Waste Tire Heat Treatment to Prepare Sulfur Self-Doped Char: Operando Insight into Activation Mechanisms Based on the Char Structures Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Activation Treatment Experiments
2.2. Physical and Chemical Properties Characterization
3. Results and Discussions
3.1. Activation Treatment Process of WTC
3.2. Structural Evolution of Char during Activation Treatment Process
3.2.1. Evolution of Physical Structure
3.2.2. Evolution of Carbon Skeleton Structure
3.2.3. Evolution of Sulfur Doping Structure
3.3. Correlation Analysis of Structural Parameters and Specific Capacitance
4. Conclusions
- (1)
- The whole activation treatment process can be divided into six typical stages, and consisted of carbonization process (S1–S4) and effective activation process (S4–S6), the activation effect worked obviously after 650 °C.
- (2)
- During carbonization process: aromatic ring systems and alkyl-aryl C-C bonds generated; sulfur (mainly S 2p3/2) was gradually consumed. During effective activation process: aromatic ring systems and alkyl-aryl C-C bonds turned to be graphitic ordered chars; pores massively produced from S4 to S5, and micropores partly formed to larger with mesopores+macropores fractionally converting to smaller from S5 to S6; sulfur transformed from IM to AWTC, leading to enrichments of S 2p3/2 and S 2p5/2 after S5.
- (3)
- The key structural parameters for huge improvement of specific capacitance were systematically found, it further revealed that mesopores+macropores possessed stronger promotion effect than micropores and S 2p3/2 was more beneficial than S 2p5/2.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Analysis of Current Situation of Global and Chinese Tire Market. Available online: http://www.tireworld.com.cn/data/reports/specil/2018731/29870.html (accessed on 31 July 2018).
- Martí, N.; Joaquim, R.; Jordi, D.F.; Marta, S.; José, L.D. Human exposure to environmental pollutants after a tire landfill in Spain: Health risks. Environ. Int. 2016, 97, 37–44. [Google Scholar]
- Shakya, P.R.; Shrestha, P.; Tamrakar, C.S.; Bhattarai, P.K. Studies on potemtial emission of hazardous gases due to uncontrolled open-air burning of waste vehicle tyres and their possible impacts on the environment. Atmos. Environ. 2018, 42, 6555–6559. [Google Scholar] [CrossRef]
- Chao, L.; Zhang, C.; Zhang, L.; Mortaza, G.; Hu, X. Catalytic pyrolysis of tire waste: Impacts of biochar catalyst on product evolution. Waste Manag. 2020, 116, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Xu, K.; Xiong, Z.; Weerawut, C.; Wang, X.; Su, S. Evolution of aromatic structures during the low-temperature electrochemical upgrading of bio-oil. Energ. Fuel 2019, 33, 11292–11301. [Google Scholar] [CrossRef]
- Wang, C.; Tian, X.; Zhao, B.; Zhu, L.; Li, S. Experimental Study on Spent FCC Catalysts for the Catalytic Cracking Process of Waste Tires. Processes 2019, 7, 335. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.; Guo, J.; Weerawut, C.; Deng, W.; Hu, X.; Han, H. Assessing the chemical composition of heavy components in bio-oils from the pyrolysis of cellulose, hemicellulose and lignin at slow and fast heating rates. Fuel Process. Technol. 2020, 199, 106299. [Google Scholar] [CrossRef]
- Williams, P.T. Pyrolysis of waste tyres: A review. Waste Manag. 2013, 33, 1714–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Liu, S.; Zhu, T. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B. J. Environ. Sci. 2010, 22, 1273–1280. [Google Scholar] [CrossRef]
- Faizan, A.; Mishmal, A.K.; Muhammad, A.Q.; Syyed, A.R.S.; Nasir, M.K.; Zia, K.; Hafiz, S.R.; Hunain, A.; Muhmmad, F.; Muhammad, W. Utilization of Pyrolytic Carbon Black Waste for the Development of Sustainable Materials. Processes 2020, 8, 174. [Google Scholar]
- William, U.Y.; Natalia, C.U.; Carlos, A.V.I.; Juan, D.M. Incorporating the recovered carbon black produced in an industrial-scale waste tire pyrolysis plant into a natural rubber formulation. J. Environ. Manag. 2021, 287, 112292. [Google Scholar]
- Zhi, M.; Yang, F.; Meng, F.; Li, M.; Manivannan, A.; Wu, N. Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires. ACS Sustain. Chem. Eng. 2014, 2, 1592–1598. [Google Scholar] [CrossRef]
- Tang, L.; Huang, H. Thermal plasma pyrolysis of used tires for carbon black recovery. J. Mater. Sci. 2005, 40, 3817–3819. [Google Scholar] [CrossRef]
- Xu, J.; Yu, J.; Xu, J.; Sun, C.; He, W.; Huang, J. High-value utilization of waste tires: A review with focus on modified carbon black from pyrolysis. Sci. Total Environ. 2020, 742, 140235. [Google Scholar] [CrossRef]
- Ren, Q.; He, L.; Hu, S.; Su, S.; Wang, Y.; Jiang, L. The structural characteristics of waste tire chars at different pyrolysis temperatures. IOP Conf. Ser. Earth Environ. Sci. 2021, 657, 012005. [Google Scholar] [CrossRef]
- Ren, Q.; Wu, Z.; Hu, S.; He, L.; Su, S.; Wang, Y. Sulfur self-doped char with high specific capacitance derived from waste tire: Effects of pyrolysis temperature. Sci. Total Environ. 2020, 741, 140193. [Google Scholar] [CrossRef]
- Ren, Q.; Hu, S.; He, L.; Wu, F.; Wu, Z.; Lei, Z. Waste tire heat treatment to prepare sulfur self-doped char via pyrolysis and K2FeO4-assisted activation methods. Waste Manag. 2021, 125, 145–153. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, H.; Ke, Q.; Wang, J. Effects of nitrogen doping on supercapacitor performance of a mesoporous carbon electrode produced by a hydrothermal soft-templating process. J. Mater. Chem. A 2014, 2, 11753–11758. [Google Scholar] [CrossRef]
- Soheila, F.; Farid, N.A. The development supercapacitor from activated carbon by electroless plating-A review. Renew. Sust. Energ. Rev. 2015, 42, 823–834. [Google Scholar]
- Xie, K.; Qin, X.; Wang, X.; Wang, Y.; Tao, H.; Wu, Q. Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 2012, 24, 347–352. [Google Scholar] [CrossRef]
- Hou, L.; Hu, Z.; Wang, X.; Qiang, L.; Zhou, Y.; Lv, L. Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors. J. Colloid Interface Sci. 2019, 540, 88–96. [Google Scholar] [CrossRef]
- Huang, X.; Gou, L.; Yang, L. Enhancement in performance of negative electrode of supercapacitor based on nitrogen doped porous sphere. J. Alloys Compds 2019, 786, 91–97. [Google Scholar] [CrossRef]
- Cazetta, A.L.; Vargas, A.M.M.; Nogami, E.M.; Kunita, M.H.; Guilherme, M.R.; Martins, A.C. NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chem. Eng. J. 2011, 174, 117–125. [Google Scholar] [CrossRef]
- Leila, K.; Mohammed, H.; Esmaeil, F. Adsorption of benzene and toluene from waste gas using activated carbon activated by ZnCl2. Front. Environ. Sci. Eng. 2014, 8, 835–844. [Google Scholar]
- Nima, K.; Abdullah, R.M.; Maryam, M.; Mohammed, A.Z. Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer substitute. Front. Environ. Sci. Eng. 2020, 14, 70. [Google Scholar]
- Zivica, V.; Palou, M.T. Physico-chemical characterization of thermally treated bentonite. Compos. Part B-Eng. 2015, 68, 436–445. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. Highly porous S-doped carbons. Micropor. Mesopor. Mater. 2012, 158, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Carati, A.; Ferraris, G.; Guidotti, M.; Moretti, G.; Pasro, R.; Rizzo, C. Preparation and characterisation of mesoporous silica-alumina and silica-titania with a narrow pore size distuibution. Catal. Today 2003, 77, 315–323. [Google Scholar] [CrossRef]
- Hu, C.; Sedghi, S.; Ana, S.A.; Andersson, G.G.; Sharma, A.; Pendleton, P. Raman spectroscopy study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the thermal annealing pathway. Carbon 2015, 85, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Hayashi, J.; Li, C. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel 2006, 85, 1700–1707. [Google Scholar] [CrossRef]
- He, L.; Liao, G.; Hu, S.; Jiang, L.; Han, H.; Li, H. Effect of temperature on multiple competitive processes for co-production of carbon nanotubes and hydrogen catalytic reforming of toluene. Fuel 2020, 264, 116749. [Google Scholar] [CrossRef]
- Ren, Q.; He, L.; Hu, S.; Li, H.; Li, S.; Deng, Z. Formation of highly graphitic char derived from phenolic resin carbonization by Ni-Zn-B alloy. Environ. Sci. Pollut. Res. 2020, 27, 22639–22647. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Syed, S.A.S.; Xiong, Z.; Li, Q.; Hu, X.; Xu, J. Temporal and spatial evolution of biochar chemical structure during biomass pellet pyrolysis from the insights of micro-Raman spectroscopy. Fuel Process. Technol. 2021, 218, 106839. [Google Scholar] [CrossRef]
- Gong, Y.; Li, D.; Luo, C.; Fu, Q.; Pan, C. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 2017, 19, 4132–4140. [Google Scholar] [CrossRef]
- Chen, W.; Wan, M.; Liu, Q.; Xiong, X.; Yu, F.; Huang, Y. Heteroatom-Doped Carbon Materials: Synthesis, Mechanism, and Application for Sodium-Ion Batteries. Small Methods 2019, 3, 1–18. [Google Scholar] [CrossRef]
- Wang, X.; Sun, G.; Routh, P.; Kim, D.H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and application. Chem. Soc. Rev. 2014, 43, 7067–7098. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Ma, D.; Wu, G.; Geng, W.; Shao, J.; Song, S. Construction of 3D nanostrcuture hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors. Chem. Commun. 2016, 52, 6673–6676. [Google Scholar] [CrossRef]
- Suyeon, H.; Byungrak, S.; Hasuck, K.; Jakkid, S.; Sangaraju, S. The synergistic effect of nickel cobalt sulfide nanoflakes and sulfur-doped porous carboneous nanostructure as bifunctional electrocatalyst for enhanced rechargeable Li-O2 batteries. Appl. Catal B-Environ. 2020, 263, 118283. [Google Scholar]
- Bello, A.; Momodu, D.Y.; Madito, M.J.; Makgopa, K.; Rambau, K.M.; Dangbegnon, J.K. Influence of K3Fe(CN)6 on the electrochemical performance of carbon derived from waste tyres by K2CO3 activation. Mater. Chem. Phys. 2018, 209, 262–270. [Google Scholar] [CrossRef] [Green Version]
Sample | Product | AWTC | |||
---|---|---|---|---|---|
YieldTGA | Yieldfurnace | YieldAWTC | Proportion | SC | |
S1 | 100.0 | 100.0 | 75.4 | 22.1 | 0.2 |
S2 | 96.7 | 95.0 | 71.7 | 22.1 | 0.8 |
S3 | 85.1 | 82.3 | 41.6 | 14.8 | 5.3 |
S4 | 80.2 | 81.7 | 32.8 | 11.8 | 12.4 |
S5 | 55.8 | 61.5 | 22.6 | 10.7 | 62.8 |
S6 | 40.9 | 43.7 | 21.0 | 14.1 | 112.5 |
Sample | SA (m2/g) | V (cm3/g) | D (nm) | |||||
---|---|---|---|---|---|---|---|---|
SBET | Smicro | Smeso+macro | Vtotal | Vmicro | Vmeso+macro | Dtotal | Dmeso+macro | |
S1 | 54.79 | N/A | 73.75 | 0.62 | N/A | 0.64 | 45.38 | 34.50 |
S2 | 56.57 | N/A | 74.92 | 0.58 | N/A | 0.60 | 41.31 | 31.90 |
S3 | 71.55 | N/A | 88.28 | 0.60 | N/A | 0.62 | 33.65 | 27.85 |
S4 | 69.59 | N/A | 84.99 | 0.58 | N/A | 0.59 | 33.11 | 27.65 |
S5 | 242.57 | 100.25 | 168.37 | 0.66 | 0.05 | 0.63 | 10.91 | 14.98 |
S6 | 207.53 | 68.01 | 167.97 | 0.58 | 0.04 | 0.56 | 11.19 | 13.42 |
Parameter | Smicro | Smeso+macro | Vmicro | Vmeso+macro | Dmeso+macro |
---|---|---|---|---|---|
r | 0.67 | 0.87 | 0.76 | −0.42 | −0.91 |
Extent | moderate | strong | moderate | weak | strong |
Parameter | AD/AG | AD/A(VR+VL+GR) | AS/AG | ||
r | −0.86 | −0.87 | −0.89 | ||
Extent | strong | strong | strong | ||
Parameter | S 2p3/2 | S 2p5/2 | |||
r | 0.82 | 0.61 | |||
Extent | strong | moderate |
Activation Agent and Content | Temperature | Specific Capacitance | Ref. |
---|---|---|---|
H3PO4 (H3PO4/WTC = 5) | 900 °C | 106.4 F/g at 1 A/g | [12] |
K2CO3 (K2CO3/WTC = 8) | 800 °C | 111.0 F/g at 0.25 A/g | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Q.; Hu, S.; Hu, Q.; Li, Q.; He, L.; Lei, Z.; Su, S.; Wang, Y.; Jiang, L.; Xiang, J. Waste Tire Heat Treatment to Prepare Sulfur Self-Doped Char: Operando Insight into Activation Mechanisms Based on the Char Structures Evolution. Processes 2021, 9, 1622. https://doi.org/10.3390/pr9091622
Ren Q, Hu S, Hu Q, Li Q, He L, Lei Z, Su S, Wang Y, Jiang L, Xiang J. Waste Tire Heat Treatment to Prepare Sulfur Self-Doped Char: Operando Insight into Activation Mechanisms Based on the Char Structures Evolution. Processes. 2021; 9(9):1622. https://doi.org/10.3390/pr9091622
Chicago/Turabian StyleRen, Qiangqiang, Song Hu, Qingwei Hu, Qing Li, Limo He, Zhiwen Lei, Sheng Su, Yi Wang, Long Jiang, and Jun Xiang. 2021. "Waste Tire Heat Treatment to Prepare Sulfur Self-Doped Char: Operando Insight into Activation Mechanisms Based on the Char Structures Evolution" Processes 9, no. 9: 1622. https://doi.org/10.3390/pr9091622
APA StyleRen, Q., Hu, S., Hu, Q., Li, Q., He, L., Lei, Z., Su, S., Wang, Y., Jiang, L., & Xiang, J. (2021). Waste Tire Heat Treatment to Prepare Sulfur Self-Doped Char: Operando Insight into Activation Mechanisms Based on the Char Structures Evolution. Processes, 9(9), 1622. https://doi.org/10.3390/pr9091622