Two-Dimensional Nanomaterials for the Removal of Pharmaceuticals from Wastewater: A Critical Review
Abstract
:1. Introduction
2. 2D Nanomaterials: General Aspects
3. 2D Nanomaterials for the Removal of Pharmaceuticals in Wastewater
3.1. Adsorption Processes
3.1.1. Pure 2D Nanomaterials
3.1.2. Binary and Ternary Nanocomposites
3.1.3. Conclusions on Adsorption Processes
3.2. Photocatalytic Processes
3.2.1. Graphitic Carbon Nitride-Based Materials
3.2.2. Bismuth Oxyhalides-Based Materials
3.2.3. TiO2-Based Materials
3.2.4. Conclusions on Photocatalytic Processes
3.3. Redox and Electrochemical Processes
3.3.1. Peroxymonosulfate (PMS) Activation
3.3.2. Fenton and Fenton-like Reactions
3.3.3. Electrochemical Processes
3.3.4. Conclusions on Redox and Electrochemical Processes
4. Overview and Outlook
- It is critical to replace toxic reagents during the synthesis of these materials (e.g., cyanide and hydrazine), which turn into secondary residues at the end of the fabrication process. In this regard, several studies highlight the importance of green synthesis methods such as the replacement of HF, an etchant agent widely used during Ti3C2Tx MXene synthesis, by less toxic chemicals. For instance, Limbu et al. reported a green protocol for the room temperature synthesis of reduced Ti3C2Tx MXene via a simple L-ascorbic acid treatment [118].
- Toxicity studies on humans and environmental impact assessments need to be addressed, in the light of studies performed on graphene, GO, and rGO reporting that these materials can elicit toxic effects both in-vitro and in-vivo [119]. Furthermore, life cycle analyses should be considered in the development of every so-called sustainable material to establish the real impact of its fabrication and use on the environment [120].
- More research needs to be conducted on the regeneration and reuse of 2D nanomaterials for wastewater treatment to assure and improve sustainability. Moreover, a material with a high selectivity for the target pollutant is required for real wastewater applications. Real wastewaters contain different chemicals like organic and inorganic molecules, as well as counter ions, which can lead to a reduced efficiency than that reported at the laboratory scale employing one-component solutions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ghosh, A.; Nayak, A.K.; Pal, A. Nano-Particle-Mediated Wastewater Treatment: A Review. Curr. Pollut. Rep. 2017, 3, 17–30. [Google Scholar] [CrossRef]
- Zunita, M. Graphene oxide-based nanofiltration for Hg removal from wastewater: A mini review. Membranes 2021, 11, 269. [Google Scholar] [CrossRef]
- Kommu, A.; Singh, J.K. A review on graphene-based materials for removal of toxic pollutants from wastewater. Soft Mater. 2020, 18, 297–322. [Google Scholar] [CrossRef]
- Sirés, I.; Brillas, E.; Oturan, M.A.; Rodrigo, M.A.; Panizza, M. Electrochemical advanced oxidation processes: Today and tomorrow. A review. Environ. Sci. Pollut. Res. 2014, 21, 8336–8367. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Y.; Kassab, A.; Eid, K.; Abdullah, A.M.; Ozoemena, K.I.; Elzatahry, A. Unveiling fabrication and environmental remediation of mxene-based nanoarchitectures in toxic metals removal from wastewater: Strategy and mechanism. Nanomaterials 2020, 10, 885. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jing, L.; Teng, Y.; Wang, J. Multimedia fate modeling and risk assessment of antibiotics in a water-scarce megacity. J. Hazard. Mater. 2018, 348, 75–83. [Google Scholar] [CrossRef]
- Aus der Beek, T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment-Global occurrences and perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [Google Scholar] [CrossRef]
- Liu, J.L.; Wong, M.H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environ. Int. 2013, 59, 208–224. [Google Scholar] [CrossRef]
- Lindsey, M.E.; Meyer, M.; Thurman, E.M. Analysis of Trace Levels of Sulfonamide and Tetracycline Antimicrobials in Groundwater and Surface Water Using Solid-Phase Extraction and Liquid Chromatography/Mass Spectrometry. Anal. Chem. 2001, 73, 4640–4646. [Google Scholar] [CrossRef]
- Santos, J.L.; Aparicio, I.; Callejón, M.; Alonso, E. Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). J. Hazard. Mater. 2009, 164, 1509–1516. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Monteil, H.; Péchaud, Y.; Oturan, N.; Oturan, M.A. A review on efficiency and cost effectiveness of electro- and bio-electro-Fenton processes: Application to the treatment of pharmaceutical pollutants in water. Chem. Eng. J. 2019, 376, 119577. [Google Scholar] [CrossRef]
- Kharel, S.; Stapf, M.; Miehe, U.; Ekblad, M.; Cimbritz, M.; Falås, P.; Nilsson, J.; Sehlén, R.; Bester, K. Ozone dose dependent formation and removal of ozonation products of pharmaceuticals in pilot and full-scale municipal wastewater treatment plants. Sci. Total Environ. 2020, 731, 139064. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.; Harris, S.; Morris, C.; Commins, E.; Cormican, M. Hospital Effluent: Impact on the Microbial Environment and Risk to Human Health; Report No. 162; Environmental Protection Agency: Wexford, Ireland, 2016. [Google Scholar]
- Zeng, M.; Chen, M.; Huang, D.; Lei, S.; Zhang, X.; Wang, L.; Cheng, Z. Engineered two-dimensional nanomaterials: An emerging paradigm for water purification and monitoring. Mater. Horiz. 2021, 8, 758–802. [Google Scholar] [CrossRef]
- Ihsanullah, I. Boron nitride-based materials for water purification: Progress and outlook. Chemosphere 2021, 263, 127970. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, M.; Zhu, X.; Xu, H.; Ma, S.; Zhi, Y.; Xia, H.; Liu, X.; Pan, J.; Tang, J.-Y.; et al. 2020 Roadmap on two-dimensional nanomaterials for environmental catalysis. Chin. Chem. Lett. 2019, 30, 2065–2088. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, X.; Hu, X.; Hu, J.; Zhang, X. Two-dimensional nanomaterials for photocatalytic water disinfection: Recent progress and future challenges. J. Chem. Technol. Biotechnol. 2019, 94, 22–37. [Google Scholar] [CrossRef] [Green Version]
- Jeon, M.; Jun, B.M.; Kim, S.; Jang, M.; Park, C.M.; Snyder, S.A.; Yoon, Y. A review on MXene-based nanomaterials as adsorbents in aqueous solution. Chemosphere 2020, 261, 127781. [Google Scholar] [CrossRef]
- Velusamy, S.; Roy, A.; Sundaram, S.; Kumar Mallick, T. A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment. Chem. Rec. 2021, 21, 1570–1610. [Google Scholar] [CrossRef]
- Faysal Hossain, M.D.; Akther, N.; Zhou, Y. Recent advancements in graphene adsorbents for wastewater treatment: Current status and challenges. Chin. Chem. Lett. 2020, 31, 2525–2538. [Google Scholar] [CrossRef]
- Jun, B.M.; Kim, S.; Heo, J.; Park, C.M.; Her, N.; Jang, M.; Huang, Y.; Han, J.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471–487. [Google Scholar] [CrossRef] [Green Version]
- Yaqub, A.; Shafiq, Q.; Khan, A.R.; Husnain, S.M.; Shahzad, F. Recent advances in the adsorptive remediation of wastewater using two-dimensional transition metal carbides (MXenes): A review. New J. Chem. 2021, 45, 9721–9742. [Google Scholar] [CrossRef]
- Zhang, S.; Gu, P.; Ma, R.; Luo, C.; Wen, T.; Zhao, G.; Cheng, W.; Wang, X. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review. Catal. Today 2019, 335, 65–77. [Google Scholar] [CrossRef]
- Lopes, J.L.; Martins, M.J.; Nogueira, H.I.S.; Estrada, A.C.; Trindade, T. Carbon-based heterogeneous photocatalysts for water cleaning technologies: A review. Environ. Chem. Lett. 2021, 19, 643–668. [Google Scholar] [CrossRef]
- Antonopoulou, M.; Kosma, C.; Albanis, T.; Konstantinou, I. An overview of homogeneous and heterogeneous photocatalysis applications for the removal of pharmaceutical compounds from real or synthetic hospital wastewaters under lab or pilot scale. Sci. Total Environ. 2021, 765, 144163. [Google Scholar] [CrossRef]
- Ren, G.; Han, H.; Wang, Y.; Liu, S.; Zhao, J.; Meng, X.; Li, Z. Recent advances of photocatalytic application in water treatment: A review. Nanomaterials 2021, 11, 1804. [Google Scholar] [CrossRef]
- Shurbaji, S.; Huong, P.T.; Altahtamouni, T.M. Review on the visible light photocatalysis for the decomposition of ciprofloxacin, norfloxacin, tetracyclines, and sulfonamides antibiotics in wastewater. Catalysts 2021, 11, 437. [Google Scholar] [CrossRef]
- Atalay, S.; Ersöz, G. Advanced Oxidation Processes. In Novel Catalysts in Advanced Oxidation of Organic Pollutants; Springer: Cham, Switzerland, 2016; ISBN 9781789848908. [Google Scholar]
- Chen, G.; Yu, Y.; Liang, L.; Duan, X.; Li, R.; Lu, X.; Yan, B.; Li, N.; Wang, S. Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: A critical review. J. Hazard. Mater. 2021, 408, 124461. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Wang, J. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. J. Hazard. Mater. 2021, 404, 124191. [Google Scholar] [CrossRef]
- Wang, J.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Y.; Yao, B.; Yang, J.; Zhi, D. Current progress in electrochemical anodic-oxidation of pharmaceuticals: Mechanisms, influencing factors, and new technique. J. Hazard. Mater. 2021, 418, 126313. [Google Scholar] [CrossRef]
- Bampos, G.; Petala, A.; Frontistis, Z. Recent Trends in Pharmaceuticals Removal from Water Using Electrochemical Oxidation Processes. Environments 2021, 8, 85. [Google Scholar] [CrossRef]
- Dao, K.C.; Yang, C.-C.; Chen, K.-F.; Tsai, Y.-P. Recent Trends in Removal Pharmaceuticals and Personal Care Products by Electrochemical Oxidation and Combined Systems. Water 2020, 12, 1043. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Chen, Z.; Zhang, J.; Shan, D.; Wu, Y.; Bai, L.; Wang, B. Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review. J. Water Process Eng. 2021, 42, 102122. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Rosenkranz, A.; Costa, H.L.; Baykara, M.Z.; Martini, A. Synergetic effects of surface texturing and solid lubricants to tailor friction and wear—A review. Tribol. Int. 2021, 155, 106792. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Naguib, M.; Barsoum, M.W.; Gogotsi, Y. Ten Years of Progress in the Synthesis and Development of MXenes. Adv. Mater. 2021, 2103393, 1–10. [Google Scholar] [CrossRef]
- Wyatt, B.C.; Rosenkranz, A.; Anasori, B. 2D MXenes: Tunable Mechanical and Tribological Properties. Adv. Mater. 2021, 33, 2007973. [Google Scholar] [CrossRef] [PubMed]
- Ihsanullah, I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects. Chem. Eng. J. 2020, 388, 124340. [Google Scholar] [CrossRef]
- Rasool, K.; Pandey, R.P.; Rasheed, P.A.; Buczek, S.; Gogotsi, Y.; Mahmoud, K.A. Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Mater. Today 2019, 30, 80–102. [Google Scholar] [CrossRef]
- Dervin, S.; Dionysiou, D.D.; Pillai, S.C. 2D nanostructures for water purification: Graphene and beyond. Nanoscale 2016, 8, 15115–15131. [Google Scholar] [CrossRef] [PubMed]
- Minale, M.; Gu, Z.; Guadie, A.; Kabtamu, D.M.; Li, Y.; Wang, X. Application of graphene-based materials for removal of tetracyclines using adsorption and photocatalytic-degradation: A review. J. Environ. Manag. 2020, 276, 111310. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Zeng, G.; Liu, N.; Liu, S. Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: A review. Chemosphere 2019, 226, 360–380. [Google Scholar] [CrossRef]
- Lu, L.; Yang, Q.; Xu, Q.; Sun, Y.; Tang, S.; Tang, X.; Liang, H.; Yu, Y. Two-dimensional materials beyond graphene for the detection and removal of antibiotics: A critical review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 1–32. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Z.; Zhao, W.; Liu, C.; Qian, X.; Zhang, M.; Wei, G.; Khan, E.; Hau Ng, Y.; Sik Ok, Y. Recent advances in photodegradation of antibiotic residues in water. Chem. Eng. J. 2021, 405, 126806. [Google Scholar] [CrossRef]
- Jakubczak, M.; Szuplewska, A.; Rozmysłowska-Wojciechowska, A.; Rosenkranz, A.; Jastrzębska, A.M. Novel 2D MBenes—Synthesis, Structure, and Biotechnological Potential. Adv. Funct. Mater. 2021, 31, 2103048. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. [Google Scholar] [CrossRef]
- Compton, O.C.; Cranford, S.W.; Putz, K.W.; An, Z.; Brinson, L.C.; Buehler, M.J.; Nguyen, S.T. Tuning the Mechanical Properties of Graphene Oxide Paper and Its Associated Polymer Nanocomposites by Controlling Cooperative Intersheet Hydrogen Bonding. ACS Nano 2012, 6, 2008–2019. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Shang, T.; Deng, Y.; Tao, Y.; Yang, Q. The Assembly of MXenes from 2D to 3D. Adv. Sci. 2020, 7, 1903077. [Google Scholar] [CrossRef] [Green Version]
- Quero, F.; Rosenkranz, A. Mechanical Performance of Binary and Ternary Hybrid MXene/Nanocellulose Hydro- and Aerogels—A Critical Review. Adv. Mater. Interfaces 2021, 8, 2100952. [Google Scholar] [CrossRef]
- Ye, S.; Yan, M.; Tan, X.; Liang, J.; Zeng, G.; Wu, H.; Song, B.; Zhou, C.; Yang, Y.; Wang, H. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light. Appl. Catal. B Environ. 2019, 250, 78–88. [Google Scholar] [CrossRef]
- Rosales, M.; Garcia, A.; Fuenzalida, V.M.; Espinoza-González, R.; Song, G.; Wang, B.; Yu, J.; Gracia, F.; Rosenkranz, A. Unprecedented arsenic photo-oxidation behavior of few- and multi-layer Ti3C2Tx nano-sheets. Appl. Mater. Today 2020, 20, 100769. [Google Scholar] [CrossRef]
- Chaves, A.; Azadani, J.G.; Alsalman, H.; da Costa, D.R.; Frisenda, R.; Chaves, A.J.; Song, S.H.; Kim, Y.D.; He, D.; Zhou, J.; et al. Bandgap engineering of two-dimensional semiconductor materials. Jpn. 2D Mater. Appl. 2020, 4, 29. [Google Scholar] [CrossRef]
- Lu, J.; Wu, J.; Carvalho, A.; Ziletti, A.; Liu, H.; Tan, J.; Chen, Y.; Castro Neto, A.H.; Özyilmaz, B.; Sow, C.H. Bandgap Engineering of Phosphorene by Laser Oxidation toward Functional 2D Materials. ACS Nano 2015, 9, 10411–10421. [Google Scholar] [CrossRef]
- Ba, K.; Jiang, W.; Cheng, J.; Bao, J.; Xuan, N.; Sun, Y.; Liu, B.; Xie, A.; Wu, S.; Sun, Z. Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride. Sci. Rep. 2017, 7, 45584. [Google Scholar] [CrossRef]
- Zhao, P.; Jian, M.; Zhang, Q.; Xu, R.; Liu, R.; Zhang, X.; Liu, H. A new paradigm of ultrathin 2D nanomaterial adsorbents in aqueous media: Graphene and GO, MoS2, MXenes, and 2D MOFs. J. Mater. Chem. A 2019, 7, 16598–16621. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, Z.; Dai, C.; Zhou, X.; Chen, W. Interfacial thermodynamics and kinetics of sorption of diclofenac on prepared high performance flower-like MoS2. J. Colloid Interface Sci. 2016, 481, 210–219. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Z.; Yan, C.; Wang, Y.; Ma, X.; Gao, P.; Feng, Y. Adsorption of estrone with few-layered boron nitride nanosheets: Kinetics, thermodynamics and mechanism. Chemosphere 2018, 207, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.; Zhang, J.; Li, H.; Wu, P.; Li, X.; Chang, H.; He, J.; Wu, H.; Li, H.; Zhu, W. Synthesis of boron nitride nanosheets with N-defects for efficient tetracycline antibiotics adsorptive removal. Chem. Eng. J. 2020, 387, 124138. [Google Scholar] [CrossRef]
- Chao, Y.; Tang, B.; Luo, J.; Wu, P.; Tao, D.; Chang, H.; Chu, X.; Huang, Y.; Li, H.; Zhu, W. Hierarchical porous boron nitride with boron vacancies for improved adsorption performance to antibiotics. J. Colloid Interface Sci. 2021, 584, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Zhao, H.; Sun, H.; Xiao, K.; Keung Wong, P. Enhanced adsorption and photocatalytic activities of ultrathin graphitic carbon nitride nanosheets: Kinetics and mechanism. Chem. Eng. J. 2020, 381, 122760. [Google Scholar] [CrossRef]
- Zhao, S.; Li, S.; Zhao, Z.; Su, Y.; Long, Y.; Zheng, Z.; Cui, D.; Liu, Y.; Wang, C.; Zhang, X.; et al. Microwave-assisted hydrothermal assembly of 2D copper-porphyrin metal-organic frameworks for the removal of dyes and antibiotics from water. Environ. Sci. Pollut. Res. 2020, 27, 39186–39197. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, H.; Xue, W.; Chang, Y.; Li, Y.; Guo, X.; Zhong, C. Rigidifying induced fluorescence enhancement in 2D porous covalent triazine framework nanosheets for the simultaneously luminous detection and adsorption removal of antibiotics. Chem. Eng. J. 2020, 384, 123382. [Google Scholar] [CrossRef]
- Jiang, W.; Cui, W.; Liang, R.; Qiu, J. Zwitterionic surface charge regulation in ionic covalent organic nanosheets: Synergistic adsorption of fluoroquinolone antibiotics. Chem. Eng. J. 2021, 417, 128034. [Google Scholar] [CrossRef]
- Ghani, A.A.; Shahzad, A.; Moztahida, M.; Tahir, K.; Jeon, H.; Kim, B.; Lee, D.S. Adsorption and electrochemical regeneration of intercalated Ti3C2Tx MXene for the removal of ciprofloxacin from wastewater. Chem. Eng. J. 2021, 421, 127780. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, H.; Chen, R.; Pham-Huy, C.; Hui, X.; He, H. Adsorptive removal of trace sulfonamide antibiotics by water-dispersible magnetic reduced graphene oxide-ferrite hybrids from wastewater. J. Chromatogr. B 2016, 1029–1030, 106–112. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Zeng, G.; Liu, S.; Hu, X.; Shu, D.; Jiang, L.; Tan, X.; Cai, X.; Yan, Z. Tetracycline absorbed onto nitrilotriacetic acid-functionalized magnetic graphene oxide: Influencing factors and uptake mechanism. J. Colloid Interface Sci. 2017, 485, 269–279. [Google Scholar] [CrossRef]
- Li, C.; Chen, C.-H.; Chen, W. Different influences of nanopore dimension and pH between chlorpheniramine adsorptions on graphene oxide-iron oxide suspension and particle. Chem. Eng. J. 2017, 307, 447–455. [Google Scholar] [CrossRef]
- Xiao, R.; Wang, S.; Ibrahim, M.H.; Abdu, H.I.; Shan, D.; Chen, J.; Lu, X. Three-dimensional hierarchical frameworks based on molybdenum disulfide-graphene oxide-supported magnetic nanoparticles for enrichment fluoroquinolone antibiotics in water. J. Chromatogr. A 2019, 1593, 1–8. [Google Scholar] [CrossRef]
- Park, C.M.; Heo, J.; Wang, D.; Su, C.; Yoon, Y. Heterogeneous activation of persulfate by reduced graphene oxide–elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine disrupting compounds in water. Appl. Catal. B Environ. 2018, 225, 91–99. [Google Scholar] [CrossRef]
- Zeng, Z.; Ye, S.; Wu, H.; Xiao, R.; Zeng, G.; Liang, J.; Zhang, C.; Yu, J.; Fang, Y.; Song, B. Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution. Sci. Total Environ. 2019, 648, 206–217. [Google Scholar] [CrossRef] [PubMed]
- González, J.A.; Bafico, J.G.; Villanueva, M.E.; Giorgieri, S.A.; Copello, G.J. Continuous flow adsorption of ciprofloxacin by using a nanostructured chitin/graphene oxide hybrid material. Carbohydr. Polym. 2018, 188, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, A.; Nawaz, M.; Moztahida, M.; Jang, J.; Tahir, K.; Kim, J.; Lim, Y.; Vassiliadis, V.S.; Woo, S.H.; Lee, D.S. Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions. Chem. Eng. J. 2019, 368, 400–408. [Google Scholar] [CrossRef]
- Khan, A.R.; Husnain, S.M.; Shahzad, F.; Mujtaba-ul-Hassan, S.; Mehmood, M.; Ahmad, J.; Mehran, M.T.; Rahman, S. Two-dimensional transition metal carbide (Ti3C2Tx) as an efficient adsorbent to remove cesium (Cs+). Dalt. Trans. 2019, 48, 11803–11812. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, H.; Xu, X.; Yu, H. Synthesis of reduced graphene oxide/NiO nanocomposites for the removal of Cr(VI) from aqueous water by adsorption. Microporous Mesoporous Mater. 2018, 255, 7–14. [Google Scholar] [CrossRef]
- Teoh, W.Y.; Scott, J.A.; Amal, R. Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors. J. Phys. Chem. Lett. 2012, 3, 629–639. [Google Scholar] [CrossRef]
- Tahir, M.; Tasleem, S.; Tahir, B. Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. Int. J. Hydrogen Energy 2020, 45, 15985–16038. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Y.; Dong, F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale 2015, 7, 15–37. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Yang, H.G. Facile fabrication of high-yield graphitic carbon nitride with a large surface area using bifunctional urea for enhanced photocatalytic performance. Appl. Catal. B Environ. 2017, 205, 624–630. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, J.; Zeng, G.; Cheng, W.; Yu, H.; Gu, Y.; Shi, L.; Yi, K. Stable, metal-free, visible-light-driven photocatalyst for efficient removal of pollutants: Mechanism of action. J. Colloid Interface Sci. 2018, 531, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, D.; Han, J.; Liu, C.; Ding, Y.; Wang, Z.; Wang, A. Adsorption enhanced photocatalytic degradation sulfadiazine antibiotic using porous carbon nitride nanosheets with carbon vacancies. Chem. Eng. J. 2020, 382, 123017. [Google Scholar] [CrossRef]
- Jian, J.; Jiang, G.; van de Krol, R.; Wei, B.; Wang, H. Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation. Nano Energy 2018, 51, 457–480. [Google Scholar] [CrossRef]
- Guo, H.; Niu, C.-G.; Feng, C.-Y.; Liang, C.; Zhang, L.; Wen, X.-J.; Yang, Y.; Liu, H.-Y.; Li, L.; Lin, L.-S. Steering exciton dissociation and charge migration in green synthetic oxygen-substituted ultrathin porous graphitic carbon nitride for boosted photocatalytic reactive oxygen species generation. Chem. Eng. J. 2020, 385, 123919. [Google Scholar] [CrossRef]
- Wang, W.; Xu, P.; Chen, M.; Zeng, G.; Zhang, C.; Zhou, C.; Yang, Y.; Huang, D.; Lai, C.; Cheng, M.; et al. Alkali Metal-Assisted Synthesis of Graphite Carbon Nitride with Tunable Band-Gap for Enhanced Visible-Light-Driven Photocatalytic Performance. ACS Sustain. Chem. Eng. 2018, 6, 15503–15516. [Google Scholar] [CrossRef]
- Yi, X.; Yuan, J.; Tang, H.; Du, Y.; Hassan, B.; Yin, K.; Chen, Y.; Liu, X. Embedding few-layer Ti3C2Tx into alkalized g-C3N4 nanosheets for efficient photocatalytic degradation. J. Colloid Interface Sci. 2020, 571, 297–306. [Google Scholar] [CrossRef]
- Ahern, J.C.; Fairchild, R.; Thomas, J.S.; Carr, J.; Patterson, H.H. Characterization of BiOX compounds as photocatalysts for the degradation of pharmaceuticals in water. Appl. Catal. B Environ. 2015, 179, 229–238. [Google Scholar] [CrossRef]
- Sharma, K.; Dutta, V.; Sharma, S.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, P.; Singh, P. Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: A review. J. Ind. Eng. Chem. 2019, 78, 1–20. [Google Scholar] [CrossRef]
- Tang, L.; Lv, Z.; Xue, Y.; Xu, L.; Qiu, W.; Zheng, C.; Chen, W.; Wu, M. MIL-53(Fe) incorporated in the lamellar BiOBr: Promoting the visible-light catalytic capability on the degradation of rhodamine B and carbamazepine. Chem. Eng. J. 2019, 374, 975–982. [Google Scholar] [CrossRef]
- Gao, X.; Peng, W.; Tang, G.; Guo, Q.; Luo, Y. Highly efficient and visible-light-driven BiOCl for photocatalytic degradation of carbamazepine. J. Alloys Compd. 2018, 757, 455–465. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Niu, J.; Chen, M. Facile construction of BiOBr/BiOCOOH p-n heterojunction photocatalysts with improved visible-light-driven photocatalytic performance. Sep. Purif. Technol. 2019, 225, 24–32. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, H.; Zhu, W.; Zhang, X.; Li, R.; Chen, C.; Huang, Y. L-Cysteine directing synthesis of BiOBr nanosheets for efficient cefazolin photodegradation: The pivotal role of thiol. J. Hazard. Mater. 2021, 414, 125544. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Zhang, X.; Qiu, H.-B.; Huang, G.-X.; Yu, H.-Q. Bi24O31Br10 nanosheets with controllable thickness for visible-light-driven catalytic degradation of tetracycline hydrochloride. Appl. Catal. B Environ. 2017, 205, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Bi, W.; Zhai, P.; Wang, X.; Li, H.; Mailhot, G.; Dong, W. Adsorption and photocatalytic degradation of pharmaceuticals by BiOClxIy nanospheres in aqueous solution. Appl. Surf. Sci. 2016, 360, 240–251. [Google Scholar] [CrossRef]
- Zhang, L.; Yue, X.; Liu, J.; Feng, J.; Zhang, X.; Zhang, C.; Li, R.; Fan, C. Facile synthesis of Bi5O7Br/BiOBr 2D/3D heterojunction as efficient visible-light-driven photocatalyst for pharmaceutical organic degradation. Sep. Purif. Technol. 2020, 231, 115917. [Google Scholar] [CrossRef]
- Li, H.; Long, B.; Ye, K.-H.; Cai, Y.; He, X.; Lan, Y.; Yang, Z.; Ji, H. A recyclable photocatalytic tea-bag-like device model based on ultrathin Bi/C/BiOX (X = Cl, Br) nanosheets. Appl. Surf. Sci. 2020, 515, 145967. [Google Scholar] [CrossRef]
- Shen, G.; Pu, Y.; Sun, R.; Shi, Y.; Cui, Y.; Jing, P. Enhanced visible light photocatalytic performance of a novel heterostructured Bi4Ti3O12/BiOBr photocatalyst. New J. Chem. 2019, 43, 12932–12940. [Google Scholar] [CrossRef]
- Sivula, K.; van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 1, 15010. [Google Scholar] [CrossRef]
- Xu, P.; Shen, X.; Luo, L.; Shi, Z.; Liu, Z.; Chen, Z.; Zhu, M.; Zhang, L. Preparation of TiO2/Bi2W6 nanostructured heterojunctions on carbon fibers as a weaveable visible-light photocatalyst/photoelectrode. Environ. Sci. Nano 2018, 5, 327–337. [Google Scholar] [CrossRef]
- Leong, S.; Li, D.; Hapgood, K.; Zhang, X.; Wang, H. Ni(OH)2 decorated rutile TiO2 for efficient removal of tetracycline from wastewater. Appl. Catal. B Environ. 2016, 198, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Jiang, W.; Nasr, M.; Bechelany, M.; Miele, P.; Wang, H.; Xu, P. Enhanced visible light photocatalysis by TiO2–BN enabled electrospinning of nanofibers for pharmaceutical degradation and wastewater treatment. Photochem. Photobiol. Sci. 2019, 18, 2921–2930. [Google Scholar] [CrossRef]
- Taoufik, N.; Boumya, W.; Achak, M.; Sillanpää, M.; Barka, N. Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals. J. Environ. Manag. 2021, 288, 112404. [Google Scholar] [CrossRef]
- Ma, M.; Chen, L.; Zhao, J.; Liu, W.; Ji, H. Efficient activation of peroxymonosulfate by hollow cobalt hydroxide for degradation of ibuprofen and theoretical study. Chin. Chem. Lett. 2019, 30, 2191–2195. [Google Scholar] [CrossRef]
- Ding, M.; Chen, W.; Xu, H.; Shen, Z.; Lin, T.; Hu, K.; Lu, C.h.; Xie, Z. Novel α-Fe2O3/MXene nanocomposite as heterogeneous activator of peroxymonosulfate for the degradation of salicylic acid. J. Hazard. Mater. 2020, 382, 121064. [Google Scholar] [CrossRef]
- Yang, L.; Chen, H.; Jia, F.; Peng, W.; Tian, X.; Xia, L.; Wu, X.; Song, S. Emerging Hexagonal Mo2C Nanosheet with (002) Facet Exposure and Cu Incorporation for Peroxymonosulfate Activation Toward Antibiotic Degradation. ACS Appl. Mater. Interfaces 2021, 13, 14342–14354. [Google Scholar] [CrossRef]
- Nie, M.; Li, Y.; Li, L.; He, J.; Hong, P.; Zhang, K.; Cai, X.; Kong, L.; Liu, J. Ultrathin iron-cobalt oxide nanosheets with enhanced H2O2 activation performance for efficient degradation of tetracycline. Appl. Surf. Sci. 2021, 535, 147655. [Google Scholar] [CrossRef]
- Xing, D.; Cui, Z.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Cheng, H.; Dai, Y.; Huang, B. Two-dimensional π–d conjugated metal–organic framework Fe3(hexaiminotriphenylene)2 as a photo-Fenton like catalyst for highly efficient degradation of antibiotics. Appl. Catal. B Environ. 2021, 290, 120029. [Google Scholar] [CrossRef]
- Mi, X.; Han, J.; Sun, Y.; Li, Y.; Hu, W.; Zhan, S. Enhanced catalytic degradation by using RGO-Ce/WO3 nanosheets modified CF as electro-Fenton cathode: Influence factors, reaction mechanism and pathways. J. Hazard. Mater. 2019, 367, 365–374. [Google Scholar] [CrossRef]
- Tang, H.; Shang, Q.; Tang, Y.; Yi, X.; Wei, Y.; Yin, K.; Liu, M.; Liu, C. Static and continuous flow photoelectrocatalytic treatment of antibiotic wastewater over mesh of TiO2 nanotubes implanted with g-C3N4 nanosheets. J. Hazard. Mater. 2020, 384, 121248. [Google Scholar] [CrossRef]
- Wang, J.; Xu, M.; Liang, X.; Zhang, Y.; Yang, D.; Pan, L.; Fang, W.; Zhu, C.; Wang, F. Development of a novel 2D Ni-MOF derived NiO@C nanosheet arrays modified Ti/TiO2NTs/PbO2 electrode for efficient electrochemical degradation of salicylic acid wastewater. Sep. Purif. Technol. 2021, 263, 118368. [Google Scholar] [CrossRef]
- Lee, X.J.; Hiew, B.Y.Z.; Lai, K.C.; Lee, L.Y.; Gan, S.; Thangalazhy-Gopakumar, S.; Rigby, S. Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. J. Taiwan Inst. Chem. Eng. 2019, 98, 163–180. [Google Scholar] [CrossRef]
- Naguib, M.; Unocic, R.R.; Armstrong, B.L.; Nanda, J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalt. Trans. 2015, 44, 9353–9358. [Google Scholar] [CrossRef]
- Limbu, T.B.; Chitara, B.; Orlando, J.D.; Garcia Cervantes, M.Y.; Kumari, S.; Li, Q.; Tang, Y.; Yan, F. Green synthesis of reduced Ti3C2TX MXene nanosheets with enhanced conductivity, oxidation stability, and SERS activity. J. Mater. Chem. C 2020, 8, 4722–4731. [Google Scholar] [CrossRef]
- Guo, X.; Mei, N. Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 2014, 22, 105–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cossutta, M.; Vretenar, V.; Centeno, T.A.; Kotrusz, P.; McKechnie, J.; Pickering, S.J. A comparative life cycle assessment of graphene and activated carbon in a supercapacitor application. J. Clean. Prod. 2020, 242, 118468. [Google Scholar] [CrossRef]
Pure 2D Nanomaterials | |||||||
Material | Pollutant | Specific area/m2 g−1 | Concentration (pollutant/adsorbent) | Wastewater characteristics | Optimal adsorption characteristics | Maximum adsorption capacity | Ref. |
Flower-like single-layer MoS2 | diclofenac | 23.9 | 10 mg L−1/ 0.2–0.8 g L−1 (optimal: 0.5 g L−1) | Synthetic, temperature: 25 °C | >90% (in 5 min)/ equilibrium time: 10 min | 217 mg g−1 | [62] |
Few-layer boron-nitride nanosheets | estrone | 900 | 500 μg L−1/ 0.05 g L−1 | Synthetic, temperature: 25 °C | >80% (in 10 min)/ equilibrium time: 2 h | 249 mg g−1 | [63] |
Defective boron-nitride nanosheets | tetracycline | 533 | 200–250 mg L−1 (optimal: 250 mg L−1)/ 0.2–2 g L−1 (optimal: 2 g L−1) | Synthetic, temperature: 25 °C | Fast uptake within 50 min/ equilibrium time: 6 h | 1101 mg g−1 | [64] |
Defective boron-nitride nanosheets with boron vacancies | tetracycline | 1104 | 200 mg L−1/ 0.2 g L−1 | Synthetic, pH = 3.2, temperature: 25 °C | Fast uptake within 50 min/ equilibrium time: 3 h | 438 mg g−1 | [65] |
Few-layer g-C3N4 | tetracycline | 178 | 20 mg L−1/ 0.2 g L−1 | Synthetic, pH = 6.5−7.5, temperature: 25 °C | >75% (in 60 min)/ adsorption + photocatalytic process | 40 mg g−1 | [66] |
Copper-porphyrin | tetracycline | 342 | 10 mg L−1/ 0.2 g L−1 | Synthetic, pH = 5 | >85% (in 6 h)/ equilibrium time: 30 min/ adsorption + photocatalytic process | 150 mg g−1 | [67] |
Covalent triazine framework nano-sheets | nitrofurazone | 565 | 50 ppm/ 0.5 g L−1 | Synthetic, pH = 6 | Fast uptake within 60 min/ equilibrium time: 2 h | 351 mg g−1 | [68] |
Few-layer, zwitter-ionic COFs | norfloxacin | 187 | 10–500 mg L−1 (optimal: 10 mg L−1)/ 0.5 g L−1 | Synthetic, pH = 8 | 99.4% (in 30 s)/ equilibrium time: 1 min | 824 mg g−1 | [69] |
Multi-layer Ti3C2Tx | ciprofloxacin | --- | 10 mg L−1/ 0.4 g L−1 | Synthetic, pH = 5.5, temperature: 25 °C | >80% (in 30 s)/ equilibrium time: few minutes | 208 mg g−1 | [70] |
Binary and ternary nanocomposites | |||||||
Material | Pollutant | Specific area/m2 g−1 | Concentration (pollutant/adsorbent) | Wastewater characteristics | Optimal adsorption characteristics | Maximum adsorption capacity | Ref. |
rGO/Fe3O4 | sulfonamide antibiotics | --- | trace amounts/ 0.5–3 g L−1 (optimal: 2 g L−1) | Tap water, sewage | Fast uptake within 10 min/ equilibrium time: 15 min | --- | [71] |
GO/Fe3O4 | tetracycline | 249 | 30 and 50 mg L−1 (optimal: 50 mg L−1)/ 9.6 g L−1 | Synthetic, pH = 2–11, temperature: 25 °C | Fast uptake within 20 min/ equilibrium time: 10 h | 212 mg g−1 | [72] |
GO/Fe3O4 (suspensions) | chlorpheniramine | 221 | 120 mg L−1/ --- | Synthetic, pH = 6 | Fast uptake within 5 min/ equilibrium time: 60 min | 300 mg g−1 | [73] |
MoS2/GO/Fe3O4 | lecofloxacin, pazcofloxacin, gatifloxacin | 135 | trace amounts/ 0.05–0.25 g L−1 (optimal: 0.2 g L−1) | Synthetic, pH = 0.5−4 | Fast uptake within 2 min/ equilibrium time: 4 min | 5 mg g−1 | [74] |
rGO/Ag/Fe3O4 | acetaminophen, ibuprofen, naproxen | --- | ---/ 0.1 g L−1 | Synthetic, pH = 4–10, temperature: 25 °C | >99% of acetaminophen (in 1 h)/equilibrium time: 6 h | --- | [75] |
g-MoS2/biochar | tetracycline | 176.8 | 100 mg L−1/ 0.4 g mL−1 | Synthetic, pH = 2–11, temperature: 25 °C | >80% (in 4 h)/ equilibrium time: 15 h | 249 mg g−1 | [76] |
chitin/GO | ciprofloxacin | --- | 4–850 mg L−1/ 5 g L−1 | Synthetic, pH = 6.3, temperature: 25 °C | Fast uptake within 100 min/ equilibrium time: 6 h | 270 mg g−1 | [77] |
Graphitic Carbon Nitride-Based Materials | ||||||||
Material | Band gap/eV | Pollutant | Specific area/m2 g−1 | Concentration (pollutant/catalyst) | Wastewater characteristics | Maximum degradation | Degradation rate | Ref. |
MCU-C3N4 | 2.79 | tetracycline, ciprofloxacin | 122.53 | 10 mg L−1/ 0.7 g L−1 | Synthetic | 81.60% of tetracycline (in 80 min) 65.80% of ciprofloxacin (in 90 min) | 14.57 10.44 | [86] |
Cv-CNNs | 2.83 | sulfadiazine | 77.72 | 10 mg L−1/ 0.02 g L−1 | Synthetic, temperature: 25 °C | 100% (in 90 min) | 555.56 | [87] |
OCN-24-550 | 2.54 | oxytetracycline | 126 | 20 mg L−1/ 1 g L−1 | Synthetic | 85.76% (in 120 min) | 14.29 | [89] |
KMCN(0.05) | 2.33 | tetracycline | 50.19 | 20 mg L−1/ 1 g L−1 | Synthetic, temperature: ambient | 85.13% (in 60 min) | 28.38 | [90] |
Ti3C2Tx/C3N4 | --- | tetracycline | 37.20 | 20 mg L−1/ 0.2 g L−1 | Synthetic | 77% (in 60 min) | 128.33 | [91] |
Bismuth oxyhalides-based materials | ||||||||
Material | Band gap/eV | Pollutant | Specific area/m2 g−1 | Concentration (pollutant/catalyst) | Wastewater characteristic | Maximum degradation | Degradation rate | Ref. |
Cyst-BiOBr | 2.3 | cefazolin | 11.38 | 10 mg L−1/ 0.2 g L−1 | Synthetic, pH = 6.7,temperature: 20 °C | 87% (in 180 min) | 24.17 | [97] |
Bi24O31Br10 | 2.3 | tetracycline | 8.57 | 10 mg L−1/ 0.34 g L−1 | Synthetic, temperature: ambient | 95% (in 90 min) | 31.05 | [98] |
BiOClxIy | 2.12 | acetaminophen | 34.93 | 20 mg L−1/ 0.6 g L−1 | Synthetic, pH = 7.36, temperature: 25 °C | 80% (in 180 min) | 14.81 | [99] |
Bi5O7Br/BiOBr | --- | carbamazepine | --- | 10 mg L−1/ 0.5 g L−1 | Synthetic, temperature: 25 °C | 92% (in 90 min) | 20.44 | [100] |
Bi/C/BiOCl | --- | tetracycline | 57.80 | 10 mg L−1/ 0.2 g L−1 | Synthetic, temperature: 25 °C | 80% (in 15 min) | 266.67 | [101] |
Bi4Ti3O12/BiOBr | --- | ciprofloxacin, tetracycline | --- | 20 mg L−1/ --- | Synthetic, temperature: ambient | 96% of ciprofloxacin (in 210 min)97% of tetracycline (in 210 min) | --- | [102] |
TiO2-based materials | ||||||||
Material | Band gap/ eV | Pollutant | Specific area/m2 g−1 | Concentration (pollutant/catalyst) | Wastewater characteristic | Maximum degradation | Degradation rate | Ref. |
TiO2-BN | --- | ibuprofen | 49.60 | 5 mg L−1/ 0.2 g L−1 | Synthetic | 100% (in 120 min) | 20.83 | [104] |
CF/TiO2/Bi2WO6 | --- | tetracycline | --- | 10 mg L−1/ 3 g L−1 | Synthetic, temperature: 20 °C | 95.10% (in 60 min) | 5.28 | [105] |
Ni(OH)2-TiO2 | --- | tetracycline | 96.60 | 100 mg L−1/ 10 g L−1 | Synthetic | 74% (in 120 min) | 6.17 | [106] |
Peroxymonosulfate Activation | ||||||
Material | Pollutant | Specific area/m2 g−1 | Concentration (pollutant/catalyst) | Wastewater characteristics | Maximum degradation | Ref. |
h-Co(OH)2 | ibuprofen | 132.36 | 10 μmol L−1/ 0.2 g L−1 | 0.2 mmol L−1 PMS, pH = 3–11 (optimal: 7), room temperature | ~98.6% (in 10 min) | [108] |
α-Fe2O3/Mxene | salicylic acid | 37.2 | 10–100 mg L−1 (optimal: 20 mg L−1)/ 0.1–1 g L−1 (optimal: 0.2 g L−1) | 0.1–0.8 g L−1 PMS (optimal: 0.2 g L−1), pH = 3–9 (optimal: 7), temperature: 25 °C | ~96.7% (in 120 min) | [109] |
Cu-Mo2C | Tetracycline 1 | --- | 10–50 ppm (optimal: 40 ppm)/ 0.05–0.40 g L−1 (optimal: 0.2 g L−1) | 0–0.5 g L−1 PMS (optimal: 0.3 g L−1), pH = 3–11 (optimal: 5), temperature: 15–45 °C (optimal: 25 °C) 2 | ~100% (in 20 min) | [110] |
Fenton and Fenton-like reactions | ||||||
Material | Pollutant | Specific area/m2 g−1 | Concentration (pollutant/catalyst) | Wastewater characteristics | Maximum degradation | Ref. |
CoFe-ONSs | tetracycline | 144.1 | 40–70 mg L−1 (optimal: 50 mg L−1)/ 0.2–1.2 g L−1 (optimal: 0.3 g L−1) | 5–40 mM H2O2 (optimal: 20 mM), pH = 3–8 (optimal: 7), temperature: 15–35 °C (optimal: 25ᵒC) 3 | ~83.5% (in 50 min) | [111] |
Fe3(HITP)2 | Tetracycline 4 | 260.2 | 20 mg L−1/ 0.1–0.4 g L−1 (optimal: 0.4 g L−1) | 4–40 mM H2O2 (optimal: 20 mM), pH = 3–9 (optimal: 4.5), room temperature, under visible light illumination | ~96.7% (in 30 min) | [112] |
Electrochemical processes | ||||||
Material | Pollutant | Specific area/m2 g−1 | Concentration (pollutant) | Wastewater characteristics | Maximum degradation | Ref. |
CF/RGO-Ce/WO3 | ciprofloxacin | 69.71 | 50 mg L−1 | 0.05 mol L−1 Na2SO4, 0.05–0.30 mmol L−1 FeSO4·7H2O (optimal: 0.1 mmol L−1), pH = 3.0, applied current: 400 mA room temperature | ~100% (in 60 min) | [113] |
TiO2NTs/g-C3N4 | Tetracycline 5 | --- | 10 mg L−1 | 0.1 mol L−1 Na2SO4, applied voltage: 0.2–2.5 V vs. Ag/AgCl (optimal: 1.0 V), under solar light illumination 6 | ~95% (in 60 min) | [114] |
Ti/TiO2NTs/NiO@C/PbO2 | salicylic acid | --- | 10–90 mg L−1 (optimal: 30 mg L−1) | 0.025–0.3 mol L−1 Na2SO4 (optimal: 0.05–0.1 mol L−1), pH = 3–11 (optimal: 3–5), applied current: 30–120 mA cm−2 (optimal: 70 mA cm−2) | ~96.29% (in 180 min) | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Poggini, S.; Rosenkranz, A.; Colet-Lagrille, M. Two-Dimensional Nanomaterials for the Removal of Pharmaceuticals from Wastewater: A Critical Review. Processes 2021, 9, 2160. https://doi.org/10.3390/pr9122160
González-Poggini S, Rosenkranz A, Colet-Lagrille M. Two-Dimensional Nanomaterials for the Removal of Pharmaceuticals from Wastewater: A Critical Review. Processes. 2021; 9(12):2160. https://doi.org/10.3390/pr9122160
Chicago/Turabian StyleGonzález-Poggini, Sergio, Andreas Rosenkranz, and Melanie Colet-Lagrille. 2021. "Two-Dimensional Nanomaterials for the Removal of Pharmaceuticals from Wastewater: A Critical Review" Processes 9, no. 12: 2160. https://doi.org/10.3390/pr9122160
APA StyleGonzález-Poggini, S., Rosenkranz, A., & Colet-Lagrille, M. (2021). Two-Dimensional Nanomaterials for the Removal of Pharmaceuticals from Wastewater: A Critical Review. Processes, 9(12), 2160. https://doi.org/10.3390/pr9122160