report Measures. Spine 2000, 25, 3186–3191. [Google Scholar]
- Schaufeli, W.; Leiter, M.; Maslach, C.; Jackson, S. Maslach Burnout Inventory-General Survey. In The Maslach Burnout Inventory: Test Manual; Consulting Psychologists Press: Palo Alto, CA, USA, 1996. [Google Scholar]
- Juárez-García, A.; Merino-Soto, C.; Fernández-Arata, M.; Flores-Jiménez, C.A.; Caraballo, M.; Camacho-Cristiá, C. Validación Transcultural y Funcionamiento Diferencial Del Maslach Burnout Inventory—General Survey En Docentes de Tres Países Latinoamericanos. Av. Psicol. Latinoam. 2020, 38, 135–156. [Google Scholar] [CrossRef] [Green Version]
- The World Medical Association (WMA). Declaración de Helsinky de La AMM—Principios Éticos Para La Investigaciones Médicas En Seres Humanos. 2013. Available online: https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos/ (accessed on 9 August 2023).
- Yentes, R.D.; Wilhelm, F. Careless: Procedures for Computing Indices of Careless Responding. R Package Version 2018, 1, 2018. [Google Scholar]
- Little, R.J.A. A Test of Missing Completely at Random for Multivariate Data with Missing Values. J. Am. Stat. Assoc. 1988, 83, 1198–1202. [Google Scholar] [CrossRef]
- Rouzinov, S.; Berchtold, A. RBtest: Regression-Based Approach for Testing the Type of Missing Data. R Package Version 1.1. Available online: https://cran.r-project.org/web/packages/RBtest/RBtest.pdf (accessed on 6 January 2023).
- Tierney, N.; Cook, D.; McBain, M.; Fay, C. Data Structures, R Package Version 0.6.1.CRAN—Package Naniar. Available online: https://cran.r-project.org/web/packages/naniar/index.html (accessed on 6 January 2023).
- van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Dai, S. Handling Missing Responses in Psychometrics: Methods and Software. Psych 2021, 3, 673–693. [Google Scholar] [CrossRef]
- Merino-Soto, C.; Juárez-García, A.; Escudero, G.S.; Toledano-Toledano, F. Parametric and Nonparametric Analysis of the Internal Structure of the Psychosocial Work Processes Questionnaire (PROPSIT) as Applied to Workers. Int. J. Environ. Res. Public Health 2022, 19, 7970. [Google Scholar] [CrossRef] [PubMed]
- Keselman, H.J.; Othman, A.R.; Wilcox, R.R. Preliminary Testing for Normality: Is This a Good Practice? J. Mod. Appl. Stat. Methods 2013, 12, 2. [Google Scholar] [CrossRef]
- Li, C.H. Confirmatory Factor Analysis with Ordinal Data: Comparing Robust Maximum Likelihood and Diagonally Weighted Least Squares. Behav. Res. Methods 2016, 48, 936–949. [Google Scholar] [CrossRef] [Green Version]
- Maydeu-Olivares, A. Assessing the Size of Model Misfit in Structural Equation Models. Psychometrika 2017, 82, 533–558. [Google Scholar] [CrossRef]
- Shi, D.; Maydeu-Olivares, A. The Effect of Estimation Methods on SEM Fit Indices. Educ. Psychol. Meas. 2020, 80, 421–445. [Google Scholar] [CrossRef]
- Maydeu-Olivares, A.; Shi, D.; Rosseel, Y. Assessing Fit in Structural Equation Models: A Monte-Carlo Evaluation of RMSEA Versus SRMR Confidence Intervals and Tests of Close Fit. Struct. Equ. Model. A Multidiscip. J. 2017, 25, 389–402. [Google Scholar] [CrossRef]
- Ximénez, C.; Revuelta, J.; Castañeda, R. What Are the Consequences of Ignoring Cross-Loadings in Bifactor Models? A Simulation Study Assessing Parameter Recovery and Sensitivity of Goodness-of-Fit Indices. Front. Psychol. 2022, 13, 5063. [Google Scholar] [CrossRef]
- Shi, D.; Maydeu-Olivares, A.; DiStefano, C. The Relationship Between the Standardized Root Mean Square Residual and Model Misspecification in Factor Analysis Models. Multivar. Behav. Res. 2018, 53, 676–694. [Google Scholar] [CrossRef]
- Nye, C.D.; Drasgow, F. Effect Size Indices for Analyses of Measurement Equivalence: Understanding the Practical Importance of Differences Between Groups. J. Appl. Psychol. 2011, 96, 966–980. [Google Scholar] [CrossRef] [PubMed]
- Zumbo, B.D. A Handbook on the Theory and Methods of Differential Item Functioning (DIF); Directorate of Human Resources Research and Evaluation, Department of National Defense: Ottawa, ON, Canada, 1999; Volume 160. [Google Scholar]
- Jodoin, M.G.; Gierl, M.J. Evaluating Type I Error and Power Rates Using an Effect Size Measure With the Logistic Regression Procedure for DIF Detection. Appl. Meas. Educ. 2010, 14, 329–349. [Google Scholar] [CrossRef]
- Béland, S.; Cousineau, D.; Loye, N. Utiliser Le Coefficient Omega de McDonald à La Place de l’alpha de Cronbach. McGill J. Educ. 2018, 52, 791–804. [Google Scholar] [CrossRef] [Green Version]
- DeFreese, J.D.; Smith, A.L. Areas of Worklife and the Athlete Burnout-Engagement Relationship. J. Appl. Sport Psychol. 2013, 25, 180–196. [Google Scholar] [CrossRef]
- Suárez-Alvarez, J.; Pedrosa, I.; Lozano, L.M.; García-Cueto, E.; Cuesta, M.; Muñiz, J. Using Reversed Items in Likert Scales: A Questionable Practice. Psicothema 2018, 30, 149–158. [Google Scholar] [CrossRef]
- García-Fernández, J.; Postigo, Á.; Cuesta, M.; González-Nuevo, C.; Menéndez-Aller, Á.; García-Cueto, E. To Be Direct or Not: Reversing Likert Response Format Items. Span. J. Psychol. 2022, 25, E24. [Google Scholar] [CrossRef]
- Arias, V.B.; Garrido, L.E.; Jenaro, C.; Martínez-Molina, A.; Arias, B. A Little Garbage in, Lots of Garbage out: Assessing the Impact of Careless Responding in Personality Survey Data. Behav. Res. Methods 2020, 52, 2489–2505. [Google Scholar] [CrossRef]
- Pijpker, R.; Kerksieck, P.; Tušl, M.; De Bloom, J.; Brauchli, R.; Bauer, G.F. The Role of Off-Job Crafting in Burnout Prevention during COVID-19 Crisis: A Longitudinal Study. Int. J. Environ. Res. Public Health 2022, 19, 2146. [Google Scholar] [CrossRef]
- Chirico, F. Job Stress Models for Predicting Burnout Syndrome: A Review. Ann. Ist. Super. Sanita 2016, 52, 443–456. [Google Scholar] [PubMed]
- Leiter, M.P.; Maslach, C. Latent Burnout Profiles: A New Approach to Understanding the Burnout Experience. Burn. Res. 2016, 3, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Maslach, C.; Leiter, M.P. How to Measure Burnout Accurately and Ethically. Harv. Bus. Rev. 2021, 7. Available online: https://hbr.org/2021/03/how-to-measure-burnout-accurately-and-ethically (accessed on 9 August 2023).
M | DE | Skew | Ku | AD | Sex | Age | Occ. | |
---|---|---|---|---|---|---|---|---|
Workload (WL) | ||||||||
AWS1 | 3.67 | 1.16 | −0.57 | −0.75 | 31.76 | 0.198 | −0.076 * | 0.006 |
AWS2 | 2.87 | 1.26 | 0.14 | −1.17 | 25.31 | 0.246 | −0.096 * | 0.018 |
AWS3 | 3.04 | 1.29 | −0.11 | −1.24 | 26.28 | 0.068 | −0.052 | 0.015 |
AWS4 | 3.28 | 1.30 | −0.37 | −1.07 | 28.18 | 0.201 | −0.042 | 0.039 |
AWS5r | 3.45 | 1.17 | −0.56 | −0.65 | 31.22 | 0.154 | −0.003 | 0.001 |
AWS6r | 3.18 | 1.30 | −0.22 | −1.15 | 23.43 | 0.275 | −0.036 | 0.028 |
Control (CL) | ||||||||
AWS7 | 3.92 | 0.96 | −0.89 | 0.50 | 37.09 | 0.229 | 0.0651 | 0.00 |
AWS8 | 3.00 | 1.28 | −0.28 | −1.05 | 25.54 | −0.144 | −0.025 | 0.01 |
AWS9 | 3.61 | 1.11 | −0.74 | −0.23 | 34.67 | 0.0255 | −0.010 | 0.00 |
Rewards (REW) | ||||||||
AWS10 | 3.35 | 1.20 | −0.51 | −0.74 | 29.15 | −0.059 | 0.045 | 0.00 |
AWS11 | 3.63 | 1.13 | −0.83 | −0.00 | 35.07 | −0.134 | 0.030 | 0.00 |
AWS12r | 3.49 | 1.15 | −0.42 | −0.76 | 24.63 | 0.0948 | 0.025 | 0.00 |
AWS13r | 3.40 | 1.14 | −0.32 | −0.84 | 24.26 | 0.0095 | 0.013 | 0.00 |
Community (COM) | ||||||||
AWS14 | 3.39 | 1.07 | −0.63 | −0.25 | 32.32 | −0.014 | 0.025 | 0.003 |
AWS15 | 3.73 | 1.05 | −0.88 | 0.32 | 35.38 | −0.087 | 0.101 * | 0.029 |
AWS16 | 3.69 | 1.03 | −0.81 | 0.14 | 37.29 | −0.046 | 0.0706 | 0.00 |
AWS17 | 3.57 | 1.11 | −0.75 | −0.15 | 35.37 | −0.218 | 0.117 * | 0.00 |
AWS18r | 3.53 | 1.24 | −0.46 | −0.90 | 26.48 | 0.0771 | 0.0468 | 0.004 |
Fairness (FAIR) | ||||||||
AWS19 | 3.25 | 1.19 | −0.36 | −0.80 | 22.64 | 0.199 | 0.0432 | 0.026 |
AWS20 | 3.03 | 1.15 | −0.15 | −0.80 | 19.77 | −0.015 | 0.0171 | 0.009 |
AWS21 | 2.99 | 0.99 | −0.27 | −0.33 | 27.04 | −0.218 | 0.0946 * | 0.015 |
AWS22 | 3.17 | 1.14 | −0.33 | −0.76 | 24.00 | −0.034 | 0.00533 | 0.012 |
AWS23r | 3.25 | 1.18 | −0.18 | −0.88 | 19.38 | −0.001 | 0.0113 | 0.081 |
AWS24r | 3.39 | 1.25 | −0.32 | −0.97 | 21.77 | −0.126 | −0.0115 | 0.051 |
Values (VAL) | ||||||||
AWS25 | 3.49 | 1.03 | −0.64 | −0.14 | 32.99 | −0.202 | 0.0764 | 0.001 |
AWS26 | 3.68 | 1.00 | −0.76 | 0.03 | 39.82 | −0.001 | 0.0573 | 0.012 |
AWS27 | 3.69 | 0.99 | −0.84 | 0.33 | 40.11 | −0.108 | 0.0373 * | 0.01 |
AWS28 | 3.84 | 1.08 | −0.90 | 0.26 | 32.97 | 0.201 | 0.0593 * | 0.004 |
AWS29r | 3.94 | 1.20 | −0.96 | −0.11 | 43.49 | −0.015 | 0.0791 | 0.056 |
CFA-Full | CFA-Met | CFA-Nneg | CFA No Items Neg, No 20 | ||
---|---|---|---|---|---|
F | F | Met | |||
AWS1 | 0.66 | 0.653 | - | 0.68 | 0.68 |
AWS2 | 0.41 | 0.413 | - | 0.49 | 0.49 |
AWS3 | 0.70 | 0.705 | - | 0.77 | 0.77 |
AWS4 | 0.76 | 0.763 | - | 0.81 | 0.81 |
AWS5r | 0.56 | 0.564 | 0.008 | - | - |
AWS6r | 0.46 | 0.457 | −0.022 | - | - |
AWS7 | 0.70 | 0.701 | - | 0.69 | 0.69 |
AWS8 | 0.60 | 0.601 | - | 0.61 | 0.61 |
AWS9 | 0.71 | 0.709 | - | 0.72 | 0.72 |
AWS10 | 0.79 | 0.806 | - | 0.81 | 0.81 |
AWS11 | 0.78 | 0.798 | - | 0.80 | 0.80 |
AWS12r | 0.61 | 0.449 | 0.644 | 0.45 | 0.45 |
AWS13r | 0.58 | 0.408 | 0.649 | - | - |
AWS14 | 0.56 | 0.562 | - | 0.57 | 0.57 |
AWS15 | 0.83 | 0.829 | - | 0.82 | 0.82 |
AWS16 | 0.90 | 0.903 | - | 0.91 | 0.91 |
AWS17 | 0.79 | 0.795 | - | 0.80 | 0.80 |
AWS18r | 0.36 | 0.331 | 0.255 | - | - |
AWS19 | 0.61 | 0.618 | - | 0.62 | 0.62 |
AWS20 | 0.19 | 0.196 | - | 0.23 | - |
AWS21 | 0.46 | 0.475 | - | 0.50 | 0.50 |
AWS22 | 0.76 | 0.770 | - | 0.76 | 0.76 |
AWS23r | 0.53 | 0.478 | 0.359 | - | - |
AWS24r | 0.50 | 0.439 | 0.335 | - | - |
AWS25 | 0.68 | 0.684 | - | 0.69 | 0.69 |
AWS26 | 0.55 | 0.556 | - | 0.57 | 0.57 |
AWS27 | 0.72 | 0.724 | - | 0.73 | 0.73 |
AWS28 | 0.82 | 0.823 | - | 0.81 | 0.81 |
AWS29r | 0.26 | 0.239 | 0.142 | - | - |
WMSLV χ2 | 1617.560 ** | 1229.30 ** | 601.89 ** | 566.021 ** | |
(df) | (362) | (354) | (194) | (174) | |
CFI | 0.944 | 0.961 | 0.997 | 0.978 | |
RMSEA | 0.077 | 0.065 | 0.060 | 0.062 | |
(90% CI) | (0.073, 0.080) | (0.061, 0.069) | (0.54, 0.65) | (0.056, 0.068) | |
Close fit p | <0.01 | <0.01 | <0.01 | <0.01 | |
uSRMR | 0.056 | 0.052 | 0.047 | 0.048 | |
(se) | (0.001) | (0.001) | (0.001) | (0.001) | |
(90% CI) | (0.054, 0.059) | (0.050, 0.054) | (0.045, 0.049) | (0.046, 0.050) | |
Criteria for uSRMR fit | |||||
Close | 0.020 | 0.021 | 0.023 | 0.024 | |
Acceptable | 0.040 | 0.043 | 0.047 | 0.049 | |
Close fit Z | 5.855 ** | 1.48 | −2.01 | −1.38 |
WL | CL | REW | COM | FAIR | VAL | |
---|---|---|---|---|---|---|
Full AWS | 0.775 | 0.656 | 0.792 | 0.810 | 0.666 | 0.722 |
AWS + MF | 0.775 | 0.656 | 0.629 | 0.797 | 0.633 | 0.716 |
AWS-no neg | 0.764 | 0.658 | 0.699 | 0.840 | 0.759 | 0.766 |
AWS-neg-i20 | 0.764 | 0.658 | 0.700 | 0.839 | 0.624 | 0.766 |
Sex (Male, Female) | Occupation (Teachers, Health Workers) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Standardized Difference | Ordinal Logistic Regression | Standardized Difference | Ordinal Logistic Regression | |||||||||
dMACS | Nivel | Δχ2 DIF3-DIF1 | p | ΔR2 | Nivel | dMACS | Nivel | Δχ2 DIF3-DIF1 | p | ΔR2 | Nivel | |
AWS1 | 0.19 | Trivial | 1.568 | 0.45 | 0.002 | Trivial | 0.11 | Trivial | 25.36 | 0.00 | 0.024 | Trivial |
AWS2 | 0.20 | Trivial | 6.592 | 0.03 | 0.006 | Trivial | 0.21 | Trivial | 15.48 | 0.00 | 0.014 | Trivial |
AWS3 | 0.27 | Trivial | 0.156 | 0.92 | 0.000 | Trivial | 0.30 | Trivial | 15.64 | 0.00 | 0.011 | Trivial |
AWS4 | 0.32 | Trivial | 0.987 | 0.61 | 0.001 | Trivial | 0.35 | Trivial | 12.17 | 0.00 | 0.008 | Trivial |
AWS7 | 0.11 | Trivial | 1.624 | 0.44 | 0.001 | Trivial | 0.01 | Trivial | 0.17 | 0.91 | 0.000 | Trivial |
AWS8 | 0.16 | Trivial | 2.491 | 0.28 | 0.002 | Trivial | 0.16 | Trivial | 5.31 | 0.07 | 0.004 | Trivial |
AWS9 | 0.02 | Trivial | 3.440 | 0.17 | 0.003 | Trivial | 0.20 | Trivial | 6.62 | 0.03 | 0.005 | Trivial |
AWS10 | 0.31 | Trivial | 3.164 | 0.20 | 0.002 | Trivial | 0.02 | Trivial | 2.07 | 0.35 | 0.001 | Trivial |
AWS11 | 0.17 | Trivial | 1.611 | 0.44 | 0.001 | Trivial | 0.10 | Trivial | 0.29 | 0.86 | 0.000 | Trivial |
AWS12r | 0.19 | Trivial | 0.423 | 0.80 | 0.000 | Trivial | 0.06 | Trivial | 3.98 | 0.13 | 0.004 | Trivial |
AWS14 | 0.10 | Trivial | 4.080 | 0.13 | 0.004 | Trivial | 0.11 | Trivial | 16.66 | 0.00 | 0.015 | Trivial |
AWS15 | 0.29 | Trivial | 0.445 | 0.80 | 0.000 | Trivial | 0.16 | Trivial | 8.10 | 0.01 | 0.005 | Trivial |
AWS16 | 0.32 | Trivial | 0.401 | 0.81 | 0.000 | Trivial | 0.15 | Trivial | 0.51 | 0.77 | 0.000 | Trivial |
AWS17 | 0.29 | Trivial | 0.610 | 0.73 | 0.000 | Trivial | 0.11 | Trivial | 5.84 | 0.05 | 0.004 | Trivial |
AWS19 | 0.15 | Trivial | 2.537 | 0.28 | 0.002 | Trivial | 0.19 | Trivial | 0.39 | 0.82 | 0.000 | Trivial |
AWS20 | 0.15 | Trivial | 0.411 | 0.81 | 0.001 | Trivial | 0.14 | Trivial | 0.43 | 0.80 | 0.001 | Trivial |
AWS21 | 0.15 | Trivial | 1.012 | 0.60 | 0.001 | Trivial | 0.17 | Trivial | 1.83 | 0.40 | 0.002 | Trivial |
AWS22 | 0.29 | Trivial | 3.882 | 0.14 | 0.004 | Trivial | 0.31 | Trivial | 9.63 | 0.00 | 0.009 | Trivial |
AWS25 | 0.13 | Trivial | 6.907 | 0.032 | 0.006 | Trivial | 0.08 | Trivial | 1.76 | 0.41 | 0.001 | Trivial |
AWS26 | 0.15 | Trivial | 0.837 | 0.658 | 0.001 | Trivial | 0.23 | Trivial | 17.47 | 0.00 | 0.014 | Trivial |
AWS27 | 0.27 | Trivial | 2.622 | 0.270 | 0.002 | Trivial | 0.14 | Trivial | 5.57 | 0.06 | 0.004 | Trivial |
AWS28 | 0.30 | Trivial | 2.086 | 0.352 | 0.002 | Trivial | 0.11 | Trivial | 1.56 | 0.45 | 0.001 | Trivial |
WL (4 Items) | CON (3 Items) | REW (3 Items) | COMM (4 Items) | FAIR (4 Items) | VAL (4 Items) | |
---|---|---|---|---|---|---|
AWS | ||||||
WL | 1.0 | |||||
CON | −0.397 | 1.000 | ||||
REW | −0.300 | 0.756 | 1.000 | |||
COMM | −0.252 | 0.634 | 0.479 | 1.000 | ||
FAIR | −0.282 | 0.710 | 0.536 | 0.450 | 1.0 | |
VAL | −0.230 | 0.580 | 0.568 | 0.477 | 0.576 | 1.0 |
MBI-GS | ||||||
Exhaustion | 0.680 | −0.366 | −0.302 | −0.253 | −0.292 | −0.342 |
Cynicism | 0.443 | −0.349 | −0.310 | −0.260 | −0.306 | −0.437 |
Efficacy | −0.226 | 0.210 | 0.190 | 0.160 | 0.189 | 0.284 |
Sex Group (Male, Female) | Occupation (Teachers, Health Workers) | |||||||
---|---|---|---|---|---|---|---|---|
Structure Parameter | Δb | Δz | Se | p | Δb | Δz | Se | p |
CL → WL | 0.126 | 0.018 | 0.18 | 0.49 | 0.064 | -0.122 | 0.19 | 0.74 |
CL → REW | −0.124 | 0.041 | 0.29 | 0.66 | −0.112 | −0.141 | 0.26 | 0.67 |
CL → COM | 0.180 | 0.111 | 0.19 | 0.36 | −0.131 | −0.024 | 0.18 | 0.46 |
CL → FAIR | −0.322 | −0.215 | 0.27 | 0.25 | 0.195 | 0.143 | 0.22 | 0.39 |
REW → VAL | −0.126 | −0.137 | 0.13 | 0.36 | −0.368 | −0.389 | 0.16 | 0.02 |
COM → VAL | −0.001 | 0.079 | 0.17 | 0.99 | 0.407 | 0.332 | 0.17 | 0.01 |
FAIR → VAL | −0.179 | −0.097 | 0.20 | 0.38 | −0.116 | −0.069 | 0.17 | 0.49 |
WL → EFF | 0.687 | −0.154 | 0.32 | 0.03 | 0.504 | 0.083 | 0.38 | 0.19 |
VAL → EFF | 0.214 | 0.075 | 0.19 | 0.27 | 0.135 | 0.116 | 0.20 | 0.51 |
EFF → CYN | 0.126 | 0.089 | 0.12 | 0.29 | 0.085 | 0.157 | 0.15 | 0.58 |
VAL → CYN | 0.415 | 0.166 | 0.22 | 0.05 | 0.456 | 0.231 | 0.24 | 0.06 |
CYN → EFF | −0.288 | −0.346 | 0.10 | 0.006 | 0.176 | 0.315 | 0.09 | 0.07 |
VAL → EFF | −0.371 | −0.285 | 0.18 | 0.04 | 0.079 | 0.057 | 0.18 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juárez-García, A.; Merino-Soto, C.; García-Rivas, J. Psychometric Validity of the Areas of Work Life Scale (AWS) in Teachers and Healthcare Workers in México. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 1521-1538. https://doi.org/10.3390/ejihpe13080111
Juárez-García A, Merino-Soto C, García-Rivas J. Psychometric Validity of the Areas of Work Life Scale (AWS) in Teachers and Healthcare Workers in México. European Journal of Investigation in Health, Psychology and Education. 2023; 13(8):1521-1538. https://doi.org/10.3390/ejihpe13080111
Chicago/Turabian StyleJuárez-García, Arturo, César Merino-Soto, and Javier García-Rivas. 2023. "Psychometric Validity of the Areas of Work Life Scale (AWS) in Teachers and Healthcare Workers in México" European Journal of Investigation in Health, Psychology and Education 13, no. 8: 1521-1538. https://doi.org/10.3390/ejihpe13080111
APA StyleJuárez-García, A., Merino-Soto, C., & García-Rivas, J. (2023). Psychometric Validity of the Areas of Work Life Scale (AWS) in Teachers and Healthcare Workers in México. European Journal of Investigation in Health, Psychology and Education, 13(8), 1521-1538. https://doi.org/10.3390/ejihpe13080111