Extraction Processes Affect the Composition and Bioavailability of Flavones from Lamiaceae Plants: A Comprehensive Review
Abstract
:1. Introduction
1.1. Lamiaceae
1.2. Phenolic Compounds
- Flavonoids
- ◦
- Flavonols and flavones;
- ◦
- Flavanones;
- ◦
- Isoflavones;
- ◦
- Anthocyanins;
- ◦
- Flavan-3-ols.
- Non-flavonoids
- ◦
- Hydroxycinnamic acids;
- ◦
- Hydroxybenzoic acids;
- ◦
- Coumarins;
- ◦
- Benzophenones and xanthones;
- ◦
- Stilbenes;
- ◦
- Chalcones;
- ◦
- Lignans.
1.3. Flavones
2. Literature Research Strategy
3. Flavones Distribution in Lamiaceae Plants
3.1. Salvia
3.1.1. Characteristics of the Salvia Genus
3.1.2. Flavones in Salvia Species
3.2. Ocimum
3.2.1. Characteristics of the Ocimum Genus
3.2.2. Flavones in Ocimum Species
3.3. Origanum
3.3.1. Characteristics of Origanum
3.3.2. Flavones in Origanum Species
Plant Species | Plant Part | Type of Extract | Method of Identification | Flavones | Reference |
---|---|---|---|---|---|
O. vulgare subsp. hirtum (Greek oregano) | Aerial parts | Aqueous, afterward extraction using ethyl-acetate | LC-DAD-MS | Apigenin 7-O-glucoside Apigenin Apigenin 7-O-glucuronide Luteolin 7-O-glucuronide Luteolin Cirsimaritin | [58] |
O. vulgare subsp. viridulum | Flower buds (without stem) | Water:methanol (6:4) | HPLC-PDA | Luteolin glycosides Apigenin glycosides | [59] |
O. vulgare | Unspecified | Pressurized liquid extraction | LC-MS/MS | Luteolin-7-O-glucuronide Luteolin Apigenin | [60] |
O. dictamnus | Aerial parts | Aqueous, afterward extraction using ethyl-acetate | LC-DAD-MS | Apigenin-7-O-glucuronide Cirsiliol Cirsilineol Luteolin-7-O-glucuronide | [58] |
O. glandulosum | Aerial parts | Microwave-assisted solvent extraction | LC-DAD-ESI-MS/MS | Luteolin-O-hexoside Luteolin-6,8-di-C-glucoside Luteolin-7-O-glucuronide Other luteolin derivatives | [61] |
O. majorana L. | Aerial parts | Methanol | UPLC-ESI-QTOF-MS/MS | Luteolin-6,8-C-dihexose Apigenin-6,8-di-C-hexoside Isoorientin Orientin Vitexin/Isovitexin Luteolin-O-glycoside Diosmin Apigenin-O-glucuronide Acacetin rutinoside Luteolin Apigenin | [62] |
O. mycrophillum | Aerial parts | Aqueous, afterward extraction using ethyl-acetate | LC-DAD-MS | Apigenin-7-O-glucoside Apigenin Genkwanin | [58] |
3.4. Thymus
3.4.1. Characteristics of Thymus
3.4.2. Flavones and Their Significance in Thymus Species
Plant Species | Plant Part | Type of Extract | Method of Identification | Flavones | Reference |
T. vulgaris (common thyme) | Leaves | Ultrasound-assisted maceration with methanol; afterward, liquid–liquid extraction using ethyl acetate | RP-HPLC-ESI-MS/MS | Luteolin-O-hexosideLuteolinEupatorinePoly-methoxyflavones | [72] |
Aerial parts | Methanol | RP-HPLC–DAD | Luteolin-hexosideLuteolin-7-O-glucosideLuteolin-7-O-hexuronide | [70] | |
Deodorized leaves | Pressurized hot water extraction | HPLC-ESI-Q-TOF | Apigenin-6,8-di-C-glucosideLuteolinLuteolin-7-O-glucosideLuteolin-7-O-glucuronideApigenin-7-O-glucuronideCirsimaritinCirsilineol5,6-Dihydroxy-7,8,3′,4′-tetramethoxyflavone | [73] | |
T. algeriensis | Aerial parts | Infusion, decoction or ethanol:water (80:20) | LC-DAD-ESI/MS | Apigenin-6,8-C-dihexosideApigenin-8-C-glucosideLuteolin-7-O-glucuronideApigenin-7-O-glucuronide | [74] |
T. capitatus | Leaves | Methanol | UHPLC-DAD-ESI-MS | Apigenin-C-di-hexoside | [75] |
T. x citriodorus | Aerial parts | 80% ethanol | HPLC–DAD-ESI–MS | Luteolin-5-β-O-glucosideLuteolin-7-α-O-glucuronideLuteolin-7-O-glucosideChrysoeriol-7-β-O-glucosideApigenin-7-β-O-glucuronide | [76] |
T. lotocephalus | Aerial parts | Water, water:ethanol (1:1) or ethanol | HPLC-DAD | LuteolinApigenin | [77] |
T. pseudolanuginosus | Aerial parts | Decoction extracts (water) | UHPLC-DAD-ESI-MS | Luteolin-C-glucosideLuteolin-O-glucuronideApigenin-O-glucosideApigenin-O-glucuronide | [71] |
T. puligioides | Aerial parts | Decoction extracts (water) | UHPLC-DAD-ESI-MS | Luteolin-C-glucosideScutellarein-O-glucuronideLuteolin-O-glucuronideChrysoeriol-O-hexosideApigenin-O-glucuronide | [68] |
Aerial parts | 70% ethanol | HPLC-UV | Luteolin-7-rutinosideLuteolin-7-glucoside | [69] | |
T. serpyllum | Obtained as herbal tea | 95% ethanol | HPLC-DAD | Luteolin-7-O-glucosideLuteolinApigenin | [78] |
Whole plant | Aqueous extract | HPLC-DAD | LuteolinApigenin | [79] | |
Unspecified | Pressurized liquid extraction | LC-MS/MS | Luteolin-7-O-glucosideLuteolin-7-O-glucuronideApigenin-7-O-glucuronideLuteolinApigeninCirsimaritin | [60] |
4. Extraction Methods of Flavones from Lamiaceae Plants
4.1. Conventional Methods
Source | Part | Extraction Method | Identification Method | Flavone/Flavone Derivative | Reference |
---|---|---|---|---|---|
Salvia absconditiflora | Aerial parts | Hot water, subsequent fractionation | 1H NMR, 13C NMR, HPLC-TOF/MS | Cirismaritin Apigenin-7-O-β-glucoside Luteolin Luteolin-7-O-β-glucoside | [98] |
Salvia apiana | Aerial parts | Ethanolic extract (95%) | 1H NMR, 13C NMR, HRMS | Cirismaritin Salvigenin | [127] |
Salvia chloroleuca | Aerial parts | Sequentially extracted with n-hexane, ethyl acetate, and methanol | 1H NMR, 13C NMR, HPLC-PDA | Salvigenin Luteolin Cirsiliol | [95] |
Salvia chrysophylla | Aerial parts | Dichloromethane extract | 1H NMR, 13C NMR, HRESIMS, FT-IR, UV-Vis | Salvigenin | [96] |
Salvia circinata | Aerial parts | Acetone extract, subsequent fractionation | 1H NMR, 13C NMR | Apigenin 6-Dihydroxy-7,3′,4′-trimethoxyflavone | [93] |
Aerial parts | Dichloromethane-methanol extract, subsequent fractionation | 1H NMR, 13C NMR, IR, HRESIMS, ECD | Pedalitin Apigenin-7-O-β-D-glucoside 2-(3,4-Dimethoxyphenyl)-5,6-dihydroxy- 7-methoxy-4H-chromen-4-one | [97] | |
Salvia connivens | Leaves | Acetone extract, subsequent fractionation | 1H NMR, 13C NMR, HMBC, ESIMS | Eupatorin Cirsiliol Nuchensin | [37] |
Salvia elegans | Aerial parts | Decoction | UHPLC-DAD-ESI-MSn | Hydroxyluteolin-glucuronide Scutellarein-O-glucuronide Luteolin-7-O-glucuronide Apigenin-glucuronide | [90] |
Salvia fruticosa | Not specified | Ethyl acetate extract | HPLC-SPE-NMR | Hispidulin Cirsimaritin Salvigenin | [128] |
Aerial parts | Methanolic extract | HPLC-ESI-QTOF-MS | Nepetin Luteolin Apigenin Hispidulin Cirsimaritin Genkwanin Luteolin-O-glucuronide Luteolin-O-glucoside Apigenin-O-glucuronide | [87] | |
Salvia greggii | Aerial parts | Decoction | UHPLC-DAD-ESI-MSn | Luteolin-C-hexoside Luteolin-7-O-glucoside Apigenin-C-hexoside Apigenin-hexoside | [90] |
Salvia judaica | Aerial parts | Ethanolic extract | 1H NMR, 13C NMR, UV-Vis, FT-IR | Luteolin-3′-methyl ether Apigenin Salvigenin Cirsilineol | [82] |
Salvia macrosiphon | Aerial parts | Ethyl acetate and methanolic extracts | 1H NMR, 13C NMR, MS | Apigenin-7, 4′-dimethyl ether Apigenin-7-O-glucoside Luteolin-7-O-glucoside Salvigenin | [36] |
Salvia officinalis | Leaves | Ethanolic (30–70%) and acetone (30–70%) extracts | HPLC-UV/PDA | 6-Hydroxyluteolin-7-glucoside Luteolin-7-glucuronide Luteolin-7-glucoside Apigenin-7-glucunoride Apigenin-7-glucoside Luteolin-3-glucuronide | [94] |
Aerial parts | Decoction | UHPLC-DAD-ESI-MSn | Apigenin-6-C-glucoside-7-O-glucoside Apigenin-glucuronide Apigenin-diglucuronide Luteolin-7-O-glucuronide Scutellarein-O-glucuronide Apigenin-rutinoside | [90] | |
Aerial parts | Methanolic extract | 1H NMR, UPLC -QTOF-MS | Cirsiliol Luteolin | [91] | |
Salvia plebeia | Aerial parts | Methanol: water: formic acid (50:45:5, v/v/v) | UPLC-DAD-QTOF-MS | Apigenin Apigenin-7-O-glucoside Hispidulin Hispidulin-7-O-glucoside Luteolin Luteolin-5-O-glucoside Luteolin-7-O-glucoside 6-Hydroxyluteolin 7-O-glucoside Nepetin Nepetin-7-O-glucoside | [88] |
Whole plants | Ethanolic (95%) extract, subsequent fractionation | HR-DART-MS, 1H NMR, 13C NMR, HMBC | Neocafhispidulin 6″-O-Acetylhomoplantaginin Sorbifolin Jaceosidin Nepetin Pectolinarigenin Hispidulin (2S)-5,7,4′-Trihydroxy-6-methoxy-flavanone-7-O-β-D-glucopyranoside Galuteolin Nepitrin Homoplantaginin | [86] | |
Aerial parts | Ethanolic extract (95%), subsequent fractionation | 1H NMR, 13C NMR, 1H–1H COSY, HMQC, HMBC, NOESY, HR-ESI-MS, IR | Salpleflavone 6-O-Methyl-scutellarein | [92] | |
Salvia pomifera | Aerial parts | Methanolic extract | HPLC-ESI-QTOF-MS | Luteolin Apigenin Hispidulin Cirsimaritin Genkwanin Luteolin-O-hexoside | [87] |
Salvia rosmarinus | Leaves | Methanolic extract | HPLC-ESI-MS | Hispidulin Cirsimaritin | [83] |
Not specified | Acidified water extract | HPLC-DAD, HPLC-ESI-QTOF-MS | Luteolin 3′-(3″-acetylglucuronide) | [109] | |
Salvia sharifii | Aerial parts | Ethyl acetate-methanol extract | 1H, 13C NMR, EI-MS, UV | Ladanein 6-Hydroxy-5,7,4′-trimethoxyflavone | [32] |
Salvia splendens | Leaves | Methanolic extract (80%), subsequent fractionation | 1H NMR, 13C NMR, ESI-MS, UV | Luteolin Luteolin 7-O-(4″, 6″-di-O-α-L-rhamnopyranosyl)- β-D-glucopyranoside Apigenin Apigenin-7-O-β-D-rutinoside Cosmosiin Cinaroside Pedalitin Crisiliol | [89] |
Salvia trichoclada | Aerial parts | Methanolic extract | 1H NMR, 13C NMR | Apigenin-7-O-rhamnoside | [84] |
Ocimum basilicum | Leaves | Ethanolic extract (80%) | 1H NMR, 13C NMR, ESI-MS | Apigenin Luteolin Vitexin Isovitexin 3″-O-Acetylvitexin | [99] |
Leaves and flowers | Diethyl ether extract | HPLC-PDA | Nevadensin Salvigenin | [105] | |
Leaves | Hot water extract | UPLC-ESI-MS/MS | Apigenin Apigenin-O-glucoside Apigenin-O-glucuronide Luteolin Luteolin-7-O-glucuronide Luteolin acetylglucuronide | [106] | |
Leaves | Methanolic extract | HPLC-UV/Vis | Luteolin Apigenin | [103] | |
Aerial parts | Ethanolic extract (70%) | HPLC-MS | Luteolin | [104] | |
Ocimum campechianum | Leaves | Infusion, subsequent fractionation | 1H NMR, 13C NMR, COSY, HSQC, HMBC | 5-Demethyl nobiletin 5-Demethyl sinensetin Luteolin | [107] |
Ocimum gratissimum | Leaves | Methanol extract, subsequent fractionation | HPLC-DAD | Luteolin | [101] |
Ocimum sanctum | Leaves | Methanolic extract (50%), subsequent fractionation | LC-QTOF-MS | Vicenin 2 Luteolin-7-O-glucuronide Isorientin Orientin Galuteolin Apigenin-7-O-glucuronide Isovitexin Luteolin Apigenin Cirsimaritin | [100] |
Leaves | Methanolic extract | HPLC-UV/Vis | Luteolin Apigenin | [103] | |
Ocimum tenuiflorum | Leaves | Methanolic extract | HPLC-MS | Luteolin Diosmetin Nevadensin Xanthomicrol | [102] |
Origanum acutidens | Aerial parts | Hot water, subsequent fractionation | HPLC-TOF-MS | Apigenin-7-glucoside | [112] |
Origanum dictamnus | Aerial parts | Fractionation with various solvents | LC-DAD-MS | Cirsiliol Cirsilineol | [58] |
Origanum majorana | Leaves | Methanolic extract, subsequent fractionation | UPLC-ESI-MS/MS | Luteolin-7-O-glucoside | [113] |
Aerial parts | Hot water extraction, subsequent fractionation | HPLC-TOF-MS, UV, 1H NMR, 13C NMR | 5,6,3′-Trihydroxy-7,8,4′-trimethoxyflavone | [111] | |
Leaves | Methanolic extract | HPLC-UV | Apigenin Luteolin-7-O-rutinose | [115] | |
Origanum microphyllum | Aerial parts | Fractionation with various solvents | LC-DAD-MS | Apigenin Apigenin-7-O-glucoside Genkwanin | [58] |
Origanum minutiflorum | Aerial parts | Hot water extraction, subsequent fractionation | 1H NMR, 13C NMR, LC-TOF-MS | Apigenin Apigenin-7-O-glucuronide Vicenin-2 Luteolin | [110] |
Origanum rotundifolium | Aerial parts | Fractionation with various solvents | LC-TOF-MS, UV, 1H NMR, 13C NMR | Apigenin Vitexin | [116] |
Origanum vulgare | Shoots | Water extract | UPLC-MS/MS | Apigenin | [108] |
Not specified | Acidified water extract | HPLC-DAD, HPLC-ESI-QTOF-MS, FT-IR | Apigenin-7-O-glucuronide | [109] | |
Aerial parts | Ethanolic extract (50%) | HPLC-DAD | Luteolin glycosides Apigenin glycoside | [114] | |
Aerial parts | Hot water, ethyl acetate, methanolic, hexane extract | HPLC-TOF-MS | Apigenin-7-glucoside | [112] | |
Aerial parts | Fractionation with various solvents | LC-DAD-MS | Apigenin Apigenin glucosides Apigenin glucuronides Luteolin Luteolin glucosides Luteolin glucuronides Cirsimaritin | [58] | |
Thymus algeriensis | Aerial parts | Infusion, decoction or ethanolic extract (80%) | UPLC-DAD-ESI-MSn | Apigenin-6,8-C-dihexoside Apigenin-8-C-glucoside Apigenin-7-O-glucuronide Luteolin-7-O-glucuronide | [74] |
Thymus alternans | Aerial parts | Methanolic extract | HPLC-MSn, 1H NMR COSY, HSQC-DEPT, HMBC, TOCSY, NOESY | Luteolin-3-O-glucopyranoside Luteolin-7-O-glucopyranoside Luteolin-7-O-rutinoside Chrysoeriol-hexoside Methoxy luteolin-hexoside Chrysoeriol-7-O-hexosyl-deoxyhexoside Apigenin-7-O-glucopyranoside | [117] |
Thymus austriacus | Aerial parts | Ethanolic extract (70%) | HPLC-UV | Luteolin-7-rutinoside | [69] |
Thymus caespititius | Aerial parts | Decoction | UHPLC-DAD-ESI-MSn | Apigenin di-C-glucoside Luteolin-O-rutinoside Luteolin-O-glucuronide Chrysoeriol-O-rutinoside Apigenin-O-glucuronide | [71] |
Thymus caramanicus | Aerial parts | Methanolic extract (80%) | HPLC-UV | Luteolin | [129] |
Aerial parts | Methanolic extract | HPLC-UV | Apigenin Luteolin-7-O-glucoside | [130] | |
Thymus capitatus | Leaves | Methanolic extract | UHPLC-DAD-ESI/MSn | Apigenin-C-di-hexoside | [75] |
Thymus daenensis | Aerial parts | Methanolic extract | HPLC-UV | Apigenin Luteolin-7-O-glucoside | [130] |
Thymus fallax | Aerial parts | Methanolic extract | HPLC-UV | Apigenin Luteolin-7-O-glucoside | [130] |
Thymus fedtschenkoi | Aerial parts | Methanolic extract | HPLC-UV | Apigenin Luteolin-7-O-glucoside | [130] |
Thymus fragrantissimus | Aerial parts | Decoction | UHPLC-DAD-ESI-MSn | Apigenin-di-C-glucoside Luteolin-C-glucoside Luteolin-O-di-glucoside Luteolin-O-glucuronide Apigenin-O-glucuronide | [68] |
Thymus herba-barona | Aerial parts | Decoction | UHPLC-DAD-ESI-MSn | Luteolin-C- glucoside Luteolin-O-rutinoside Luteolin-O-glucuronide Chrysoeriol-O-glucoside Apigenin-di-C-glucoside Apigenin-O-glucoside Apigenin-O-glucuronide | [71] |
Thymus kotschyanus | Aerial parts | Methanolic extract | HPLC-UV | Apigenin Luteolin-7-O-glucoside | [130] |
Thymus marschallianus | Aerial parts | Ethanolic extract (70%) | HPLC-DAD-ESI-MS | Luteolin Luteolin-7-O-glucuronide Apigenin Apigenin-7-O-glucuronide | [131] |
Thymus mastichina | Aerial parts | Methanolic extract | HPLC-DAD | Apigenin Luteolin | [118] |
Aerial parts | Dichloromethane, ethanolic extract | 1H NMR, 13C NMR, FT-IR, MS, [α]Dt values | 6-Hydroxyluteolin-7-O-β-glucopyranoside 6-Hydroxyapigenin-7-O-β-glucopyranoside | [125] | |
Leaves and flowers | Methanolic extract (50%) | HPLC-DAD | Luteolin Luteolin glucoside | [132] | |
Thymus migricus | Leaves | Water, methanolic extract | RP-UHPLC-ESI-MS/MS | Acacetin Amentoflavone Apigenin Cynaroside Luteolin | [133] |
Aerial parts | Methanolic extract | HPLC-UV | Apigenin Luteolin-7-O-glucoside | [130] | |
Thymus longicaulis | Aerial parts | Methanolic extract | LC-DAD-ESI-MS/MS | 6-Hydroxyluteolin-hexoside Scutellarein-7-O-hexoside Luteolin-7-O-glucoside Luteolin-7-O-hexuronide | [70] |
Aerial parts | Ethanolic extract (70%) | HPLC-UV | Luteolin-7-rutinoside Luteolin-7-glucoside | [69] | |
Thymus lotocephalus | Aerial parts | Water, ethanolic or mixture extract | HPLC-DAD | Luteolin Apigenin | [77] |
Thymus pallescens | Aerial parts | Infusion | HPLC-DAD-ESI/MS | Apigenin-6,8-C-dihexoside Apigenin-O-glucuronide Luteolin-O-diglucuronide Luteolin-O-diglucuronide Luteolin-7-O-rutinoside Luteolin-7-O-glucuronide | [134] |
Thymus praecox | Aerial parts | Methanolic extract | LC-DAD-ESI-MS/MS | Scutellarin Scutellarein-7-O-hexoside Luteolin-7-O-hexuronide | [70] |
Aerial parts | Ethanolic extract (70%) | HPLC-UV | Luteolin-7-rutinoside Luteolin-7-glucoside Apigenin-7-glucoside | [69] | |
Aerial parts | Methanolic extract, subsequent fractionation | 1H NMR, 13C NMR, HPLC-DAD | Luteolin-5-O-β-D-glucopyranoside | [135] | |
Aerial parts | Fractionation with various solvents | HPLC-DAD, LC-ESI-QTOF-MS/ MS | Luteolin-7-O-glucoside Apigenin 7-O-glucuronide | [136] | |
Thymus pseudolanuginosus | Aerial parts | Decoction | UHPLC-DAD-ESI-MSn | Apigenin-di-C- glucoside Luteolin-C- glucoside Luteolin-O-glucuronide Apigenin-O-glucoside Chrysoeriol-O-glucoside Apigenin-O-glucuronide | [71] |
Thymus pubesence | Aerial parts | Methanolic extract | HPLC-UV | Apigenin Luteolin-7-O-glucoside | [130] |
Thymus pulegioides | Aerial parts | Methanolic extract | LC-DAD-ESI–MS/MS | Luteolin-hexoside Luteolin-7-O-hexuronide Apigenin-7-O-hexuronide | [70] |
Aerial parts | Decoction | UHPLC-DAD-ESI-MSn | Apigenin-di-C-glucoside Luteolin-C-glucoside Scutellarein-O-glucuronide Luteolin-O-glucuronide Chrysoeriol-O-hexoside Apigenin-O-glucuronide | [68] | |
Aerial parts | Ethanolic extract (70%) | HPLC-UV | Luteolin-7-rutinoside Luteolin-7-glucoside | [69] | |
Aerial parts | Decoction, ethanolic extract (80%) | HPLC-DAD, HPLC-ESI-MSn | Luteolin-7-O-glucoside (only in ethanolic extract) Luteolin-O-hexuronide Luteolin-O-hexuronide Apigenin-glucuronide | [121] | |
Thymus saturoides | Leaves | Acetone extract (80%), subsequent fractionation | HRESI-MS, UV/Vis, 1H NMR, 13C NMR, IR | 8-Methoxycirsilineol Nobiletin Luteolin Chrysin | [124] |
Thymus schimperi | Not specified | Methanolic extract, subsequent fractionation | HPLC-ESI-MS/MS | Luteolin Luteolin-7-O-glucoside Luteolin-4′-O-(rhamnosyl)glucoside Luteolin-6-C-pentoside-8-C-hexoside Luteolin-6-C-glucoside Chryseoriol-7-O-glucoside Luteolin-7-O-(2″-apiosyl-acetyl)glucoside Luteolin-6-C-pentoside Luteolin-7-O-(acetyl-apiosyl)xyloside Luteolin-7-O-(dipentosyl)glucuronide Luteolin-7-O-glucuronide-3′-O-glucoside Luteolin-7-O-glucoronide Dihydroxytrimethoxy flavone Apigenin-7-O-(acetyl-apiosyl)glucoside Hispidulin Trihydroxy-dimethoxyflavone Hydroxy-trimethoxyflavone Trihydroxy-trimethoxyflavone | [67] |
Thymus serpyllum | Commercial herbal tea | Ethanolic extract (95%) | RP-HPLC-DAD | Luteolin Luteolin-7-O-glucoside Apigenin | [78] |
Aerial parts | Methanolic extract | LC-DAD-ESI-MS/MS | 6-Hydroxyluteolin-hexuronide Scutellarin Luteolin-7-O-hexuronide | [70] | |
Aerial parts | Ethanolic extract (70%) | HPLC-UV | Luteolin-7-rutinoside Luteolin-7-glucoside Apigenin-7-glucoside | [69] | |
Aerial parts | Methanolic extract | HPLC-UV | Apigenin Luteolin-7-O-glucoside | [130] | |
Whole plant | Methanolic extract (75%) | HPLC-ESI-MS/MS | Apigenin 6,8-di-C-glucoside Apigenin O-glucuronide Luteolin Luteolin-O-diglucuronide Luteolin 7-O-glucuronide Luteolin 7-O-glucoside | [137] | |
Thymus sibthorpii | Aerial parts | Fractionation with various solvents | UV-Vis, 1H NMR, 13C NMR | Apigenin 7-Methoxyapigenin | [122] |
Aerial parts | Ethanolic extract (70%) | HPLC-UV | Luteolin-7-rutinoside Luteolin-7-glucoside Apigenin-7-glucoside | [69] | |
Thymus sipyleus | Aerial parts | Methanolic extract | RP-HPLC-DAD | Apigenin | [138] |
Aerial parts | Infusion, decoction | HPLC-UV | Luteolin-7-O-glucoside | [139] | |
Thymus striatus | Aerial parts | Methanolic extract | LC-DAD-ESI-MS/MS | 6-Hydroxyluteolin-hexoside Luteolin-7-O-hexoside-hexuronide Apigenin-hexoside-hexuronide Luteolin-7-O-glucoside Luteolin-7-O-hexuronide Luteolin-3′(4′)-O-hexuronide | [70] |
Thymus transcaspicus | Aerial parts | Methanolic extract | HPLC-UV | Apigenin Luteolin-7-O-glucoside | [130] |
Thymus trautvetteri | Aerial parts | Methanolic extract | HPLC-UV | Apigenin Luteolin-7-O-glucoside | [130] |
Thymus vulgaris | Aerial parts | Methanolic extract, subsequent fractionation | HPLC-ESI/MS | Apigenin Nobiletin | [123] |
Aerial parts | Methanolic extract | LC-DAD-ESI-MS/MS | Luteolin-hexoside Luteolin-7-O-glucoside Luteolin-7-O-hexuronide | [70] | |
Leaves | Methanolic extract | HPLC-DAD | Luteolin-7-O-glucoside | [140] | |
Aerial parts | Ethanolic extract (45%) | HPLC-PDA-ESI-MS | Luteolin-7-O-glucuronide Apigenin-7-O-glucuronide | [126] | |
Post-distillation waste | - | ||||
Leaves | Methanolic extract | HPLC-UV | Apigenin Luteolin-7-O-rutinose | [115] | |
Leaves | Water extract | HPLC-PDA-ESI-MS | Luteolin Luteolin-7-O-glucoside Apigenin Apigenin-7-O-glucoside Acacetin | [119] | |
Aerial parts | Methanolic extract | HPLC-UV | Apigenin Luteolin-7-O-glucoside | [119] | |
Leaves | Infusion | HPLC-PDA-ESI-MS | Apigenin 6,8-di-C-glucoside Luteolin-7-O glucoside Luteolin-O-diglucuronide Luteolin-diglucuronide-glucuronide Luteolin-7-O-glucuronide Apigenin-O-glucuronide Luteolin | [120] | |
Thymus zygis | Aerial parts | Decoction | UHPLC-DAD-ESI-MSn | Luteolin-C-glucoside Luteolin-di-C-glucoside Scutellarein-O-glucuronide Luteolin-O-glucuronide Chrysoeriol-O-hexoside Apigenin-O-glucuronide | [68] |
Aerial parts | Decoction, ethanolic extract | RP-HPLC-DAD, HPLC-ESI-MSn | Apigenin-(6,8)-C-diglucoside Luteolin-O-hexoside Luteolin-O-hexoside Luteolin-O-hexorunide | [141] |
4.2. Alternative Methods (Environmentally Friendly)
Source | Part | Extraction Method | Identification Method | Flavone/Flavone Derivative | Reference |
---|---|---|---|---|---|
Salvia amplexicaulis | Not specified | Pressurized liquid extraction with ethanol or water | UPLC-QTOF-MS | Apigenin-7-O-β-D-glucuronide | [143] |
Salvia austriaca | Not specified | Pressurized liquid extraction with ethanol or water | UPLC-QTOF-MS | Apigenin-7-O-β-D-glucuronide | [143] |
Salvia sclarea | Not specified | Pressurized liquid extraction with ethanol or water | UPLC-QTOF-MS | Apigenin-7-O-β-D-glucuronide Luteolin-7-O-β-D-glucuronide | [143] |
Salvia forsskaolii | Not specified | Pressurized liquid extraction with ethanol or water | UPLC-QTOF-MS | Apigenin-7-O-β-D-glucuronide Luteolin-7-O-β-D-glucuronide | [143] |
Salvia fruticosa | Not specified | Ultrasound-assisted extraction with various solvents | HPLC-DAD-ESI-MSn | Luteolin-7-O-rutinoside Apigenin-6-C-glucoside-7-O-glucoside Luteolin-diglucuronide | [145] |
Aerial parts | Deep eutectic solvent extraction with lactic acid and sodium citrate dibasic | LC-DAD-MS/MS | Luteolin-7-O-glucuronide | [158] | |
Salvia glutinosa | Not specified | Pressurized liquid extraction with ethanol or water | UPLC-QTOF-MS | Apigenin-7-O-β-D-glucuronide | [143] |
Salvia nemorosa | Not specified | Pressurized liquid extraction with ethanol or water | UPLC-QTOF-MS | Apigenin-7-O-β-D-glucuronide Luteolin-7-O-β-D-glucuronide | [143] |
Salvia officinalis | Not specified | Ultrasound-assisted extraction with various solvents | HPLC-DAD-ESI-MSn | Luteolin-7-O-rutinoside Apigenin-6-C-glucoside-7-O-glucoside Luteolin-diglucuronide | [145] |
Leaves | Microwave-assisted extraction with various solvents | HPLC-UV/PDA | 6-Hydroxyluteolin-7-glucoside Luteolin-7-glucuronide Luteolin-7-glucoside Luteolin-3′-glucuronide Apigenin-7-glucuronide Apigenin-7-glucoside | [159] | |
Leaves | Ultrasound-assisted extraction with ethanol (30%) | HPLC-UV/PDA | 6-Hydroxyluteolin-7-glucoside Luteolin-7-glucuronide Luteolin-7-glucoside Luteolin-3-glucuronide Apigenin-7-glucuronide Apigenin-7-glucoside | [85] | |
Not specified | Pressurized liquid extraction with ethanol or water | UPLC-QTOF-MS | Apigenin-7-O-β-D-glucuronide Luteolin-7-O-β-D-glucuronide | [143] | |
Salvia pomifera | Not specified | Ultrasound-assisted extraction with various solvents | HPLC-DAD-ESI-MSn | Luteolin-7-O-rutinoside Apigenin-6-C-glucoside-7-O-glucoside Luteolin-diglucuronide | [145] |
Salvia pratensis | Not specified | Pressurized liquid extraction with ethanol or water | UPLC-QTOF-MS | Apigenin-7-O-β-D-glucuronide | [143] |
Salvia rosmarinus | Leaves | Supercritical CO2 extraction with ethanol as cosolvent | HPLC–DAD-MS | Cirismaritin Genkwanin Salvigenin | [146] |
Pressurized liquid extraction with water or ethanol | Luteolin Luteolin-3′-O-(O-acetyl)-β- D-glucuronide Scutellarein Scutellarein-7-O-β-glucuronide Nepitrin Apigenin Apigenin-7-O-glucoside Homoplantaginin Cirsimaritin-4′-glucoside Hispidulin Cirsimaritin Genkwanin | ||||
Hydrodistillation residue | Ultrasound-assisted extraction with ethanol | LC-PDA-ESI-MS | Scutellarein Apigenin Cirismaritin Acacetin Genkwanin | [160] | |
Salvia stepposa | Not specified | Pressurized liquid extraction with ethanol or water | UPLC-QTOF-MS | Apigenin-7-O-β-D-glucuronide | [143] |
Salvia verticillata | Not specified | Pressurized liquid extraction with ethanol or water | UPLC-QTOF-MS | Apigenin-7-O-β-D-glucuronide Luteolin-7-O-β-D-glucuronide | [143] |
Salvia viridis | Roots | Microwave-assisted extraction with ethanol (96%) | UHPLC-ESI-MS/MS | Luteolin-C-hexoside-C-pentoside Luteolin-C-hexoside-O-pentoside Apigenin-C-hexoside-O-pentoside Luteolin-O-(pentosyl)hexoside Luteolin-O-glucuronide Luteolin-7-O-glucoside (Cynaroside) Luteolin-O-(deoxyhexosyl)hexoside Apigenin-O-(deoxyhexosyl)hexoside Cosmosiin (Apigetrin, Apigenin-7-O-glucoside) Apigenin-O-glucuronide Luteolin Luteolin-O-(coumaroyl)hexoside Apigenin Chrysoeriol Genkwanin | [144] |
Roots | Ultrasound-assisted extraction | UHPLC-ESI-MS/MS | Luteolin-C-hexoside-C-pentoside Luteolin-C-hexoside-O-pentoside Apigenin-C-hexoside-O-pentoside Luteolin-O-(pentosyl)hexoside Luteolin-O-glucuronide Luteolin-7-O-glucoside (Cynaroside) Apigenin-C-hexoside-O-deoxyhexoside Apigenin-O-(deoxyhexosyl)hexoside Apigenin-O-(deoxyhexosyl)hexoside Apigenin-O-glucuronide Luteolin Luteolin-O-(coumaroyl)hexoside Apigenin (4′,5,7-trihydroxyflavone) Chrysoeriol Genkwanin Apigenin-4′,7-dimethyl ether | [144] | |
Roots | Supercritical CO2 extraction | UHPLC-ESI-MS/MS | Genkwanin Apigenin-4′,7-dimethyl ether | [144] | |
Ocimum tenuiflorum | Leaves | Ultrasound-assisted extraction with ethanol (55.34%) | HPLC-UV/Vis | Luteolin Apigenin | [157] |
Origanum glandulosum | Leaves and flower | Microwave-assisted extraction with water | HPLC-DAD-ESI-MS/MS | Luteolin-O-hexoside Luteolin-6,8-di-C-glucoside Luteolin-7-O-glucuronide | [61] |
Origanum majorana | Leaves | Ultrasound-assisted extraction with water | RP-HPLC-DAD | Luteolin-7- O-glucoside Apigenin-7-O-glucoside | [147] |
Origanum vulgare | Not specified | Pressurized liquid extraction with water, ethanol or mixture | HPLC-DAD-ESI-MS/MS | Apigenin Luteolin Luteolin-7-O-glucuronide | [60] |
Not specified | Pressurized liquid extraction with methanol | HPLC-ESI-MS/MS | Apigenin Luteolin | [149] | |
Aerial parts | Ultrasound-assisted extraction with ethanol | UHPLC-LTQ OrbiTrap MS | Luteolin Luteolin-7-O-hexosyl-hexoside Luteolin-7-O-pentosyl-hexoside Luteolin-7-O-pentosyl-acetyl-hexoside Luteolin-7-O-acetyl-hexosyl-acetylhexoside Apigenin Apigenin-7-O-hexosyl-acetyl-hexoside Apigenin-7-O-hexuronide Apigenin-7-O-pentosyl-acetyl-hexoside Acacetin Acacetin-7-O-hexosyl-acetyl-hexoside Acacetin-7-O-pentosyl-hexoside Acacetin-7-O-hexuronide Acacetin-7-O-pentosyl-acetyl-hexoside Diosmetin-7-O-pentosyl-acetyl-pentoside | [148] | |
Microwave-assisted extraction with ethanol | |||||
Pressurized liquid extraction with ethanol | |||||
Thymus fontanesii | Aerial parts | Microwave-assisted extraction with ethanol | HPLC-DAD-ESI-MS/MS | Luteolin-O-hexoside Luteolin-6,8-di-C-glucoside Luteolin-7-O-glucuronide | [61] |
Thymus marschallianus | Aerial parts | Ultrasound-assisted extraction with ethanol | RP-HPLC-PDA, HPLC-ESI-QTOF-MS | Luteolin Luteolin-7-O-rutinoside Luteolin-7-O-glucoside Luteolin-7-O-glucuronide Luteolin-7-O-dipentoside Luteolin-7-O-(6″-3-hydroxy-3-methyl-glutaryl)-glucoside Apigenin Apigenin-7-O-glucoside Apigenin-7-O-glucuronide Apigenin-7-O-rhamnoglucuronide Diosmetin-glucuronide | [151] |
Thymus mastichina | Steam distillation residues | Ultrasound-assisted extraction with ethanol | LC-DAD-ESI-MS | Luteolin Luteolin-glucoside Apigenin Apigenin-7-O-glucoside | [155] |
Thymus seravschanicus | Aerial parts | Ultrasound-assisted extraction with ethanol | RP-HPLC-PDA, HPLC-ESI-QTOF-MS | Luteolin-7-O-rutinoside Luteolin-7-O-glucoside Luteolin-7-O-glucuronide Luteolin-7-O-(6″-3-hydroxy-3-methyl-glutaryl)-glucoside Apigenin-7-O-glucuronide Diosmetin glucuronide | [151] |
Thymus serpyllum | Aerial parts | Ultrasound-assisted extraction with ethanol | RP-HPLC-DAD, HPLC-MS | 6-Hydroxyluteolin-7-O-glucoside Luteolin-7-O-glucuronide Apigenin-glucuronide | [150] |
Not specified | Pressurized liquid extraction with water | HPLC-DAD-ESI-MS/MS | Luteolin Luteolin-7-O-glucoside Luteolin-7-O-glucuronide Apigenin Apigenin-7-O-glucuronide Cirsimaritin | [60] | |
Herbal dust (industrial waste from filter-tea production) | Pressurized liquid extraction with ethanol | HPLC-Orbitrap-ESI-MS/MS | Luteolin | [156] | |
Thymus vulgaris | Not specified | Ultrasound-assisted extraction with water | UPLC-TOF-MS/MS | Luteolin-7-O-glucuronide Luteolin-7-O-malonyl-glucoside Apigenin Apigenin-7-O-glucuronide Chrysoeriol-7-O-(6-malonyl-apiosyl-glucoside) | [152] |
Leaves and stems | Rapid solid–liquid dynamic extraction with ethanol | HPLC-UV | Luteolin Apigenin | [154] | |
Ultrasound-assisted extraction with ethanol | HPLC-UV | Luteolin Apigenin | [154] | ||
Not specified | Pressurized liquid extraction with methanol | HPLC-ESI/MS/MS | Apigenin Luteolin | [149] | |
Leaves and stems | Pulsed electric field followed by ultrasound-assisted extraction with ethanol | UPLC-ESI-MS/MS | Luteolin Luteolin-7-O-glucuronide Luteolin-rutinoside Luteolin-7-O-glucoside Cirsimaritin | [153] | |
Leaves residue from hydrodistillation | Pressurized hot water extraction | HPLC-ESI-QTOF-MS | Apigenin-6,8-di-C-glucoside Apigenin-7-O-glucuronide Luteolin Luteolin-7-O-glucoside Luteolin-7-O-glucuronide Cirsimaritin | [73] |
5. Bioavailability and Bioactivity Relationship of Flavones in Lamiaceae
Plant Species | Description of Sample | Bioaccessibility Method | Flavones in Sample | Results | Reference |
---|---|---|---|---|---|
Salvia officinalis | 1 g of sage was infused in water (25 mL, 37 °C, 10 min). Cooking treatment consisted of heating sage in a frying pan for 10 min. | Static simulated digestion (mouth, stomach, small intestine) | Not identified | Cooked and digested sage had higher levels of phenolic compounds. Cooked and digested sage inhibited IL-8 | [172] |
Thymus vulgaris | 1 g of thyme was infused in water (25 mL, 37 °C, 10 min). The cooking treatment consisted of heating thyme in a frying pan for 10 min. | Static simulated digestion (mouth, stomach, small intestine) | Not identified | Cooked and digested thyme had higher levels of phenolic compounds, and inhibited IL-8 | [172] |
Origanum vulgare | Methanol extracts (10 g/250 mL) were boiled by refluxing for 30 min. | Static simulated digestion (stomach, small intestine) | Luteolin glycoside | Luteolin glycoside had a bioaccessibility of 41%. The simulated digestion did not affect the antioxidant capacity of the O. vulgare extract by chemical methods (ABTS, DPPH, TPC, FRAP) | [173] |
Origanum vulgare | Hydroalcoholic extracts were obtained (10 g sample, 250 mL ethanol 50%). The extracts were used lyophilized in oral pharmaceutical forms. | Static simulated digestion (stomach, small intestine) | Luteolin glycosides Apigenin glycoside | Two luteolin glycosides with higher bioaccessibility, of around 83%, were identified in encapsulated form, and the apigenin glycoside was identified, with nearly 90% bioaccessibility | [114] |
Thymus vulgaris | Freeze-dried olive cake and dried thyme were used for extracts by means of an accelerated solvent extractor. | Static simulated digestion (stomach, small intestine) coupled to a Caco-2 permeability assay and Caco-2 cells co-cultured with HepG-2 cells. | Luteolin | The bioaccessibility of luteolin from thyme and in thyme and olive oil during the simulated digestion was 14.6% and 16.7%, respectively. Luteolin and its sulfate and glucuronide metabolites were detected after the incubation of Caco-2 cells. The flavone luteolin and its metabolites were the most bioaccessible. | [174] |
Origanum majorana | 100 mg of oregano dissolved in 50% ethanol were used | Static simulated digestion (stomach, small intestine) coupled to a Caco-2 permeability assay | 6-Hydroxyluteolin-7-O-glucoside Luteolin-O-glucoside Luteolin-7-Oglucoside Luteolin-7-O-glucuronide Diosmin Apigenin-7-O-glucoside Apigenin-7-O-glucuronide Luteolin Apigenin | The highest bioaccessibility was shown for diosmin, luteolin-7-O-glucuronide, and luteolin-7-O-glucoside, with 99.70, 94.55 and 94.19%, respectively. The process decreased the content of the flavones and their derivatives. Luteolin-7-O-glucoside and luteolin-7-O-glucuronide were the most stable. Luteolin and apigenin derivatives had low permeability in the Caco-2 assay. | [175] |
Plant Species | Description of Sample | Animal Model Used | Flavones in Sample | Bioavailability Assay Results | Reference |
Thymus vulgaris | Phenolic extracts were obtained using 80% ethanol. After that, thyme extracts and a combination of freeze-dried olive cake and dried thyme extract (1:1) were used | Male Wistar rats were treated intragastrically and gavaged with 1.5 g/kg BW in water of the extracts | Apigenin Luteolin | Sulfate conjugated forms of phenolics were the main identified metabolites after dosing. The Cmax in thyme extracts showed a two-phase mode kinetic pattern. The identified metabolites in rat plasma were hydroxyphenylpropionic acid sulphate, dihydroxyphenylpropionic acid sulfate, and caffeic acid sulfate. | [176] |
Danshen (dried roots and rhizomes of Salvia miltiorrhiza Bunge) | Danshen and huangquin (dried root of Scutellaria baicalensis Georgi) were used to obtain water extracts. Pure extract of danshen and a combination with huangqin was used at a 1:1 ratio | Sprague-Dawley rats (12 weeks old, 200–220 g). Rats were orally administered with a single dose of danshen and the combination of danshen and huangqin at concentrations of 12.5 g/kg | Baicalein (5,6,7-trihydroxyflavone) Baicalin (Baicalein-7-O-glucuronide) Wogonin (5,7-dihydroxy-8-methoxyflavone) Wogonoside (Wogonin-7-O-β-D-glucuronide) | The pharmacokinetic parameters of baicalein, baicalin, wogonin, and wogonoside in the combined extracts of Danshen and Huangqin were Cmax values of 306.92, 2465, 373.17, and 1779.17, respectively. | [177] |
- Molecular weight ≤500;
- The molecule has no more than 5 hydrogen bond donors;
- The molecule has no more than 10 hydrogen bond acceptors;
- The partition coefficient (Log p) is ≤5.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zahran, E.M.; Abdelmohsen, U.R.; Khalil, H.E.; Desoukey, S.Y.; Fouad, M.A.; Kamel, M.S. Diversity, phytochemical and medicinal potential of the genus Ocimum L. (Lamiaceae). Phytochem. Rev. 2020, 19, 907–953. [Google Scholar] [CrossRef]
- Sitarek, P.; Merecz-Sadowska, A.; Śliwiński, T.; Zajdel, R.; Kowalczyk, T. An In Vitro Evaluation of the Molecular Mechanisms of Action of Medical Plants from the Lamiaceae Family as Effective Sources of Active Compounds against Human Cancer Cell Lines. Cancers 2020, 12, 2957. [Google Scholar] [CrossRef] [PubMed]
- World Flora Online. Lamiaceae Martinov. Available online: http://www.worldfloraonline.org/taxon/wfo-7000000318 (accessed on 21 July 2021).
- The Plant List. The Plant List. Available online: http://www.theplantlist.org/1.1/browse/A/Lamiaceae/ (accessed on 19 July 2021).
- Trivellini, A.; Lucchesini, M.; Maggini, R.; Mosadegh, H.; Villamarin, T.S.S.; Vernieri, P.; Mensuali-Sodi, A.; Pardossi, A. Lamiaceae phenols as multifaceted compounds: Bioactivity, industrial prospects and role of “positive-stress”. Ind. Crops Prod. 2016, 83, 241–254. [Google Scholar] [CrossRef]
- Carović-Stanko, K.; Petek, M.; Grdiša, M.; Pintar, J.; Bedeković, D.; Ćustić, M.H.; Satovic, Z. Medicinal plants of the family lamiaceae as functional foods—A review. Czech. J. Food Sci. 2016, 34, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Mesquita, L.S.S.D.; Luz, T.R.S.A.; Mesquita, J.W.C.D.; Coutinho, D.F.; Amaral, F.M.M.D.; Ribeiro, M.N.D.S.; Malik, S. Exploring the anticancer properties of essential oils from family Lamiaceae. Food Rev. Int. 2019, 35, 105–131. [Google Scholar] [CrossRef]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef] [PubMed]
- Vermerris, W.; Nicholson, R. Families of Phenolic Compounds and Means of Classification. In Phenolic Compound Biochemistry; Vermerris, W., Nicholson, R., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 1–34. [Google Scholar]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Phenols, Polyphenols and Tannins: An Overview. In Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet; Crozier, A., Clifford, M.N., Ashihara, H., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Boniface, P.K.; Elizabeth, F.I. Flavones as a privileged scaffold in drug discovery: Current developments. Curr. Org. Synth. 2019, 16, 968–1001. [Google Scholar] [CrossRef] [PubMed]
- Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv. Nutr. 2017, 8, 423–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzima, K.; Brunton, N.P.; Rai, D.K. Qualitative and quantitative analysis of polyphenols in lamiaceae plants—A review. Plants 2018, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Croteau, R.; Kutchan, T.M.; Lewis, N.G. Natural Products (Secondary Metabolites). In Biochemistry & Molecular Biology of Plants; Buchanan, B., Gruissem, W., Jones, R., Eds.; American Society of Plants: Rockville, MD, USA, 2015; pp. 1250–1318. [Google Scholar]
- Vuolo, M.M.; Lima, V.S.; Maróstica Junior, M.R. Chapter 2—Phenolic Compounds: Structure, Classification, and Antioxidant Power. In Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 33–50. [Google Scholar]
- Talapatra, S.K.; Talapatra, B. Polyketide Pathway. Biosynthesis of Diverse Classes of Aromatic Compounds. In Chemistry of Plant Natural Products: Stereochemistry, Conformation, Synthesis, Biology, and Medicine; Talapatra, S.K., Talapatra, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 679–715. [Google Scholar]
- Jiang, N.; Doseff, A.I.; Grotewold, E. Flavones: From biosynthesis to health benefits. Plants 2016, 5, 27. [Google Scholar] [CrossRef]
- Gutiérrez-Grijalva, E.P.; Picos-Salas, M.A.; Leyva-López, N.; Criollo-Mendoza, M.S.; Vazquez-Olivo, G.; Heredia, J.B. Flavonoids and phenolic acids from Oregano: Occurrence, biological activity and health benefits. Plants 2018, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Valant-Vetschera, K.M.; Wollenweber, E. Flavones and Flavonols. In Flavonoids: Chemistry, Biochemistry and Applications; Andersen, Ø.M., Markham, K.R., Eds.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Verma, A.K.; Pratap, R. The biological potential of flavones. Nat. Prod. Rep. 2010, 27, 1571–1593. [Google Scholar] [CrossRef]
- León-Chan, R.G.; López-Meyer, M.; Osuna-Enciso, T.; Sañudo-Barajas, J.A.; Heredia, J.B.; León-Félix, J. Low temperature and ultraviolet-B radiation affect chlorophyll content and induce the accumulation of UV-B-absorbing and antioxidant compounds in bell pepper (Capsicum annuum) plants. Environ. Exp. Bot. 2017, 139, 143–151. [Google Scholar] [CrossRef]
- Siddiqui, A.; Badruddeen; Akhtar, J.; Uddin, S.; Khan, M.I.; Khalid, M.; Ahmad, M. A Naturally Occurring Flavone (Chrysin): Chemistry, Occurrence, Pharmacokinetic, Toxicity, Molecular Targets and Medicinal Properties. J. Biol. Act. Prod. Nat. 2018, 8, 208–227. [Google Scholar] [CrossRef]
- World Health Organization. Global Health Observatory Data. Available online: http://www.who.int/gho/en/ (accessed on 21 July 2021).
- Verma, A.K.; Pratap, R. Chemistry of biologically important flavones. Tetrahedron 2012, 68, 8523–8538. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5280443, Apigenin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Apigenin (accessed on 30 July 2021).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 188323, Cirsimaritin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cirsimaritin (accessed on 30 July 2021).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5280445, Luteolin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Luteolin (accessed on 30 July 2021).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5281697, Scutellarein. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Scutellarein (accessed on 30 July 2021).
- Wu, Y.B.; Ni, Z.Y.; Shi, Q.W.; Dong, M.; Kiyota, H.; Gu, Y.G.; Cong, B. Constituents from Salvia species and their biological activities. Chem. Rev. 2012, 112, 5967–6026. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, Q.; Zhang, C.; Zhang, N.; Cui, Z.; Huang, L.; Xiao, P. An ethnopharmacological investigation of medicinal Salvia plants (Lamiaceae) in China. Acta Pharm. Sin. B 2013, 3, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Kharazian, N. Identification of flavonoids in leaves of seven wild growing Salvia L. (Lamiaceae) species from Iran. Prog. Biol. Sci. 2013, 3, 81–98. [Google Scholar] [CrossRef]
- Farjam, M.H.; Rustaiyan, A.; Ezzatzadeh, E.; Jassbi, A.R. Labdane-Type Diterpene and Two Flavones from Salvia Sharifii Rech. f. and Esfan. and their Biological Activities. Iran. J. Pharm. Sci. 2013, 12, 395–399. [Google Scholar]
- Bonesi, M.; Loizzo, M.R.; Acquaviva, R.; Malfa, G.A.; Aiello, F.; Tundis, R. Anti-inflammatory and Antioxidant Agents from Salvia Genus (Lamiaceae): An Assessment of the Current State of Knowledge. Antiinflamm. Antiallergy Agents Med. Chem. 2017, 16, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Jash, S.K.; Gorai, D.; Roy, R. Salvia genus and triterpenoids. Int. J. Pharm. Sci. Res. 2016, 7, 4710–4732. [Google Scholar] [CrossRef]
- Coisin, M.; Necula, R.; Grigoraş, V.; Gille, E.; Rosenhech, E.; Zamfirache, M.M. Phytochemical evaluation of some Salvia species from romanian flora. Analele Stiint. Universitatii Al. I. Cuza Iasi 2012, 58, 35–44. [Google Scholar]
- Gohari, A.R.; Ebrahimi, H.; Saeidnia, S.; Foruzani, M.; Ebrahimi, P.; Ajani, Y. Flavones and Flavone Glycosides from Salvia macrosiphon Boiss. Iran. J. Pharm. Sci. 2011, 10, 247–251. [Google Scholar]
- Bautista, E.; Calzada, F.; Yépez-Mulia, L.; Bedolla-García, B.Y.; Fragoso-Serrano, M.; Pastor-Palacios, G.; González-Juárez, D.E. Salvia connivens, a Source of Bioactive Flavones with Amoebicidal and Giardicidal Activity. Rev. Bras. Farmacogn. 2020, 30, 729–732. [Google Scholar] [CrossRef]
- Kashyap, C.P.; Ranjeet, K.; Vikrant, A.; Vipin, K. Therapeutic Potency of Ocimum KilimandscharicumGuerke—A Review. Glob. J. Pharmacol. 2011, 5, 191–200. [Google Scholar]
- Mahajan, V.; Rather, I.A.; Awasthi, P.; Anand, R.; Gairola, S.; Meena, S.R.; Bedi, Y.S.; Gandhi, S.G. Development of chemical and EST-SSR markers for Ocimum genus. Ind. Crops Prod. 2015, 63, 65–70. [Google Scholar] [CrossRef]
- Avetisyan, A.; Markosian, A.; Petrosyan, M.; Sahakyan, N.; Babayan, A.; Aloyan, S.; Trchounian, A. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complement. Altern. Med. 2017, 17, 60. [Google Scholar] [CrossRef] [Green Version]
- Nahak, G.; Mishra, R.C.; Sahu, R.K. Taxonomic Distribution, Medicinal Properties and Drug Development Potentiality of Ocimum (Tulsi). Drug Invent. Today 2011, 3, 95–113. [Google Scholar]
- Rubab, S.; Irshad, H.; Barkat, A.K.; Ayaz, A.U.; Khawaja, A.A.; Zawar, H.K.; Mour, K.; Shazea, K.; Khalil, U.R.; Haroon, K. Biomedical Description of Ocimum basilicum L. J. Islam. Int. Med. Coll. 2017, 12, 59–67. [Google Scholar]
- Kintzios, S.E. 21—Oregano. In Handbook of Herbs and Spices, 2nd ed.; Peter, K.V., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2012; Volume 2, pp. 417–436. [Google Scholar]
- Kintzios, S.E. 1—Profile of the multifaceted prince of the herbs. In Oregano: The Genera Origanum and Lippia, 1st ed.; Kintzios, S.E., Ed.; CRC Press: London, UK, 2004; p. 296. [Google Scholar]
- Marrelli, M.; Statti, G.A.; Conforti, F. Origanum spp.: An update of their chemical and biological profiles. Phytochem. Rev. 2018, 17, 873–888. [Google Scholar] [CrossRef]
- Stefanaki, A.; van Andel, T. Chapter 3—Mediterranean aromatic herbs and their culinary use. In Aromatic Herbs in Food; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 93–121. [Google Scholar]
- Milevskaya, V.V.; Prasad, S.; Temerdashev, Z.A. Extraction and chromatographic determination of phenolic compounds from medicinal herbs in the Lamiaceae and Hypericaceae families: A review. Microchem. J. 2019, 145, 1036–1049. [Google Scholar] [CrossRef]
- Gird, C.E.; Duţu, L.E.; Costea, T.; Nencu, I.; Popescu, M.L.; Olaru, O. Preliminary research concerning the obtaining of herbal extracts with potential neuroprotective activity note I. Obtaining and characterization of a selective Origanum vulgare L. dry extract. Farmacia 2016, 64, 680–687. [Google Scholar]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. Decoction, infusion and hydroalcoholic extract of Origanum vulgare L.: Different performances regarding bioactivity and phenolic compounds. Food Chem. 2014, 158, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milevskaya, V.V.; Temerdashev, Z.A.; Butyl’skaya, T.S.; Kiseleva, N.V. Determination of phenolic compounds in medicinal plants from the Lamiaceae family. J. Anal. Chem. 2017, 72, 342–348. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; La Bella, S.; Licata, M.; Virga, G.; Leto, C.; Saija, A.; Trombetta, D.; Tomaino, A.; Speciale, A.; Napoli, E.M.; et al. Biomolecular characterization of wild sicilian oregano: Phytochemical screening of essential oils and extracts, and evaluation of their antioxidant activities. Chem. Biodivers. 2013, 10, 411–433. [Google Scholar] [CrossRef]
- Maietta, M.; Colombo, R.; Corana, F.; Papetti, A. Cretan tea (Origanum dictamnus L.) as a functional beverage: An investigation on antiglycative and carbonyl trapping activities. Food Funct. 2018, 9, 1545–1556. [Google Scholar] [CrossRef]
- Özer, Z.; Gören, A.C.; Kılıç, T.; Öncü, M.; Çarıkçı, S.; Dirmenci, T. The phenolic contents, antioxidant and anticholinesterase activity of section Amaracus (Gled.) Vogel and Anatolicon Ietsw. of Origanum L. species. Arab. J. Chem. 2020, 13, 5027–5039. [Google Scholar] [CrossRef]
- Tian, C.; Liu, X.; Chang, Y.; Wang, R.; Lv, T.; Cui, C.; Liu, M. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S. Afr. J. Bot. 2021, 137, 257–264. [Google Scholar] [CrossRef]
- Shankar, E.; Goel, A.; Gupta, K.; Gupta, S. Plant flavone apigenin: An emerging anticancer agent. Curr. Pharmacol. Rep. 2017, 3, 423–446. [Google Scholar] [CrossRef] [PubMed]
- Funakoshi-Tago, M.; Nakamura, K.; Tago, K.; Mashino, T.; Kasahara, T. Anti-inflammatory activity of structurally related flavonoids, apigenin, luteolin and fisetin. Int. Immunopharmacol. 2011, 11, 1150–1159. [Google Scholar] [CrossRef]
- Huang, Q.; Bai, F.; Nie, J.; Lu, S.; Lu, C.; Zhu, X.; Zhuo, L.; Lin, X. Didymin ameliorates hepatic injury through inhibition of MAPK and NF-κB pathways by up-regulating RKIP expression. Int. Immunopharmacol. 2017, 42, 130–138. [Google Scholar] [CrossRef]
- Tair, A.; Weiss, E.-K.; Palade, L.M.; Loupassaki, S.; Makris, D.P.; Ioannou, E.; Roussis, V.; Kefalas, P. Origanum species native to the island of Crete: In vitro antioxidant characteristics and liquid chromatography–mass spectrometry identification of major polyphenolic components. Nat. Prod. Res. 2014, 28, 1284–1287. [Google Scholar] [CrossRef] [PubMed]
- González, M.; Luis, C.; Lanzelotti, P. Polyphenolic profile of Origanum vulgare L. ssp. viridulum from Argentina. Phyton 2014, 83, 179–184. [Google Scholar]
- Miron, T.L.; Plaza, M.; Bahrim, G.; Ibáñez, E.; Herrero, M. Chemical composition of bioactive pressurized extracts of Romanian aromatic plants. J. Chromatogr. A 2011, 1218, 4918–4927. [Google Scholar] [CrossRef] [Green Version]
- Nabet, N.; Gilbert-López, B.; Madani, K.; Herrero, M.; Ibáñez, E.; Mendiola, J.A. Optimization of microwave-assisted extraction recovery of bioactive compounds from Origanum glandulosum and Thymus fontanesii. Ind. Crops Prod. 2019, 129, 395–404. [Google Scholar] [CrossRef]
- Taamalli, A.; Arráez-Román, D.; Abaza, L.; Iswaldi, I.; Fernández-Gutiérrez, A.; Zarrouk, M.; Segura-Carretero, A. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem. Anal. 2015, 26, 320–330. [Google Scholar] [CrossRef]
- Soorni, A.; Borna, T.; Alemardan, A.; Chakrabarti, M.; Hunt, A.G.; Bombarely, A. Transcriptome landscape variation in the genus Thymus. Genes 2019, 10, 620. [Google Scholar] [CrossRef] [Green Version]
- Stahl-Biskup, E.; Venskutonis, R.P. 27—Thyme. In Handbook of Herbs and Spices, 2nd ed.; Peter, K.V., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2012; Volume 2, pp. 499–525. [Google Scholar]
- Nabavi, S.M.; Marchese, A.; Izadi, M.; Curti, V.; Daglia, M.; Nabavi, S.F. Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chem. 2015, 173, 339–347. [Google Scholar] [CrossRef]
- Li, X.; He, T.; Wang, X.; Shen, M.; Yan, X.; Fan, S.; Wang, L.; Wang, X.; Xu, X.; Sui, H.; et al. Traditional uses, chemical constituents and biological activities of plants from the genus Thymus. Chem. Biodivers. 2019, 16, e1900254. [Google Scholar] [CrossRef] [PubMed]
- Desta, K.T.; Kim, G.S.; El-Aty, A.M.A.; Raha, S.; Kim, M.-B.; Jeong, J.H.; Warda, M.; Hacımüftüoğlu, A.; Shin, H.-C.; Shim, J.-H.; et al. Flavone polyphenols dominate in Thymus schimperi Ronniger: LC–ESI–MS/MS characterization and study of anti-proliferative effects of plant extract on AGS and HepG2 cancer cells. J. Chromatogr. B 2017, 1053, 1–8. [Google Scholar] [CrossRef]
- Afonso, A.F.; Pereira, O.R.; Válega, M.; Silva, A.M.S.; Cardoso, S.M. Metabolites and biological activities of Thymus zygis, Thymus pulegioides, and Thymus fragrantissimus grown under organic cultivation. Molecules 2018, 23, 1514. [Google Scholar] [CrossRef] [Green Version]
- Raudone, L.; Zymone, K.; Raudonis, R.; Vainoriene, R.; Motiekaityte, V.; Janulis, V. Phenological changes in triterpenic and phenolic composition of Thymus L. species. Ind. Crop. Prod. 2017, 109, 445–451. [Google Scholar] [CrossRef]
- Kindl, M.; Bucar, F.; Jelić, D.; Brajša, K.; Blažeković, B.; Vladimir-Knežević, S. Comparative study of polyphenolic composition and anti-inflammatory activity of Thymus species. Eur. Food Res. Technol. 2019, 245, 1951–1962. [Google Scholar] [CrossRef]
- Afonso, A.F.; Pereira, O.R.; Neto, R.T.; Silva, A.M.S.; Cardoso, S.M. Health-promoting effects of Thymus herba-barona, Thymus pseudolanuginosus, and Thymus caespititius decoctions. Int. J. Mol. Sci. 2017, 18, 1879. [Google Scholar] [CrossRef]
- Pacifico, S.; Piccolella, S.; Papale, F.; Nocera, P.; Lettieri, A.; Catauro, M. A polyphenol complex from Thymus vulgaris L. plants cultivated in the Campania Region (Italy): New perspectives against neuroblastoma. J. Funct. Foods 2016, 20, 253–266. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.R.; Perez-Jimenez, J.; Lluis Torres, J.; Agosin, E.; Perez-Correa, J.R. Effects of Temperature and Time on Polyphenolic Content and Antioxidant Activity in the Pressurized Hot Water Extraction of Deodorized Thyme (Thymus vulgaris). J. Agric. Food Chem. 2012, 60, 10920–10929. [Google Scholar] [CrossRef] [PubMed]
- Ziani, B.E.C.; Heleno, S.A.; Bachari, K.; Dias, M.I.; Alves, M.J.; Barros, L.; Ferreira, I.C.F.R. Phenolic compounds characterization by LC-DAD- ESI/MSn and bioactive properties of Thymus algeriensis Boiss. & Reut. and Ephedra alata Decne. Food Res. Int. 2019, 116, 312–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaouadi, R.; Cardoso, S.M.; Silva, A.M.S.; Ben Hadj Yahia, I.; Boussaid, M.; Zaouali, Y. Variation of phenolic constituents of Tunisian Thymus capitatus (L.) Hoff. et Link. populations. Biochem. Syst. Ecol. 2018, 77, 10–15. [Google Scholar] [CrossRef]
- Pereira, O.R.; Peres, A.M.; Silva, A.M.S.; Domingues, M.R.M.; Cardoso, S.M. Simultaneous characterization and quantification of phenolic compounds in Thymus x citriodorus using a validated HPLC–UV and ESI–MS combined method. Food Res. Int. 2013, 54, 1773–1780. [Google Scholar] [CrossRef]
- Costa, P.; Gonçalves, S.; Valentão, P.; Andrade, P.B.; Coelho, N.; Romano, A. Thymus lotocephalus wild plants and in vitro cultures produce different profiles of phenolic compounds with antioxidant activity. Food Chem. 2012, 135, 1253–1260. [Google Scholar] [CrossRef]
- Janiak, M.A.; Slavova-Kazakova, A.; Kancheva, V.D.; Ivanova, M.; Tsrunchev, T.; Karamać, M. Effects of γ-irradiation of wild thyme (Thymus serpyllum L.) on the phenolic compounds profile of its ethanolic extract. Polish J. Food Nutr. Sci. 2017, 67, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Çakmakçi, E.; Deveoglu, O.; Muhammed, A.; Fouad, A.; Torgan, E.; Karadag, R. HPLC-DAD analysis of Thymus serpyllum based natural pigments and investigation of their antimicrobial properties. Pigment. Resin Technol. 2014, 43, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Chávez-González, M.L.; Sepúlveda, L.; Verma, D.K.; Luna-García, H.A.; Rodríguez-Durán, L.V.; Ilina, A.; Aguilar, C.N. Conventional and Emerging Extraction Processes of Flavonoids. Processes 2020, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- Makanjuola, S.A. Influence of particle size and extraction solvent on antioxidant properties of extracts of tea, ginger, and tea-ginger blend. Food Sci. Nutr. 2017, 5, 1179–1185. [Google Scholar] [CrossRef]
- Al-Qudah, M.A.; Tashtoush, H.I.; Khlaifat, E.F.; Ibrahim, S.O.; Saleh, A.M.; Al-Jaber, H.I.; Abu Zarga, M.H.; Abu Orabi, S.T. Chemical constituents of the aerial parts of Salvia judaica Boiss. from Jordan. Nat. Prod. Res. 2020, 34, 2981–2985. [Google Scholar] [CrossRef]
- Bower, A.M.; Hernandez, L.M.R.; Berhow, M.A.; de Mejia, E.G. Bioactive Compounds from Culinary Herbs Inhibit a Molecular Target for Type 2 Diabetes Management, Dipeptidyl Peptidase IV. J. Agric. Food Chem. 2014, 62, 6147–6158. [Google Scholar] [CrossRef]
- Çulhaoğlu, B.; Hatipoğlu, S.D.; Dönmez, A.A.; Topçu, G. Antioxidant and anticholinesterase activities of lupane triterpenoids and other constituents of Salvia trichoclada. Med. Chem. Res. 2015, 24, 3831–3837. [Google Scholar] [CrossRef]
- Dent, M. Comparison of Conventional and Ultrasound-assisted Extraction Techniques on Mass Fraction of Phenolic Compounds from Sage (Salvia officinalis L.). Chem. Biochem. Eng. Q. 2015, 29, 475–484. [Google Scholar] [CrossRef]
- Jin, M.R.; Xu, H.; Duan, C.H.; Chou, G.X. Two new flavones from Salvia plebeia. Nat. Prod. Res. 2015, 29, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Koutsoulas, A.; Čarnecká, M.; Slanina, J.; Tóth, J.; Slaninová, I. Characterization of Phenolic Compounds and Antiproliferative Effects of Salvia pomifera and Salvia fruticosa Extracts. Molecules 2019, 24, 2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.-H.; Kim, H.-W.; Lee, M.-K.; Kim, Y.J.; Asamenew, G.; Cha, Y.-S.; Kim, J.-B. Phenolic profiling and quantitative determination of common sage (Salvia plebeia R. Br.) by UPLC-DAD-QTOF/MS. Eur. Food Res. Technol. 2018, 244, 1637–1646. [Google Scholar] [CrossRef] [Green Version]
- Moharram, F.A.-E.; Marzouk, M.S.; El-Shenawy, S.M.; Gaara, A.H.; El Kady, W.M. Polyphenolic profile and biological activity of Salvia splendens leaves. J. Pharm. Pharmacol. 2012, 64, 1678–1687. [Google Scholar] [CrossRef]
- Pereira, O.; Catarino, M.; Afonso, A.; Silva, A.; Cardoso, S. Salvia elegans, Salvia greggii and Salvia officinalis Decoctions: Antioxidant Activities and Inhibition of Carbohydrate and Lipid Metabolic Enzymes. Molecules 2018, 23, 3169. [Google Scholar] [CrossRef] [Green Version]
- Yanagimichi, M.; Nishino, K.; Sakamoto, A.; Kurodai, R.; Kojima, K.; Eto, N.; Isoda, H.; Ksouri, R.; Irie, K.; Kambe, T.; et al. Analyses of putative anti-cancer potential of three STAT3 signaling inhibitory compounds derived from Salvia officinalis. Biochem. Biophys. Rep. 2021, 25, 100882. [Google Scholar] [CrossRef]
- Yu, H.-F.; Zhao, H.; Liu, R.-X.; Ma, L.-F.; Zhan, Z.-J. Salpleflavone, a new flavone glucoside from Salvia plebeia. J. Chem. Res. 2018, 42, 294–296. [Google Scholar] [CrossRef]
- Calzada, F.; Bautista, E.; Barbosa, E.; Salazar-Olivo, L.A.; Alvidrez-Armendáriz, E.; Yepez-Mulia, L. Antiprotozoal Activity of Secondary Metabolites from Salvia circinata. Rev. Bras. Farmacogn. 2020, 30, 593–596. [Google Scholar] [CrossRef]
- Dent, M.; Dragovic-Uzelac, V.; Penic, M.; Brncic, M.; Bosiljkov, T.; Levaj, B. The Effect of Extraction Solvents, Temperature and Time on the Composition and Mass Fraction of Polyphenols in Dalmatian Wild Sage (Salvia officinalis L.) Extracts. Food Technol. Biotechnol. 2013, 51, 84–91. [Google Scholar]
- Salimikia, I.; Reza Monsef-Esfahani, H.; Gohari, A.R.; Salek, M. Phytochemical Analysis and Antioxidant Activity of Salvia chloroleuca Aerial Extracts. Iran. Red Crescent Med. J. 2016, 18, e24836. [Google Scholar] [CrossRef] [Green Version]
- Çulhaoğlu, B.; Yapar, G.; Dirmenci, T.; Topçu, G. Bioactive constituents of Salvia chrysophylla Stapf. Nat. Prod. Res. 2013, 27, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Flores-Bocanegra, L.; Gonzalez-Andrade, M.; Bye, R.; Linares, E.; Mata, R. α-Glucosidase Inhibitors from Salvia circinata. J. Nat. Prod. 2017, 80, 1584–1593. [Google Scholar] [CrossRef] [PubMed]
- Koysu, P.; Genc, N.; Elmastas, M.; Aksit, H.; Erenler, R. Isolation, identification of secondary metabolites from Salvia absconditiflora and evaluation of their antioxidative properties. Nat. Prod. Res. 2019, 33, 3592–3595. [Google Scholar] [CrossRef]
- Abdelhady, M.I.S.; Motaal, A.A. A cytotoxic C-glycosylated derivative of apigenin from the leaves of Ocimum basilicium var. thyrsiflorum. Rev. Bras. Farmacogn. Braz. J. Pharmacogn. 2016, 26, 763–766. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, A.; Sharma, S.; Mittal, A.; Gupta, S.; Dua, A. Phytochemical and antioxidant profiling of Ocimum sanctum. Food Sci. Technol. 2020, 57, 3852–3863. [Google Scholar] [CrossRef] [PubMed]
- Irondi, E.A.; Agboola, S.O.; Oboh, G.; Boligon, A.A. Inhibitory effect of leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes involved in obesity and hypertension in vitro. J. Intercult. Ethnopharmacol. 2016, 5, 396–402. [Google Scholar] [CrossRef]
- Mousavi, L.; Salleh, R.M.; Murugaiyah, V. Phytochemical and bioactive compounds identification of Ocimum tenuiflorum leaves of methanol extract and its fraction with an anti-diabetic potential. Int. J. Food Prop. 2018, 21, 2390–2399. [Google Scholar] [CrossRef]
- Ullah, S.; Rahman, K.U.; Rauf, A.; Hussain, A.; Ullah, A.; Ramadan, M.F. Phenolic acids, flavonoids and antiradical activity of Ocimum sanctum and Ocimum basilicium leaves extracts. Z. Arznei Gewurzpflanzen 2020, 25, 60–62. [Google Scholar]
- Vlase, L.; Benedec, D.; Hanganu, D.; Damian, G.; Csillag, I.; Sevastre, B.; Mot, A.; Silaghi-Dumitrescu, R.; Tilea, I. Evaluation of Antioxidant and Antimicrobial Activities and Phenolic Profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules 2014, 19, 5490–5507. [Google Scholar] [CrossRef]
- Bernhardt, B.; Bernath, J.; Gere, A.; Kokai, Z.; Komaromi, B.; Tavaszi-Sarosi, S.; Varga, L.; Sipos, L.; Szabo, K. The Influence of Cultivars and Phenological Phases on the Accumulation of Nevadensin and Salvigenin in Basil (Ocimum basilicum). Nat. Prod. Commun. 2015, 10, 1699–1702. [Google Scholar] [CrossRef]
- Ibrahim, R.Y.M.; Mansour, S.M.; Elkady, W.M. Phytochemical profile and protective effect of Ocimum basilicum aqueous extract in doxorubicin/irradiation-induced testicular injury. J. Pharm. Pharmacol. 2019, 72, 101–110. [Google Scholar] [CrossRef]
- Ruiz-Vargas, J.A.; Morales-Ferra, D.L.; Ramirez-Avila, G.; Zamilpa, A.; Negrete-Leon, E.; Jose Acevedo-Fernandez, J.; Pena-Rodriguez, L.M. α-Glucosidase inhibitory activity and in vivo antihyperglycemic effect of secondary metabolites from the leaf infusion of Ocimum campechianum mill. J. Ethnopharmacol. 2019, 243, 112081. [Google Scholar] [CrossRef]
- Ahmad, H.; Matsubara, Y.-I. Suppression of Anthracnose in Strawberry Using Water Extracts of Lamiaceae Herbs and Identification of Antifungal Metabolites. Hort. J. 2020, 89, 359–366. [Google Scholar] [CrossRef]
- Bunghez, F.; Morar, M.A.; Pop, R.M.; Romanciuc, F.; Csernatoni, F.; Fetea, F.; Diaconeasa, Z.; Socaciu, C. Comparative Phenolic Fingerprint and LC-ESI+QTOF-MS Composition of Oregano and Rosemary Hydrophilic Extracts in Relation to their Antibacterial Effect. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Food Sci. Technol. 2015, 72, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Elmastas, M.; Celik, S.M.; Genc, N.; Aksit, H.; Erenler, R.; Gulcin, İ. Antioxidant activity of an anatolian herbal tea—Origanum minutiflorum: Isolation and characterization of its secondary metabolites. Int. J. Food Prop. 2018, 21, 374–384. [Google Scholar] [CrossRef] [Green Version]
- Erenler, R.; Sen, O.; Aksit, H.; Demirtas, I.; Yaglioglu, A.S.; Elmastas, M.; Telci, I. Isolation and identification of chemical constituents from Origanum majorana and investigation of antiproliferative and antioxidant activities. J. Sci. Food Agric. 2016, 96, 822–836. [Google Scholar] [CrossRef]
- Koldaş, S.; Demirtas, I.; Ozen, T.; Demirci, M.A.; Behçet, L. Phytochemical screening, anticancer and antioxidant activities of Origanum vulgare L. ssp viride (Boiss.) Hayek, a plant of traditional usage. J. Sci. Food Agric. 2015, 95, 786–798. [Google Scholar] [CrossRef] [PubMed]
- Amaghnouje, A.; Mechchate, H.; Es-safi, I.; Boukhira, S.; Aliqahtani, A.S.; Noman, O.M.; Nasr, F.A.; Conte, R.; Calarco, A.; Bousta, D. Subacute Assessment of the Toxicity and Antidepressant-Like Effects of Origanum Majorana L. Polyphenols in Swiss Albino Mice. Molecules 2020, 25, 5653. [Google Scholar] [CrossRef] [PubMed]
- De Torre, M.P.; Vizmanos, J.L.; Cavero, R.Y.; Calvo, M.I. Improvement of antioxidant activity of oregano (Origanum vulgare L.) with an oral pharmaceutical form. Biomed. Pharmacother. 2020, 129, 110424. [Google Scholar] [CrossRef]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.-H.; Khalel, K.I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crops Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Erenler, R.; Meral, B.; Sen, O.; Elmastas, M.; Aydin, A.; Eminagaoglu, O.; Topcu, G. Bioassay-guided isolation, identification of compounds from Origanum rotundifolium and investigation of their antiproliferative and antioxidant activities. Pharm. Biol. 2017, 55, 1646–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dall’Acqua, S.; Peron, G.; Ferrari, S.; Gandin, V.; Bramucci, M.; Quassinti, L.; Martonfi, P.; Maggi, F. Phytochemical investigations and antiproliferative secondary metabolites from Thymus alternans growing in Slovakia. Pharm. Biol. 2017, 55, 1162–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, T.; Marinero, P.; Asensio-S-Manzanera, M.C.; Asensio, C.; Herrero, B.; Pereira, J.A.; Ramalhosa, E. Antioxidant activity of twenty wild Spanish Thymus mastichina L. populations and its relation with their chemical composition. Lebensm. Wiss. Technol. 2014, 57, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Rtibi, K.; Selmi, S.; Wannes, D.; Jridi, M.; Marzouki, L.; Sebai, H. The potential of Thymus vulgaris aqueous extract to protect against delayed gastric emptying and colonic constipation in rats. RSC Adv. 2019, 9, 20593–20602. [Google Scholar] [CrossRef] [Green Version]
- Sonmezdag, A.S.; Kelebek, H.; Selli, S. Characterization of bioactive and volatile profiles of thyme (Thymus vulgaris L.) teas as affected by infusion times. J. Food Meas. Charact. 2018, 12, 2570–2580. [Google Scholar] [CrossRef]
- Taghouti, M.; Martins-Gomes, C.; Schäfer, J.; Félix, L.M.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Thymus pulegioides L. as a rich source of antioxidant, anti-proliferative and neuroprotective phenolic compounds. Food Funct. 2018, 9, 3617–3629. [Google Scholar] [CrossRef]
- Kontogiorgis, C.; Ntella, M.; Mpompou, L.; Karallaki, F.; Athanasios, P.; Hadjipavlou-Litina, D.; Lazari, D. Study of the antioxidant activity of Thymus sibthorpii Bentham (Lamiaceae). J. Enzyme Inhib. Med. Chem. 2016, 31, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Adham, A.N.; Hegazy, M.E.F.; Naqishbandi, A.M.; Efferth, T. Induction of Apoptosis, Autophagy and Ferroptosis by Thymus vulgaris and Arctium lappa Extract in Leukemia and Multiple Myeloma Cell Lines. Molecules 2020, 25, 5016. [Google Scholar] [CrossRef]
- Brahmi, Z.; Niwa, H.; Yamasato, M.; Shigeto, S.; Kusakari, Y.; Sugaya, K.; Onose, J.-i.; Abe, N. Effective Cytochrome P450 (CYP) Inhibitor Isolated from Thyme (Thymus saturoides) Purchased from a Japanese Market. Biosci. Biotechnol. Biochem. 2011, 75, 2237–2239. [Google Scholar] [CrossRef] [Green Version]
- Gordo, J.; Máximo, P.; Cabrita, E.; Lourenço, A.; Oliva, A.; Almeida, J.; Filipe, M.; Cruz, P.; Barcia, R.; Santos, M.; et al. Thymus mastichina: Chemical Constituents and their Anti-Cancer Activity. Nat. Prod. Commun. 2012, 7, 1934578X1200701. [Google Scholar] [CrossRef]
- Pogacar, M.S.; Klancnik, A.; Bucar, F.; Langerholc, T.; Mozina, S.S. Anti-adhesion activity of thyme (Thymus vulgaris L.) extract, thyme post-distillation waste, and olive (Olea europea L.) leaf extract against Campylobacter jejuni on polystyrene and intestine epithelial cells. J. Sci. Food Agric. 2016, 96, 2723–2730. [Google Scholar] [CrossRef]
- Srivedavyasasri, R.; Hayes, T.; Ross, S.A. Phytochemical and biological evaluation of Salvia apiana. Nat. Prod. Res. 2017, 31, 2058–2061. [Google Scholar] [CrossRef] [Green Version]
- Exarchou, V.; Kanetis, L.; Charalambous, Z.; Apers, S.; Pieters, L.; Gekas, V.; Goulas, V. HPLC-SPE-NMR Characterization of Major Metabolites in Salvia fruticosa Mill. Extract with Antifungal Potential: Relevance of Carnosic Acid, Carnosol, and Hispidulin. J. Agric. Food Chem. 2015, 63, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Honari, N.; Pouraboli, I.; Gharbi, S. Antihyperglycemic property and insulin secreting activity of hydroalcoholic shoot extract of Thymus caramanicus Jalas: A wild predominant source of food additive in folk medicine. J. Funct. Foods 2018, 46, 128–135. [Google Scholar] [CrossRef]
- Sarfaraz, D.; Rahimmalek, M.; Saeidi, G. Polyphenolic and molecular variation in Thymus species using HPLC and SRAP analyses. Sci. Rep. 2021, 11, 5019. [Google Scholar] [CrossRef]
- Niculae, M.; Hanganu, D.; Oniga, I.; Benedec, D.; Ielciu, I.; Giupana, R.; Sandru, C.D.; Ciocârlan, N.; Spinu, M. Phytochemical Profile and Antimicrobial Potential of Extracts Obtained from Thymus marschallianus Willd. Molecules 2019, 24, 3101. [Google Scholar] [CrossRef] [Green Version]
- Mendez-Tovar, I.; Sponza, S.; Asensio-S-Manzanera, M.C.; Novak, J. Contribution of the main polyphenols of Thymus mastichina subsp mastichina to its antioxidant properties. Ind. Crops Prod. 2015, 66, 291–298. [Google Scholar] [CrossRef]
- Aras, A.; Türkan, F.; Yildiko, U.; Atalar, M.N.; Kılıç, Ö.; Alma, M.H.; Bursal, E. Biochemical constituent, enzyme inhibitory activity, and molecular docking analysis of an endemic plant species, Thymus migricus. Chem. Pap. 2021, 75, 1133–1146. [Google Scholar] [CrossRef]
- Ziani, B.E.C.; Barros, L.; Boumehira, A.Z.; Bachari, K.; Heleno, S.A.; Alves, M.J.; Ferreira, I. Profiling polyphenol composition by HPLC-DAD-ESI/MSn and the antibacterial activity of infusion preparations obtained from four medicinal plants. Food Funct. 2018, 9, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Sevindik, H.G.; Ozgen, U.; Atila, A.; Er, H.O.; Kazaz, C.; Duman, H. Phtytochemical Studies and Quantitative HPLC Analysis of Rosmarinic Acid and Luteolin 5-O-β-D-Glucopyranoside on Thymus praecox subsp grossheimii var. grossheimii. Chem. Pharm. Bull. 2015, 63, 720–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taşkın, T.; Çam, M.E.; Taşkın, D.; Rayaman, E. In vitro and In vivo biological activities and phenolic characterization of Thymus praecox subsp. skorpilii var. skorpilii. J. Food Meas. Charact. 2019, 13, 536–544. [Google Scholar] [CrossRef]
- Sonmezdag, A.S.; Kelebek, H.; Selli, S. Characterization of aroma-active and phenolic profiles of wild thyme (Thymus serpyllum) by GC-MS-Olfactometry and LC-ESI-MS/MS. Food Sci. Technol. 2016, 53, 1957–1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gökbulut, A. Validated RP-HPLC Method for Quantification of Phenolic Compounds in Methanol Extracts of Aerial Parts and Roots of Thymus sipyleus and Evaluation of Antioxidant Potential. Trop. J. Pharm. Res. 2015, 14, 1871. [Google Scholar] [CrossRef] [Green Version]
- Ustuner, O.; Anlas, C.; Bakirel, T.; Ustun-Alkan, F.; Diren Sigirci, B.; Ak, S.; Akpulat, H.A.; Donmez, C.; Koca-Caliskan, U. In Vitro Evaluation of Antioxidant, Anti-Inflammatory, Antimicrobial and Wound Healing Potential of Thymus Sipyleus Boiss. Subsp. Rosulans (Borbas) Jalas. Mol. 2019, 24, 3353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosakowska, O.; Bączek, K.; Przybył, J.L.; Pawełczak, A.; Rolewska, K.; Węglarz, Z. Morphological and Chemical Traits as Quality Determinants of Common Thyme (Thymus vulgaris L.), on the Example of ‘Standard Winter’ Cultivar. Agronomy 2020, 10, 909. [Google Scholar] [CrossRef]
- Silva, A.M.; Martins-Gomes, C.; Souto, E.B.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M. Thymus zygis subsp. zygis an Endemic Portuguese Plant: Phytochemical Profiling, Antioxidant, Anti-Proliferative and Anti-Inflammatory Activities. Antioxidants 2020, 9, 482. [Google Scholar] [CrossRef]
- Panja, P. Green extraction methods of food polyphenols from vegetable materials. Curr. Opin. Food Sci. 2018, 23, 173–182. [Google Scholar] [CrossRef]
- Sulniute, V.; Pukalskas, A.; Venskutonis, P.R. Phytochemical composition of fractions isolated from ten Salvia species by supercritical carbon dioxide and pressurized liquid extraction methods. Food Chem. 2017, 224, 37–47. [Google Scholar] [CrossRef]
- Zengin, G.; Mahomoodally, F.; Picot-Allain, C.; Diuzheva, A.; Jeko, J.; Cziaky, Z.; Cvetanovic, A.; Aktumsek, A.; Zekovic, Z.; Rengasamy, K.R.R. Metabolomic profile of Salvia viridis L. root extracts using HPLC-MS/MS technique and their pharmacological properties: A comparative study. Ind. Crops Prod. 2019, 131, 266–280. [Google Scholar] [CrossRef]
- Cvetkovikj, I.; Stefkov, G.; Acevska, J.; Stanoeva, J.P.; Karapandzova, M.; Stefova, M.; Dimitrovska, A.; Kulevanova, S. Polyphenolic characterization and chromatographic methods for fast assessment of culinary Salvia species from South East Europe. J. Chromatogr. A 2013, 1282, 38–45. [Google Scholar] [CrossRef]
- Borras Linares, I.; Arraez-Roman, D.; Herrero, M.; Ibanez, E.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Comparison of different extraction procedures for the comprehensive characterization of bioactive phenolic compounds in Rosmarinus officinalis by reversed-phase high-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight mass spectrometry. J. Chromatogr. A 2011, 1218, 7682–7690. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.B.; Brunton, N.P.; Patras, A.; Tiwari, B.; O’Donnell, C.P.; Martin-Diana, A.B.; Barry-Ryan, C. Optimization of ultrasound assisted extraction of antioxidant compounds from marjoram (Origanum majorana L.) using response surface methodology. Ultrason. Sonochem. 2012, 19, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Zengin, G.; Cvetanovic, A.; Gasic, U.; Dragicevic, M.; Stupar, A.; Uysal, A.; Senkardes, I.; Sinan, K.I.; Picot-Allain, M.C.N.; Ak, G.; et al. UHPLC-LTQ OrbiTrap MS analysis and biological properties of Origanum vulgare subsp. viridulum obtained by different extraction methods. Ind. Crops Prod. 2020, 154, 12. [Google Scholar] [CrossRef]
- Rodriguez-Solana, R.; Manuel Salgado, J.; Manuel Dominguez, J.; Cortes-Dieguez, S. Comparison of Soxhlet, Accelerated Solvent and Supercritical Fluid Extraction Techniques for Volatile (GC-MS and GC/FID) and Phenolic Compounds (HPLC-ESI/MS/MS) from Lamiaceae Species. Phytochem. Anal. 2015, 26, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Zhumakanova, B.S.; Korona-Głowniak, I.; Skalicka-Woźniak, K.; Ludwiczuk, A.; Baj, T.; Wojtanowski, K.K.; Józefczyk, A.; Zhaparkulova, K.A.; Sakipova, Z.B.; Malm, A. Phytochemical Fingerprinting and In Vitro Antimicrobial and Antioxidant Activity of the Aerial Parts of Thymus marschallianus Willd. and Thymus seravschanicus Klokov Growing Widely in Southern Kazakhstan. Molecules 2021, 26, 3193. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Alcantara, C.; Zugcic, T.; Abdelkebir, R.; Collado, M.C.; Garcia-Perez, J.V.; Jambrak, A.R.; Gavahian, M.; Barba, F.J.; Lorenzo, J.M. Impact of ultrasound-assisted extraction and solvent composition on bioactive compounds and in vitro biological activities of thyme and rosemary. Food Res. Int. 2020, 134, 12. [Google Scholar] [CrossRef] [PubMed]
- Tzima, K.; Brunton, N.P.; Lyng, J.G.; Frontuto, D.; Rai, D.K. The effect of Pulsed Electric Field as a pre-treatment step in Ultrasound Assisted Extraction of phenolic compounds from fresh rosemary and thyme by-products. Innov. Food Sci. Emerg. Technol. 2021, 69, 12. [Google Scholar] [CrossRef]
- Palmieri, S.; Pellegrini, M.; Ricci, A.; Compagnone, D.; Lo Sterzo, C. Chemical Composition and Antioxidant Activity of Thyme, Hemp and Coriander Extracts: A Comparison Study of Maceration, Soxhlet, UAE and RSLDE Techniques. Foods 2020, 9, 1221. [Google Scholar] [CrossRef]
- Sanchez-Vioque, R.; Polissiou, M.; Astraka, K.; de los Mozos-Pascual, M.; Tarantilis, P.; Herraiz-Penalver, D.; Santana-Meridas, O. Polyphenol composition and antioxidant and metal chelating activities of the solid residues from the essential oil industry. Ind. Crops Prod. 2013, 49, 150–159. [Google Scholar] [CrossRef]
- Mrkonjić, Ž.; Rakić, D.; Kaplan, M.; Teslić, N.; Zeković, Z.; Pavlić, B. Pressurized-Liquid Extraction as an Efficient Method for Valorization of Thymus serpyllum Herbal Dust towards Sustainable Production of Antioxidants. Molecules 2021, 26, 2548. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.; Nachiappan, G.; Mishra, H.N. Ultrasound-assisted extraction of flavonoids and phenolic compounds from Ocimum tenuiflorum leaves. Food Sci. Biotechnol. 2015, 24, 1951–1958. [Google Scholar] [CrossRef]
- Grigorakis, S.; Halahlah, A.; Makris, D.P. Batch Stirred-Tank Green Extraction of Salvia fruticosa Mill. Polyphenols Using Newly Designed Citrate-Based Deep Eutectic Solvents and Ultrasonication Pretreatment. Appl. Sci. 2020, 10, 4774. [Google Scholar] [CrossRef]
- Dragovic-Uzelac, V.; Garofulic, I.E.; Jukic, M.; Penic, M.; Dent, M. The Influence of Microwave-Assisted Extraction on the Isolation of Sage (Salvia officinalis L.) Polyphenols. Food Technol. Biotechnol. 2012, 50, 377–383. [Google Scholar]
- Santana-Meridas, O.; Polissiou, M.; Izquierdo-Melero, M.E.; Astraka, K.; Tarantilis, P.A.; Herraiz-Penalver, D.; Sanchez-Vioque, R. Polyphenol composition, antioxidant and bioplaguicide activities of the solid residue from hydrodistillation of Rosmarinus officinalis L. Ind. Crops Prod. 2014, 59, 125–134. [Google Scholar] [CrossRef]
- Velderrain-Rodríguez, G.R.; Palafox-Carlos, H.; Wall-Medrano, A.; Ayala-Zavala, J.F.; Chen, C.Y.O.; Robles-Sánchez, M.; Astiazaran-García, H.; Alvarez-Parrilla, E.; González-Aguilar, G.A. Phenolic compounds: Their journey after intake. Food Funct. 2014, 5, 189–197. [Google Scholar] [CrossRef]
- Heleno, S.A.; Martins, A.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chem. 2015, 173, 501–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.B.; Van Camp, J.; Vissenaekens, H.; Raes, K.; Smagghe, G.; Grootaert, C. Review on the Use of Cell Cultures to Study Metabolism, Transport, and Accumulation of Flavonoids: From Mono-Cultures to Co-Culture Systems. Compr. Rev. Food Sci. Food Saf. 2015, 14, 741–754. [Google Scholar] [CrossRef]
- Cardoso, C.; Afonso, C.; Lourenço, H.; Costa, S.; Nunes, M.L. Bioaccessibility assessment methodologies and their consequences for the risk–benefit evaluation of food. Trends Food Sci. Technol. 2015, 41, 5–23. [Google Scholar] [CrossRef]
- Domínguez-Avila, J.A.; Wall-Medrano, A.; Velderrain-Rodríguez, G.R.; Chen, C.Y.O.; Salazar-López, N.J.; Robles-Sánchez, M.; González-Aguilar, G.A. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct. 2017, 8, 15–38. [Google Scholar] [CrossRef] [PubMed]
- Lucas-González, R.; Viuda-Martos, M.; Pérez-Alvarez, J.A.; Fernández-López, J. In vitro digestion models suitable for foods: Opportunities for new fields of application and challenges. Food Res. Int. 2018, 107, 423–436. [Google Scholar] [CrossRef]
- Alminger, M.; Aura, A.M.; Bohn, T.; Dufour, C.; El, S.N.; Gomes, A.; Karakaya, S.; Martínez-Cuesta, M.C.; McDougall, G.J.; Requena, T.; et al. In Vitro Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2014, 13, 413–436. [Google Scholar] [CrossRef] [Green Version]
- Bermúdez-Soto, M.-J.; Tomás-Barberán, F.-A.; García-Conesa, M.-T. Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chem. 2007, 102, 865–874. [Google Scholar] [CrossRef]
- D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the Polyphenols: Status and Controversies. Int. J. Mol. Sci. 2010, 11, 1321. [Google Scholar] [CrossRef]
- Tang, D.; Chen, K.; Huang, L.; Li, J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin. Drug Metab. Toxicol. 2017, 13, 323–330. [Google Scholar] [CrossRef]
- Chohan, M.; Naughton, D.P.; Jones, L.; Opara, E.I. An investigation of the relationship between the anti-inflammatory activity, polyphenolic content, and antioxidant activities of cooked and in vitro digested culinary herbs. Oxid. Med. Cell. Longev. 2012, 2012, 627843. [Google Scholar] [CrossRef] [Green Version]
- Gayoso, L.; Roxo, M.; Cavero, R.Y.; Calvo, M.I.; Ansorena, D.; Astiasarán, I.; Wink, M. Bioaccessibility and biological activity of Melissa officinalis, Lavandula latifolia and Origanum vulgare extracts: Influence of an in vitro gastrointestinal digestion. J. Funct. Foods 2018, 44, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Rubió, L.; Macià, A.; Castell-Auví, A.; Pinent, M.; Blay, M.T.; Ardévol, A.; Romero, M.P.; Motilva, M.J. Effect of the co-occurring olive oil and thyme extracts on the phenolic bioaccesibility and bioavailability assessed by in vitro digestion and cell models. Food Chem. 2014, 149, 277–284. [Google Scholar] [CrossRef]
- Villalva, M.; Jaime, L.; Aguado, E.; Nieto, J.A.; Reglero, G.; Santoyo, S. Anti-Inflammatory and Antioxidant Activities from the Basolateral Fraction of Caco-2 Cells Exposed to a Rosmarinic Acid Enriched Extract. J. Agric. Food Chem. 2018, 66, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Rubió, L.; Serra, A.; Chen, C.Y.O.; Macià, A.; Romero, M.P.; Covas, M.I.; Solà, R.; Motilva, M.J. Effect of the co-occurring components from olive oil and thyme extracts on the antioxidant status and its bioavailability in an acute ingestion in rats. Food. Funct. 2014, 5, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, X.; Yang, H.; Zhao, R.; Liu, C.; Zhang, R.; Zhang, Q. Comparative pharmacokinetic study on phenolic acids and flavonoids in spinal cord injury rats plasma by UPLC-MS/MS after single and combined oral administration of danshen and huangqin extract. J. Pharm. Biomed. Anal. 2019, 172, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2012, 64, 4–17. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef]
- Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E.; et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 2013, 41, D801–D807. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.; Bouatra, S.; et al. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 2009, 37, D603–D610. [Google Scholar] [CrossRef]
- Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The Human Metabolome Database. Nucleic Acids Res. 2007, 35, D521–D526. [Google Scholar] [CrossRef] [PubMed]
Molecule | Molecular Weight 1 | H Bond Donors 1 | H Bond Acceptors 1 | Log p * 1 | Predicted Bioavailability |
---|---|---|---|---|---|
Apigenin | 270.2369 | 3 | 5 | 3.07 | Yes |
Luteolin | 286.2363 | 4 | 6 | 2.73 | Yes |
Diosmetin | 300.2629 | 3 | 6 | 3.06 | Yes |
Cirsimaritin | 314.29 | 2 | 6 | 3.21 | Yes |
Scutellarein | 286.24 | 4 | 6 | 2.74 | Yes |
Hispidulin | 300.26 | 3 | 6 | 3.09 | Yes |
Luteolin-7-glucoside | 448.3769 | 7 | 11 | 0.58 | No |
Apigenin-7-glucoside | 432.381 | 6 | 10 | 0.68 | No |
Luteolin-7-glucuronide | 462.3604 | 7 | 12 | 1.22 | No |
Apigenin-7-glucuronide | 446.361 | 6 | 11 | 1.03 | No |
Baicalein | 270.2369 | 3 | 5 | 3.19 | Yes |
Baicalin | 446.361 | 6 | 11 | 1.27 | No |
Wogonin | 284.26 | 2 | 5 | 2.092 | Yes |
Wogonoside | 460.4 | 5 | 11 | 1.44 | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picos-Salas, M.A.; Heredia, J.B.; Leyva-López, N.; Ambriz-Pérez, D.L.; Gutiérrez-Grijalva, E.P. Extraction Processes Affect the Composition and Bioavailability of Flavones from Lamiaceae Plants: A Comprehensive Review. Processes 2021, 9, 1675. https://doi.org/10.3390/pr9091675
Picos-Salas MA, Heredia JB, Leyva-López N, Ambriz-Pérez DL, Gutiérrez-Grijalva EP. Extraction Processes Affect the Composition and Bioavailability of Flavones from Lamiaceae Plants: A Comprehensive Review. Processes. 2021; 9(9):1675. https://doi.org/10.3390/pr9091675
Chicago/Turabian StylePicos-Salas, Manuel Adrian, José Basilio Heredia, Nayely Leyva-López, Dulce Libna Ambriz-Pérez, and Erick Paul Gutiérrez-Grijalva. 2021. "Extraction Processes Affect the Composition and Bioavailability of Flavones from Lamiaceae Plants: A Comprehensive Review" Processes 9, no. 9: 1675. https://doi.org/10.3390/pr9091675
APA StylePicos-Salas, M. A., Heredia, J. B., Leyva-López, N., Ambriz-Pérez, D. L., & Gutiérrez-Grijalva, E. P. (2021). Extraction Processes Affect the Composition and Bioavailability of Flavones from Lamiaceae Plants: A Comprehensive Review. Processes, 9(9), 1675. https://doi.org/10.3390/pr9091675