Using Psychometric Testing Procedures for Scale Validity, Reliability, and Invariance Analysis: The PRETIE-Q Portuguese Version
Abstract
:1. Introduction
1.1. The Case of the Preference for and Tolerance of the Intensity of Exercise Questionnaire (PRETIE-Q)
1.2. Current Research
2. Methods
2.1. Participants
2.2. Procedures
2.3. Instruments
2.4. Statistical Analysis
2.4.1. Factor Analysis
2.4.2. Multigroup Analysis
2.4.3. Correlational Analysis
3. Results
4. Discussion
4.1. Factor Structure
4.2. Multigroup Analysis
4.3. Correlational Analysis
4.4. Limitations and Directions for Further Research
5. Conclusions
Practical Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marsh, H.W.; Morin, A.J.S.; Parker, P.D.; Kaur, G. Exploratory Structural Equation Modeling: An Integration of the Best Features of Exploratory and Confirmatory Factor Analysis. Annu. Rev. Clin. Psychol. 2014, 10, 85–110. [Google Scholar] [CrossRef] [Green Version]
- Morin, A.J.S.; Arens, A.K.; Marsh, H.W. A Bifactor Exploratory Structural Equation Modeling Framework for the Identification of Distinct Sources of Construct-Relevant Psychometric Multidimensionality. Struct. Equ. Model. A Multidiscip. J. 2016, 23, 116–139. [Google Scholar] [CrossRef]
- Howard, J.L.; Gagné, M.; Morin, A.J.S. Putting the Pieces Together: Reviewing the Structural Conceptualization of Motivation within SDT. Motiv. Emot. 2020, 44, 846–861. [Google Scholar] [CrossRef]
- Marsh, H.W.; Lüdtke, O.; Muthén, B.; Asparouhov, T.; Morin, A.J.S.; Trautwein, U.; Nagengast, B. A New Look at the Big Five Factor Structure through Exploratory Structural Equation Modeling. Psychol. Assess. 2010, 22, 471–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asparouhov, T.; Muthén, B. Exploratory Structural Equation Modeling. Struct. Equ. Model. A Multidiscip. J. 2009, 16, 397–438. [Google Scholar] [CrossRef]
- Reise, S.P.; Moore, T.M.; Haviland, M.G. Bifactor Models and Rotations: Exploring the Extent to Which Multidimensional Data Yield Univocal Scale Scores. J. Personal. Assess. 2010, 92, 544–559. [Google Scholar] [CrossRef] [Green Version]
- Byrne, B.M. Basic Concepts, Applications, and Programming, 3rd ed.; Routledge: New York, NY, USA, 2016; ISBN 978-1-315-75742-1. [Google Scholar]
- Rodriguez, A.; Reise, S.P.; Haviland, M.G. Applying Bifactor Statistical Indices in the Evaluation of Psychological Measures. J. Personal. Assess. 2016, 98, 223–237. [Google Scholar] [CrossRef]
- Calder, A.J.; Hargreaves, E.A.; Hodge, K. Great Expectations: A Qualitative Analysis of the Factors That Influence Affective Forecasts for Exercise. Int. J. Environ. Res. Public Health 2020, 17, 551. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, R.E.; Kates, A. Can the Affective Response to Exercise Predict Future Motives and Physical Activity Behavior? A Systematic Review of Published Evidence. Ann. Behav. Med. 2015, 49, 715–731. [Google Scholar] [CrossRef]
- Rodrigues, F.; Teixeira, D.S.; Neiva, H.P.; Cid, L.; Monteiro, D. Understanding Exercise Adherence: The Predictability of Past Experience and Motivational Determinants. Brain Sci. 2020, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.M.; Dunsiger, S.; Ciccolo, J.T.; Lewis, B.A.; Albrecht, A.E.; Marcus, B.H. Acute Affective Response to a Moderate-Intensity Exercise Stimulus Predicts Physical Activity Participation 6 and 12 Months Later. Psychol. Sport Exerc. 2008, 9, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Ekkekakis, P.; Parfitt, G.; Petruzzello, S.J. The Pleasure and Displeasure People Feel When They Exercise at Different Intensities: Decennial Update and Progress towards a Tripartite Rationale for Exercise Intensity Prescription. Sport. Med. 2011, 41, 641–671. [Google Scholar] [CrossRef]
- Evmenenko, A.; Teixeira, D.S. The Circumplex Model of Affect in Physical Activity Contexts: A Systematic Review. Int. J. Sport Exerc. Psychol. 2022, 20, 168–201. [Google Scholar] [CrossRef]
- Rose, E.A.; Parfitt, G. A Quantitative Analysis and Qualitative Explanation of the Individual Differences in Affective Responses to Prescribed and Self-Selected Exercise Intensities. J. Sport Exerc. Psychol. 2007, 29, 281–309. [Google Scholar] [CrossRef] [PubMed]
- Ekkekakis, P.; Thome, J.; Petruzzello, S.J.; Hall, E.E. The Preference for and Tolerance of the Intensity of Exercise Questionnaire: A Psychometric Evaluation among College Women. J. Sport. Sci. 2008, 26, 499–510. [Google Scholar] [CrossRef] [Green Version]
- Bastos, V.; Andrade, A.J.; Rodrigues, F.; Monteiro, D.; Cid, L.; Teixeira, D.S. Set to Fail: Affective Dynamics in a Resistance Training Program Designed to Reach Muscle Concentric Failure. Scand. J. Med. Sci. Sport. 2022, 32, 1710–1723. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.J.; Ekkekakis, P.; Evmenenko, A.; Monteiro, D.; Rodrigues, F.; Cid, L.; Teixeira, D.S. Affective Responses to Resistance Exercise: Toward a Consensus on the Timing of Assessments. Psychol. Sport Exerc. 2022, 62, 102223. [Google Scholar] [CrossRef]
- Ekkekakis, P.; Hall, E.E.; Petruzzello, S.J. Some like It Vigorous: Measuring Individual Differences in the Preference for and Tolerance of Exercise Intensity. J. Sport Exerc. Psychol. 2005, 27, 350–374. [Google Scholar] [CrossRef]
- Smirmaul, B.P.C.; Ekkekakis, P.; Teixeira, I.P.; Nakamura, P.M.; Kokubun, E. Preference for and Tolerance of the Intensity of Exercise Questionnaire: Brazilian Portuguese Version. Rev. Bras. de Cineantropometria e Desempenho Hum. 2015, 17, 550–564. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, D.S.; Ekkekakis, P.; Andrade, A.; Rodrigues, F.; Evmenenko, A.; Faria, J.; Marques, P.; Cid, L.; Monteiro, D. Preference for and Tolerance of the Intensity of Exercise Questionnaire (PRETIE-Q): Validity, Reliability and Gender Invariance in Portuguese Health Club Exercisers. Curr. Psychol. 2021, 42, 4119–4132. [Google Scholar] [CrossRef]
- Wang, T.; Kuang, J.; Herold, F.; Taylor, A.; Ludyga, S.; Zhang, Z.; Kramer, A.; Zou, L. Validity and Reliability of the Preference for and Tolerance of the Intensity of Exercise Questionnaire among Chinese College Students. Int. J. Ment. Health Promot. 2022, 25, 127–138. [Google Scholar] [CrossRef]
- Patterson, M.S.; Heinrich, K.M.; Prochnow, T.; Graves-Boswell, T.; Spadine, M.N. Network Analysis of the Social Environment Relative to Preference for and Tolerance of Exercise Intensity in CrossFit Gyms. Int. J. Environ. Res. Public Health 2020, 17, 8370. [Google Scholar] [CrossRef]
- Teixeira, D.S.; Rodrigues, F.; Cid, L.; Monteiro, D. Enjoyment as a Predictor of Exercise Habit, Intention to Continue Exercising, and Exercise Frequency: The Intensity Traits Discrepancy Moderation Role. Front. Psychol. 2022, 13, 780059. [Google Scholar] [CrossRef]
- Chen, F.F. What Happens If We Compare Chopsticks with Forks? The Impact of Making Inappropriate Comparisons in Cross-Cultural Research. J. Personal. Soc. Psychol. 2008, 95, 1005–1018. [Google Scholar] [CrossRef]
- Cid, L.; Monteiro, D.; Teixeira, D.S.; Evmenenko, A.; Andrade, A.; Bento, T.; Vitorino, A.; Couto, N.; Rodrigues, F. Assessment in Sport and Exercise Psychology: Considerations and Recommendations for Translation and Validation of Questionnaires. Front. Psychol. 2022, 13, 460. [Google Scholar] [CrossRef]
- Ekkekakis, P. The Measurement of Affect, Mood, and Emotion: A Guide for Health-Behavioral Research; Cambridge University Press: Cambridge, UK, 2013; ISBN 978-1-107-01100-7. [Google Scholar]
- Soper, D. Factorial Calculator [Software]. 2022. Available online: https://www.danielsoper.com/statcalc (accessed on 15 February 2023).
- Rodrigues, F.; Forte, P.; Teixeira, D.S.; Cid, L.; Monteiro, D. The Physical Activity Enjoyment Scale (Paces) as a Two-Dimensional Scale: Exploratory and Invariance Analysis. Montenegrin J. Sport. Sci. Med. 2021, 10, 61–66. [Google Scholar] [CrossRef]
- Rodrigues, F.; Teixeira, D.S.; Neiva, H.P.; Cid, L.; Monteiro, D. The Bright and Dark Sides of Motivation as Predictors of Enjoyment, Intention, and Exercise Persistence. Scand. J. Med. Sci. Sport. 2020, 30, 787–800. [Google Scholar] [CrossRef]
- Rodrigues, F.; Figueiredo, N.; Teixeira, D.; Cid, L.; Monteiro, D. The Relationship between Past Exercise Behavior and Future Exercise Adherence: A Sequential Mediation Analysis. J. Sport. Sci. 2022, 40, 2095–2101. [Google Scholar] [CrossRef]
- Muthén, L.; Muthén, B. Mplus: Statistical Analysis with Latent Variables: User’s Guide (Version 6); Muthén & Muthén: Los Angeles, CA, USA, 2010. [Google Scholar]
- Muthén, L.; Muthén, B. Mplus: Statistical Analysis with Latent Variables: User’s Guide (Version 8); Muthén & Muthén: Los Angeles, CA, USA, 2017. [Google Scholar]
- Flora, D.B.; Curran, P.J. An Empirical Evaluation of Alternative Methods of Estimation for Confirmatory Factor Analysis with Ordinal Data. Psychol. Methods 2004, 9, 466–491. [Google Scholar] [CrossRef] [Green Version]
- Marques, P.; Andrade, A.J.; Evmenenko, A.; Monteiro, D.; Faria, J.; Rodrigues, F.; Cid, L.; Teixeira, D.S. The Preference for and Tolerance of Exercise Intensity: An Exploratory Analysis of Intensity Discrepancy in Health Clubs Settings. Curr. Psychol. 2022. [Google Scholar] [CrossRef]
- Faria, J.; Andrade, A.; Evmenenko, A.; Monteiro, D.; Rodrigues, F.; Marques, P.; Cid, L.; Santos Teixeira, D. Preference for and Tolerance of Exercise Intensity: The Mediating Role of Vitality in Exercise Habit. Int. J. Sport Psychol. 2021, 52, 555–568. [Google Scholar]
- Hair, J.; Babin, B.; Anderson, R.; Black, W. Multivariate Data Analysis, 8th ed.; Pearson Educational: London, UK, 2019. [Google Scholar]
- Marsh, H.W.; Wen, Z.; Hau, K.-T. Structural Equation Models of Latent Interactions: Evaluation of Alternative Estimation Strategies and Indicator Construction. Psychol. Methods 2004, 9, 275–300. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F. Multivariate Data Analysis: An Overview. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 904–907. ISBN 978-3-642-04898-2. [Google Scholar]
- Raykov, T. Estimation of Composite Reliability for Congeneric Measures. Appl. Psychol. Meas. 1997, 21, 173–184. [Google Scholar] [CrossRef]
- Nunnally, J.C. An Overview of Psychological Measurement. In Clinical Diagnosis of Mental Disorders: A Handbook; Wolman, B.B., Ed.; Springer US: Boston, MA, USA, 1978; pp. 97–146. ISBN 978-1-4684-2490-4. [Google Scholar]
- McDonald, R.P. The Theoretical Foundations of Principal Factor Analysis, Canonical Factor Analysis, and Alpha Factor Analysis. Br. J. Math. Stat. Psychol. 1970, 23, 1–21. [Google Scholar] [CrossRef]
- Gignac, G.E.; Watkins, M.W. Bifactor Modeling and the Estimation of Model-Based Reliability in the WAIS-IV. Multivar. Behav. Res. 2013, 48, 639–662. [Google Scholar] [CrossRef]
- Padilla, M.A.; Divers, J. A Comparison of Composite Reliability Estimators: Coefficient Omega Confidence Intervals in the Current Literature. Educ. Psychol. Meas. 2016, 76, 436–453. [Google Scholar] [CrossRef] [Green Version]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Liu, Y.; Millsap, R.E.; West, S.G.; Tein, J.-Y.; Tanaka, R.; Grimm, K.J. Testing Measurement Invariance in Longitudinal Data with Ordered-Categorical Measures. Psychol. Methods 2017, 22, 486–506. [Google Scholar] [CrossRef] [PubMed]
- Worthington, R.L.; Whittaker, T.A. Scale Development Research: A Content Analysis and Recommendations for Best Practices. Couns. Psychol. 2006, 34, 806–838. [Google Scholar] [CrossRef]
- Ekkekakis, P. Pleasure and Displeasure from the Body: Perspectives from Exercise. Cogn. Emot. 2003, 17, 213–239. [Google Scholar] [CrossRef]
Model | χ2 | df | CFI | TLI | SRMR | RMSEA | 90% CI |
---|---|---|---|---|---|---|---|
Unidimensional | 953.951 * | 35 | 0.701 | 0.615 | 0.089 | 0.153 | 0.145, 162 |
Two-correlated-factor CFA | 840.500 * | 34 | 0.812 | 0.758 | 0.064 | 0.122 | 0.113, 0.130 |
Two-correlated-factor ESEM | 219.335 * | 26 | 0.937 | 0.911 | 0.033 | 0.080 | 0.072, 0.092 |
One bifactor and two-correlated CFA | DNC | ||||||
One bifactor and two-correlated ESEM | 116.568 * | 18 | 0.812 | 0.799 | 0.024 | 0.070 | 0.058, 0.082 |
Resistance and cardio training | 201.970 * | 26 | 0.927 | 0.911 | 0.055 | 0.075 | 0.062, 0.097 |
Fitness group classes | 203.415 * | 26 | 0.922 | 0.909 | 0.060 | 0.074 | 0.062, 0.097 |
<6 months experience | 182.192 * | 26 | 0.927 | 0.901 | 0.058 | 0.074 | 0.061, 0.098 |
≥6 months experience | 227.677 * | 26 | 0.928 | 0.902 | 0.059 | 0.076 | 0.068, 0.098 |
Item | λ Preference | λ Tolerance |
---|---|---|
Preference | 0.83 | |
Item 2 | 0.652 ** | 0.175 * |
Item 4 | 0.679 ** | 0.254 ** |
Item 5 | 0.785 ** | 0.189 ** |
Item 6 | 0.454 ** | 0.539 ** |
Item 7 | 0.633 ** | 0.177 ** |
Tolerance | 0.78 | |
Item 1 | −0.011 | 0.721 ** |
Item 3 | 0.191 ** | 0.637 ** |
Item 8 | 0.214 ** | 0.761 ** |
Item 9 | 0.421 ** | 0.617 ** |
Item 10 | 0.212 ** | 0.512 ** |
Model | χ2 | df | CFI | ΔCFI | TLI | ΔTLI | SRMR | ΔSRMR | RMSEA | ΔRMSEA |
---|---|---|---|---|---|---|---|---|---|---|
Exercise Type | ||||||||||
Configural | 239.379 * | 52 | 0.940 | - | 0.906 | - | 0.038 | - | 0.081 | - |
Weak | 270.181 * | 68 | 0.935 | 0.005 | 0.914 | 0.008 | 0.048 | 0.010 | 0.074 | 0.004 |
Strong | 290.488 * | 76 | 0.931 | 0.009 | 0.916 | 0.010 | 0.049 | 0.011 | 0.072 | 0.009 |
Strict | 311.708 * | 86 | 0.927 | 0.013 | 0.924 | 0.018 | 0.059 | 0.021 | 0.069 | 0.012 |
Exercise Experience | ||||||||||
Configural | 133.720 * | 52 | 0.906 | - | 0.889 | - | 0.048 | - | 0.096 | - |
Weak | 151.286 * | 68 | 0.904 | 0.002 | 0.883 | 0.006 | 0.060 | 0.012 | 0.085 | 0.011 |
Strong | 163.104 * | 76 | 0.900 | 0.006 | 0.881 | 0.008 | 0.062 | 0.014 | 0.082 | 0.014 |
Strict | 180.087 * | 86 | 0.899 | 0.007 | 0.887 | 0.002 | 0.073 | 0.025 | 0.080 | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, F.; Morouço, P.; Antunes, R.; Monteiro, D.; Jacinto, M.; Figueiredo, N.; Santos, F.; Bastos, V.; Teixeira, D. Using Psychometric Testing Procedures for Scale Validity, Reliability, and Invariance Analysis: The PRETIE-Q Portuguese Version. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 1158-1172. https://doi.org/10.3390/ejihpe13070086
Rodrigues F, Morouço P, Antunes R, Monteiro D, Jacinto M, Figueiredo N, Santos F, Bastos V, Teixeira D. Using Psychometric Testing Procedures for Scale Validity, Reliability, and Invariance Analysis: The PRETIE-Q Portuguese Version. European Journal of Investigation in Health, Psychology and Education. 2023; 13(7):1158-1172. https://doi.org/10.3390/ejihpe13070086
Chicago/Turabian StyleRodrigues, Filipe, Pedro Morouço, Raul Antunes, Diogo Monteiro, Miguel Jacinto, Nuno Figueiredo, Filipe Santos, Vasco Bastos, and Diogo Teixeira. 2023. "Using Psychometric Testing Procedures for Scale Validity, Reliability, and Invariance Analysis: The PRETIE-Q Portuguese Version" European Journal of Investigation in Health, Psychology and Education 13, no. 7: 1158-1172. https://doi.org/10.3390/ejihpe13070086