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Abstract: Due to various potential toxicological threats to living organisms even at low concentrations,
pharmaceuticals and personal care products in natural water are seen as an emerging environmental
issue. The low efficiency of removal of pharmaceuticals and personal care products by conventional
wastewater treatment plants calls for more efficient technology. Research on advanced oxidation
processes has recently become a hot topic as it has been shown that these technologies can effectively
oxidize most organic contaminants to inorganic carbon through mineralization. Among the advanced
oxidation processes, the electrochemical advanced oxidation processes and, in general, electrochemical
oxidation or anodic oxidation have shown good prospects at the lab-scale for the elimination of
contamination caused by the presence of residual pharmaceuticals and personal care products in
aqueous systems. This paper reviewed the effectiveness of electrochemical oxidation in removing
pharmaceuticals and personal care products from liquid solutions, alone or in combination with other
treatment processes, in the last 10 years. Reactor designs and configurations, electrode materials,
operational factors (initial concentration, supporting electrolytes, current density, temperature, pH,
stirring rate, electrode spacing, and fluid velocity) were also investigated.

Keywords: advanced oxidation processes; electrochemical advanced oxidation processes;
pharmaceuticals and personal care products; electrochemical oxidation; anodic oxidation

1. Introduction

The concern for pharmaceuticals and personal care products (PPCPs) as toxic substances in
the environment and the essential to assess their environmental risks have significantly increased
recently. PPCPs are defined as a group of compounds that is including pharmaceutical drugs, cosmetic
ingredients, food supplements, and ingredients in other consumer products (e.g., shampoos, lotions) [1].
Pharmaceuticals are used to prevent or treat diseases on humans and animals, whereas personal
care products (PCPs) are used mostly to improve the quality of daily life [2]. They are considered as
emerging pollutants (new products or chemicals without regulatory status) and whose effects on the
environment and human health are unidentified [3]. Due to the widespread occurrence in water bodies,
regardless of the low concentrations (normally ranging from ng/L to µg/L), residues of PPCP can
harm human and animal health when it enters and accumulates in the food chain, causing unknown
long-term effects [2,4].

During wastewater treatment (WWT) processes, many PPCPs experience microbial mediated
reactions [5] in the environment. Thus, transformation products are formed. The transformation
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of PPCPs can occur during WWT, depending on the compound’s physicochemical properties and
conditions, where PPCPs can be destroyed or partially transformed or remained unchanged [6]. In this
review, it can be seen that the effect of PPCPs in the environment does not only depend on concentration
but also persistence, bioaccumulation, biotransformation, and elimination. Some PPCPs produce
metabolites or by-products more harmful than the parent compounds. Toxicity evaluation is an
important environmental pollution control factor since the degradation by-products from the initial
structure can be more toxic.

Biodegradation, photodegradation, and other processes of abiotic transformation, such as
hydrolysis [7], can reduce environmental concentrations of PPCPs and result in partial loss and
mineralization of these compounds. Chiron et al. [8] revealed that acridine is a photodegradation
product of carbamazepine under artificial estuarine water conditions, whereas tetracycline could not
be photodegraded due to its sediment adsorption [9].

The electrochemical oxidation process (EOP) can be described as an electrochemical technology
capable of achieving oxidation of contaminants from water or wastewater, either by direct or mediated
oxidation processes originating on the anode surface of the electrochemical cell. This means that
these oxidative processes should not actually be carried out on the anode, but only on its surface.
As a consequence, this technique incorporates two main types of processes [10]: heterogeneous and
homogeneous oxidation. Direct anodic oxidation or electrolysis occurs directly on the anode (M) with
direct charge transfer reactions between the surface of the anode and the organic contaminants involved.
The mechanism requires only the mediation of electrons that are capable of oxidizing such organic
compounds at defined potentials more negative the oxygen evolution potential [11]. The indirect
electrochemical oxidation by reactive oxygen species is based on the electro-generation of adsorbed
*OH (E◦ = 2.8 V/SHE) onto the anode surface as an intermediate of the OEP [10,12].

This paper intends to be a powerful tool for researchers in the pursuit of comprehensive information
on the removal of PPCPs from liquid solutions by EOP, alone or in combination with other treatment
processes. The remediation of aqueous or real wastewater was assessed, regarding many features like
the configuration of the electrochemical reactor, anode and cathode characteristics, and operational
parameters such as initial PPCPs concentration, supporting electrolytes, current density (j), temperature,
pH, temperature, stirring rate, electrode spacing, and fluid velocity.

2. Origins and Classification of PPCPs

Direct and indirect pathways can introduce PPCPs into the environment. PPCPs may enter surface
water by direct discharge into surface water from factories, hospitals, households, and WWTPs, as
well as through land runoff in the case of biosolids distributed over agricultural land that may touch
groundwater by leaching or bank filtration. Sediment can adsorb PPCPs within the surface water
compartment because of various binding sites [13]. Soil may also be one of the PPCPs sinks. PPCPs
can pass through irrigation into the soil with PPCPs containing treated and untreated wastewater.
These can also be moved to the soil through an atmospheric wet deposition for some PPCPs [14].

Wastewater, including domestic, municipal, and hospital wastewater, are the primary sources that
bring pharmaceuticals into the environment (both point- and nonpoint-sources) from various activities
such as wastes (human and animal), landfill leachate, biosolid, and direct disposal of pharmaceuticals.
Such pharmaceuticals then can not be biodegradable ultimately in WWTPs and enter the receiving
waters [15–17]. In WWTPs, activated sludge is the main process for secondary treatment which can
remove various kinds of PPCPs from wastewater. However, the removal rate depends greatly on
physiochemical characteristics, reactors applied, and operational conditions (hydraulic retention time,
sludge retention time, and pH) as well [18]. Table 1 summarizes the target PPCPs selected for this
study and their structures, Table 2 updates the removal efficiency of PPCPs by combining biological
treatment with other processes.
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Table 1. Structures, chemical abstracts service registry number (CAS), and classification for the target pharmaceuticals and personal care products (PPCPs) selected for
this study.

Compounds
(CAS)

Classification
Structure

Compounds
(CAS)

Classification
Structure

Aspirin
(50-78-2)

Nonsteroidal anti-inflammatory
drugs (NSAIDs)
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Table 2. The removal efficiency of PPCPs by combining biological treatment with other processes. 

Compounds 
Initial 

Concentration 
Treatment Processes 

Removal 

Efficiency (%) 
Ref. 

Aspirin 930 ng/L Modified Bardenpho process 92 [19] 

Atenolol 

255 ng/L Grit tanks|primary sedimentation|bioreactor|clarifiers 47.1 [19] 

1 197 ng/L Pretreatment|primary (settling)|secondary activated sludge (AS) 14.4 [20] 

2.3 ± 2.0 Grit removal|primary clarifier|denitrification|nitrification|second clarifier 84 [21] 

Berberine 75.0–375.0 mg/L Upflow anaerobic sludge blanket (UASB)–membrane bioreactor (MBR) 99 [22] 

Caffeine 
82 ± 36 μg/L Grit removal|primary clarifier|denitrification|nitrification|second clarifier 99.7 [21] 

22 849 ng/L Anaerobic/Anoxic/Oxic (A2O) 94.9 [23] 

Carbamazepine 

208 - 416 ng/l A series of different waste stabilization ponds 73 [24] 

129 ng/l Pretreatment|primary (settling)|secondary AS 9.5 [20] 

2.0 ± 1.3 μg/L Grit removal|primary clarifier|denitrification|nitrification|second clarifier 0 [21] 

Carboplatin 4.7 to 145 μg/L Adsorption to AS 70% [25] 

Ceftazidime 40 mg/L Coupling ultraviolet (UV)|algae-algae treatment 97.26 [26] 

Ceftriaxone 14 µg/L AS process <1 [27] 

Cephalexin 4.6 mg/L Grit channels|primary clarifies|conventional AS|Final settling 87 [28] 

Chloramphenicol 
206 ± 56 ng/L Preliminary screening|primary sedimentation|conventional AS treatment >70 [29] 

31 ± 16 ng/L Screen|primary clarifier|AS system for denitrification and nitrification 50 [30] 
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Table 2. The removal efficiency of PPCPs by combining biological treatment with other processes.

Compounds Initial Concentration Treatment Processes Removal Efficiency (%) Ref.

Aspirin 930 ng/L Modified Bardenpho process 92 [19]

Atenolol
255 ng/L Grit tanks|primary sedimentation|bioreactor|clarifiers 47.1 [19]

1197 ng/L Pretreatment|primary (settling)|secondary activated sludge (AS) 14.4 [20]
2.3 ± 2.0 Grit removal|primary clarifier|denitrification|nitrification|second clarifier 84 [21]

Berberine 75.0–375.0 mg/L Upflow anaerobic sludge blanket (UASB)–membrane bioreactor (MBR) 99 [22]

Caffeine
82 ± 36 µg/L Grit removal|primary clarifier|denitrification|nitrification|second clarifier 99.7 [21]
22,849 ng/L Anaerobic/Anoxic/Oxic (A2O) 94.9 [23]

Carbamazepine
208–416 ng/L A series of different waste stabilization ponds 73 [24]

129 ng/L Pretreatment|primary (settling)|secondary AS 9.5 [20]
2.0 ± 1.3 µg/L Grit removal|primary clarifier|denitrification|nitrification|second clarifier 0 [21]

Carboplatin 4.7 to 145 µg/L Adsorption to AS 70% [25]
Ceftazidime 40 mg/L Coupling ultraviolet (UV)|algae-algae treatment 97.26 [26]
Ceftriaxone 14 µg/L AS process <1 [27]
Cephalexin 4.6 mg/L Grit channels|primary clarifies|conventional AS|Final settling 87 [28]

Chloramphenicol 206 ± 56 ng/L Preliminary screening|primary sedimentation|conventional AS treatment >70 [29]
31 ± 16 ng/L Screen|primary clarifier|AS system for denitrification and nitrification 50 [30]

Ciprofloxacin 2200 ng/L Grit channels|primary clarifies|conventional AS −88.6 [31]
5524 ng/L Pretreatment|primary (settling)|secondary AS 57 [20]

Clofibric acid
2 mg/L Aerobic sequencing batch reactors (SBRs) with mixed microbial cultures 51 [32]

0.25 ± 0.09 µg/L Grit removal|primary clarifier|denitrification|nitrification|second clarifier 52 [21]
26 ng/L Pretreatment|primary (settling)|secondary AS 54.2 [20]

Diclofenac
20–70 mg/L Primary treatment|Orbal oxidation ditch|UV disinfection 10–60 [33]

2.0 ± 1.5 µg/L Grit removal|primary clarifier|denitrification|nitrification|second clarifier 96 [21]
232 ng/L Pretreatment|primary (settling)|secondary AS 5 [20]

Enrofloxacin 9–170 ng/L Conventional AS|UV disinfection 65 [34]
Estrone 57 ng/L Grit channels|primary clarifies|conventional AS 93.7 [31]

Ibuprofen
4500 ng/L Grit channels|primary clarifies|conventional AS 99.7 [31]

3.4 ± 1.7 µg/L Grit removal|primary clarifier|denitrification|nitrification|second clarifier 96 [21]
2687 ng/L Pretreatment|primary (settling)|secondary AS 95 [20]

Iohexol 9.0 ± 2.0 µg/L Grit removal|primary clarifier|denitrification|nitrification|second clarifier 89 [21]
2-methyl-4-isothiazolin-

3-one 1–3 mg/L Aerobic process 80–100 [35]

Ketoprofen 441 ng/L Anaerobic/Anoxic/Oxic (A2O) 11.2 [23]
Lamivudine 210 ± 13 ng/L Screen|aerated grit-removal|primary clarifier|nitrification/denitrification >76 [36]
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Table 2. Cont.

Compounds Initial Concentration Treatment Processes Removal Efficiency (%) Ref.

Methotrexate 7.30–55.8 ng/L Pretreatment|primary (settling)|secondary AS 100 [20]
Metronidazole 90 ng/L Anaerobic/Anoxic/Oxic (A2O) 38.7 [23]
Musk ketone 0.640 ± 0.395 µg/L Primary gravitational settling|AS 91.0 ± 5.2 [37]

Naproxen 3000 ng/L Grit channels|primary clarifies|conventional AS 96.2 [31]
2363 ng/L Pretreatment|primary (settling)|secondary AS 60.9 [20]

DEET 503 ng/L Primary|secondary treatment with AS 19.2–46.2 [38]
Norfloxacin 229 ± 42 ng/L Screen|primary clarifier|AS system for denitrification and nitrification 66 [30]

Ofloxacin
2100 ng/L Grit channels|primary clarifies|conventional AS 124.2 [31]
2275 ng/L Pretreatment|primary (settling)|secondary AS 64.1 [20]

Omeprazole 365 ng/L Pretreatment|primary (settling)|secondary AS 8.5 [20]
Methyl Paraben 801 ng/L Conventional biological treatment with P and N removal 100 [39]

Paracetamol
218,000 ng/L Modified Bardenpho process 99 [19]
23,202 ng/L Pretreatment|primary (settling)|secondary AS 100 [20]

Rifampicin 0–31 ng/L Secondary treatment process: AS, biological filtration oxygenated reactor,
anoxic/oxic (A/O), cyclic AS technology (CAST), and A2O 0–100 [40]

Salicylic acid 5.866 µg/L Primary|secondary treatment: trickling filter beds|final clarification. >98 [41]

Sulfamethoxazole

7400 ng/L Grit channels|primary clarifies|conventional AS −35.8 [31]
0.82 ± 0.23 µg/L Grit removal|primary clarifier|denitrification|nitrification|second clarifier 24 [21]

524 ng/L Pretreatment|primary (settling)|secondary AS 31.2 [20]
118 ± 17 ng/L Screen|primary clarifier|AS system for denitrification and nitrification 64 [30]

Sulfachloropyridazine 0.19 µg/L Conventional AS 62 [42]
Sulfadiazine 72 ± 22 ng/L Screen|primary clarifier|AS system for denitrification and nitrification 50 [30]
Tetracycline 257 ± 176 ng/L Preliminary screening|primary sedimentation|conventional AS treatment 69 [29]
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3. Analytical Methods of PPCPs

Figure 1 shows the analytical method that is essential to investigate the occurrence of PPCPs in
the environment, whichs consists of several main steps. This includes selecting appropriate analytical
instruments (Table 3), which depend on the characteristics of PPCPs; extracting and purifying the
samples by using techniques such as solid-phase extraction (SPE), liquid-liquid extraction (LLE),
liquid-liquid micro-extraction (LLME), and solid-phase micro-extraction (SPME) that was introduced
in various studies [43,44]; and optimizing of measurement parameters.
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Figure 1. PPCPs analytical method procedure. Solid-phase extraction: SPE; liquid-liquid
extraction: LLE; liquid-liquid micro-extraction: LLME; solid-phase micro-extraction: SPME; HPLC:
High-performance liquid chromatography; DAD: Diode array detector; PAD: photodiode detector;
UV-vis: ultraviolet-visible detector; GC/MS: Gas chromatography–mass spectrometry; LC/MS: Liquid
chromatography–mass spectrometry.

Table 3. The analytical methods of PPCPs in the literature.

Analytical Methods PPCPs

GC-MS Ciprofloxacin, Chloramphenicol, Methyl paraben

HPLC
Lamivudine, Ceftazidime, Carboplatin, Aspirin, Cephalexin,
Musk ketone, Norfloxacin, Ceftriaxone sodium, Levodopa,
N,N-diethyl-m-Toluamide (DEET)

HPLC-DAD Acetaminophen, Diclofenac, Sulfamethoxazole,
Chloramphenicol, Ofloxacin, Berberine, Tetracycline

HPLC-UV/HPLC-UV vis/UV-vis

Ciprofloxacin, Rifampicin, Carbamazepine, Caffeine,
Enrofloxacin, Sulfamethoxazole, Diclofenac,
Isothdiazolin-3-ones, Metronidazole, Estrone, Paracetamol,
Diclofenac, Methyl paraben, Clofibric acid, Sulfonamides

HPLC-HR-MS/HPLC-MS/HPLC-MS-MS Carbamazepine, Iohexol, Ceftazidime, Methotrexate, Ibuprofen,
Clofibric acid

HPLC-PDA
Atenolol, Paracetamol, Salicylic acid, Parabens,
Sulfachloropyridazine, Omeprazole, Ibuprofen, Naproxen,
Carbamazepine
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4. Removal of PPCPs from Liquid Solutions by EOP

4.1. Electrochemical Reactor Designs and Configurations

There are two types of electrodes: two-dimensional and three-dimensional. Compared to
two-dimensional, three-dimensional electrodes ensures a high electrode surface-to-cell volume ratio
value. Due to the ease of scale up to a larger electrode size, more electrode pairs, or an increased
number of cell stacks, cell designs using the parallel plate geometry in a filter press arrangement are
widely used [45].

In the configuration of the reactor, the cell arrangement (divided and undivided cells) must be
considered. The anolyte and catholyte are separated into divided cells by a porous diaphragm or
ion-conducting membrane. Choosing the separating diaphragm or membrane is as critical for divided
cells as choosing the correct electrode materials for proper electrolyte system functioning. Generally, the
use of divided cells should be avoided wherever possible regarding the cost of separators, the complexity
of reducing the electrode gap and the problems of the mechanic, and corrosion [46]. Undivided cells
working in batch mode are often under magnetic stirring for mixing at a thermostatically controlled
temperature (Figure 2). The number of electrodes can increase the active area per volume unit.
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Figure 2. Diagram of the electrochemical reactor, using a glass beaker. The solution was stirred
continuously throughout the process with a magnetic bar on a magnetic stirrer. The graphite anode was
used as a working anode and a distance of 2 mm. Reprinted from Periyasamy and Muthuchamy [47],
copyright© (2018) with permission from Elsevier.

Most of the studies were conducted in undivided electrochemical reactors, usually using solution
volumes ranging from 100 to 500 mL, although 1 L or larger volumes were sometimes used [48–50].
Divided cells use a separator between anolyte and catholyte, which makes the treatment process more
costly and challenging due to the penalty overvoltage of the separator. The investigation of norfloxacin
degradation in an electrochemical reactor with the presence and absence of an ion-exchange membrane
proved the use of the membrane is highly advantageous as it enhances the anodic reaction kinetics
and improves the current efficiency. This leads to an improvement in the degradation of norfloxacin,
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mineralization, and the consequent mineralization current efficiency [51]. Moreover, Chen et al. [52]
used successfully divided and thermostated cells and a Nafion 212 ion-exchange membrane separator
to perform electrodegradation of DEET with total removal.

Since the metal deposition occurs on the surface of the cathode to boost the space-time yield, it
is required to increase the surface area. Therefore, the fluidized bed electrode was developed, with
granular graphite and glass beads for filling the gap between the main electrodes and used as the third
electrode [32].

Filter-press cells have been used by coupling to a pump and a reservoir (Figure 3). One module
including an anode, a cathode, and a membrane (if necessary) makes it relatively easy to operate and
maintain the reactor.
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Figure 3. Experimental setup of 4 L undivided filter flow press reactor used for the treatment of
paracetamol and diclofenac. 1. flow electrolytic cell, 2. flow meter, 3. peristaltic pump, 4. reservoir,
5. sampling, and 6. power supply. Reprinted from García-Montoya et al. [50], copyright© (2015), with
permission from Elsevier.

4.2. Electrode Materials

It has also been shown that the anodes with high over-potential O2 yield better electrochemical
oxidation results [53–56]. Consequently, the electrode material (M) has a significant impact on the
performance of PPCPs in oxidative degradation. Accordingly, an interesting issue is a systematic
research on the comparative performance of electrode materials.

Sopaj et al. [57] tested on different electrode materials such as carbon felt, carbon fiber, carbon
graphite, Platinum (Pt), lead dioxide, dimensionally stable anode (DSA) [58], (Ti/RuO2–IrO2), and
boron-doped diamond (BDD) for removing of amoxicillin in aqueous media. BDD anode was
more effective in oxidizing and mineralizing amoxicillin in water than the DSA. Moreover, it can be
obtained very high electrolysis efficiency for the BDD electrode during the initial stage, even for high
current densities.

Barışçı et al. [59] showed the performance of electrodes was significantly different for the
anti-cancer drug carboplatin degradation with various mixed metal oxide (MMO) electrodes and BDD
electrode (Figure 4). CV voltammograms unveiled that BDD, Ti/IrO2-RuO2, Ti/RuO2, and Ti/IrO2-Ta2O5

anodes had the highest levels of oxygen evolution and the poorest anodes were SnO2/Pt, Ti/Pt and
Ti/Ta2O5-SnO2-IrO2. Besides, higher oxygen evolution overpotential explained the formation of OH*
on the surface of anode instead of molecular oxygen, which improved the efficiency.
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Barışçı et al. [59], copyright© (2018), with permission from Elsevier.

4.2.1. Lead and Lead Dioxide

Because of the stability, low cost, and high oxygen evolution potential, lead and lead dioxide
have been used as anode materials [60] (Table 4). Recent studies have paid considerable efforts to
improve the performance, including the addition of a new intermediate layer between the substrate
and the oxidation layer, doping metal, or non-metallic ions and the adoption of new preparation
methods [61,62].

Dai et al. [55] found the catalytic effect of La–Gd–PbO2 showed the highest performance followed
by that of La–PbO2, Gd–PbO2, PbO2, respectively, in levodopa degradation. Moreover, compared to
the pure PbO2 electrode, the PbO2 electrode with 1% Mo had a higher oxygen evolution potential and
higher current of reduction and oxidation peaks, which led to increasing in electrochemical activity
and decreasing of energy consumption [63].

Porous Ti plays an essential role in improving lead dioxide electrode performance compared
to the traditional planar Ti substrate. Zhao et al. [64] found that compared to the traditional PbO2

electrode, Ti/SnO2-Sb2O3/PbO2 had higher stability, safety, and removal performance of musk ketone.
Xie et al. [65] developed a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode based on
TiO2 nanotubes and demonstrated the growing of TiO2 nanotubes on Ti material led to an increase
in current efficiency. Before electrons flow, the electrode needs a large overpotential that minimizes
the oxygen evolution, decreases the production of hydrogen peroxide and ozone, and favors the
creation of *OH, with the electron efficiency of 88.45%. The degradation of ibuprofen demonstrated the
degradation rate constant over Ti/SnO2-Sb/Ce-PbO2 was two times of the value over Ti/Ce-PbO2 [66].

4.2.2. DSA

In recent decades, MMO electrodes, known as DSA, have been made commercially available
(Table 5). These consist of the corrosion-resistant base material, such as titanium or tantalum, coated
with a metal oxide layer. DSA is catalytic oxide electrodes that, due to their low Cl2 overpotential, can
effectively produce active chlorine species [67].

Studies verify the performance of three-dimensional (3D) was much better, more cost-effective, and
saved more energy than traditional two-dimensional (2D). The highest efficiency was recorded in the
3D process for removing carbamazepine compared to a 2D electrochemical process [68]. Furthermore,
using a 3D electrode reactor to treat estriol, in batch mode, exhibited reaction rate per unit area
was significantly higher and lower energy consumption than conventional 2D electrode reactor with
indirect oxidation as the main contributor to the degradation in the batch 3D electrode reactor at all
electrode distances [69]. Over 80% of the removal efficiency was attributed to indirect oxidation at an
electrode distance of 2 cm (Figure 5).
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Table 4. Selected results reported for PPCPs removal by electrochemical oxidation process (EOP) with lead and lead dioxide anodes.

PPCPs Initial C Electrolyte j/mA
cm−2

Reactors/Operational
Parameters

Electrodes
pH

Reaction
Time
(min)

Removal
(%) Ref.

Anode Cathode

Lamivudine 5 mg/L 20 mM
Na2SO4

≥10
Undivided cell, V 450 mL,

current density (j) (6–14 mA
cm−2)

Ti/SnO2-
Sb/Ce-PbO2;
7 cm × 10 cm
× 1 mm

Stainless steel
(SS);

7 cm × 10 cm × 1
mm, gap 2 cm

3–11 240 70 (TOC) [70]

Ciprofloxacin 50 mg/L 0.1 mol/L
Na2SO4

30

Filter-press flow reactor; pH
(3, 7, and 10), flow rate (qV =

2.5, 4.5, and 6.5 L min−1), j
(6.6, 20, and 30 mA cm−2),
and T = 10, 25, and 40 ◦C

Ti-Pt/β- PbO2;
3.1 cm × 2.0
cm, 3.1 cm ×

2.7 cm

AISI 304 SS plate 10 120 100 [71]

Ofloxacin 20 mg/L Na2SO4 30

Differential column batch
reactor, fluid velocity: 0.003

and 0.048 m/s, detention time:
10.3–0.54 min.

TiO2-based
SnO2-Sb/FR-

PbO2;
2 cm × 5 cm

SS foil;
Same shape and
size, gap 0.5 and

3 cm

6.25 90 99.00 [65]

Enrofloxacin 10 mg/L 20 mM
Na2SO4

8
Undivided electrolytic cell, V
30 mL, j (2–10 mA/cm2), pH

(∼3–11)

Ti/SnO2-Sb/La-
PbO2;

25 cm2

Ti;
Same area; gap 5

mm
3–11 30 95.1 (TOC) [72]

Musk ketone 50 mg/L 0.06 mol/L
Na2SO4

40

Cylindrical single
compartment cell, V 100 ml,

stirring rate 800 rmin−1, j
(10–50 mA cm−2), pH (3–11)

Ti/SnO2-
Sb2O3/PbO2;
1 cm × 1 cm

Stainless copper
foil;

(2 cm × 2 cm),
gap 1.5 cm

7 120 99.93 [64]

Levodopa 100 mg/L 0.1 mol/L
Na2SO4

50 Electrochemical system, V
250 mL, j (15–70 mA cm−2)

La–Gd– PbO2;
12 cm × 2 cm,
thickness: 1
mm, 14 cm2

Ti;
The same area;

gap 4 cm
5.9 120 100.00 [55]
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Figure 5. Proposed simplified pathways for estriol (E3) degradation in batch 3D electrolysis (a) and
(b) the contribution of direct and indirect oxidation at various distances under operating conditions:
C0 = approximately 1000 µg/L, j = 2.2 mAcm−2, constant current, Q = 150 mL/min. Reprinted from
Shen et al. [69], copyright© (2017), with permission from Elsevier.

By adding powder activated carbon (PAC) or metal particles, the conductivity, mass transfer,
or adsorption may also be increased in the 3D process [73]. The possibility of catalytic reaction
and more reactive sites for adsorption are advantages of the 3D process that lead to better removal
performance [74].

The SnO2 electrode has been widely used in wastewater treatment because of its high oxidation
activity, it lower toxicity than PbO2, and it being more cost-effective than BDD. Sadly, it also contains
limitations due to high energy consumption and instability. Adding TiO2 could reduce the electrode’s
internal passivation and charge transfer resistance, improving its stability and efficiency in oxidation
when Cu limits the growth of crack morphology and offer more effective active sites. They accelerated
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electronic transfer and decreased SnO2 surface potential, improved the OEP, and increased the response
current peak, which increased the electrode’s oxidative degradation capacity [75]. Ti/SnO2-Cu showed
better stability and higher corrosion resistance than the conventional Ti/SnO2-Sb electrode [76].

RuO2/IrO2-coated titanium anode with improved electrocatalytic behavior and stability are readily
available in practical mesh geometries and have extended the lifetime and lower costs compared to
BDD electrodes. Various DSA such as Ti/RuO2, Ti/Pt, Ti/IrO2-RuO2, Ti/IrO2-Ta2O5, Ti/Ta2O5-SnO2-IrO2,
and Pt/SnO2 used for removing X-ray contrast iohexol demonstrated that Ti/RuO2 provided the highest
degradation efficiency [77]. Barışçı et al. [59] found that Ti/RuO2 could reach complete degradation of
carboplatin anti-cancer drug in just 5 min and obtained zero toxicity at the end of the process. However,
the use of IrO2, RuO2 on large scale is restricted by low abundance, high cost, and difficulty in their
separation. Ir/IrO2 nanoparticles could be immobilized on Fe3O4 core/ SiO2 shell via surface-modified
NH2 functional groups resulted in high catalytic activity, high stability, and efficient recyclability.

4.2.3. Boron-Doped Diamond

The BDD anode showed high performance on various kinds of PPCPs, as seen in Table 6.
The low-pressure conversion of carbon to diamond crystals has allowed a thin layer of diamond film
to develop on suitable substrates like silicon, niobium, tungsten, molybdenum, and titanium [78].
He et al. [79] examined aspirin degradation with PbO2, BDD, and porous Ti/BDD as the anode. On BDD
electrodes, the electrochemical process involves direct and indirect electrochemical oxidation, whereas,
on the PbO2 electrode, only indirect oxidation. The kinetic results can be explained by the mechanism
of aspirin degradation, which may take place in two distinct forms: direct oxidation at the electrode
surface and indirect oxidation mediated by *OH. In indirect oxidation, the initial step involves the
formation of *OH from water molecule discharge. The oxidation is indirectly mediated by *OH
contributing to the mineralization of organic pollutants. Aspirin mineralization is mainly performed
by reaction with *OH. Porous Ti/BDD is the highest excellent potential for aspirin relative to flat BDD
and PbO2 electrode when niobium-supported BDD thin film (Nb/BDD) anode could be applied in a
wide range of pH, reducing chemicals for pH adjustment [48].

In various systems, BDD allowed for higher removal rates of PPCPs than other anodes as higher
quantities of *OH produced. Sirés et al. [80] indicated that the performance was demonstrated to
be much more productive using a large surface area BDD anode than a Pt one, explained by a large
number of active hydroxyl radicals BDD (*OH) and minimizing their parasitic reactions. Compared
to the Pt and glassy carbon anodes, the BDD anode showed better efficiency for isothiazolin-3-one
degradation [81]. BDD physisorbed *OH was observed to cause the combustion of ketoprofen into CO2

and H2O. The poor mineralization was attributed to the formation of chlorinated organic compounds
that are refractory at both BDD and Pt anodes [82]. Omeprazole was primarily oxidized by *OH formed
from water oxidation at the surface of the Pt or BDD [54]. It also can be seen that the BDD anode was
superior to the Pt and PbO2 electrodes for DEET abatement. At the same j value and temperature,
the DEET abatement degradation in the order BDD, PbO2, and Pt [52]. It also can be seen the higher
oxidation power of BDD became evident in removing estrone than β-PbO2 anode [83].

BDD electrode in a single compartment filter-press flow cell represented the conversion of
cephalexin and its hydroxylated intermediates to CO2 depended solely on their diffusion to the BDD
surface. Due to the different types and quantities of electrogenerated oxidants, the oxidation rate of
cephalexin using distinct salts as supporting electrolytes showed distinct rates; however, none of them
were able to mineralize cephalexin and its intermediates, which only occurred through a diffusion
mechanism on the surface of the BDD [84]. Due to the high concentration of *OH generated on the
BDD surface, with the release of NH4

+ and NO3
− ions, nearly 50% of mineralization of paracetamol

and diclofenac is always achieved [50].
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Table 5. Selected results reported for PPCPs removal by EOP with dimensionally stable anode (DSA) anodes.

PPCPs Initial C Electrolyte j/mA cm−2 Reactors/Operational Parameters
Electrodes

pH
Reaction

Time
(min)

Removal
(%) Ref.

Anode Cathode

Ceftazidime 5 mg/L 1 g/L
Na2SO4

1.25
V reactor and electrolytic

wastewater was 150 mL and 120
mL, respectively

Ti/TiO2/SnO2-
Sb-Cu;

(50 mm × 30 mm
× 2 mm)

Pt wire;
gap 4 cm 6 - 97.65 [75]

Iohexol 0.525 mg/L 0.1 M
Na2SO4

38.1–45

Batch experiments, V 350 mL, pH
7.2, iohexol concentration 0.525
mg/L; j = 15, 30, and 45 mA/cm2;

pH (4.0, 7.0 ± 02, and 9.0)

Ti/RuO2;
25 cm2

SS;
0.5-mm gap 7.1 19.8–30 >90 [77]

Carboplatin 0.5 mg/L 0.1 M
Na2SO4

30
One-compartment cell 350 mL; pH

range 4–9; j = 15, 30 and 45
mA/cm−2;

Ti/RuO2;
25 cm2

SS plate;
25 cm2 gap 0.5

cm
7 5 100.00 [59]

Methotrexate 0.5 mg/L 200 mg/L
Na2SO4

30

One-compartment cell, V 350 mL,
Na2SO4 (100, 200, 300 mg/L), pH
range of 4–9; j = 15, 30 and 45 mA

cm−2

Ti/IrO2-RuO2;
25 cm2

SS plate; 0.5
cm gap 7 5 95.00 [85]

Estriol 1000 µg/L 0.1M
Na2SO4

20

Batch 3D electrolysis, an undivided
rectangular reactor, V 300 mL,
filled with approximately 50 g

granular graphite particles and 70
g glass beads

Ti/IrO2-RuO2;
5 × 10 cm

Ti;
5 × 10 cm; gap

could be
adjusted

3–7 50 80.00 [69]

Sulfamethoxazole 200 mg/L 0.1 mol/L
NaCl ≥20

Single compartment filter
press-type flow cell reactor, flow

rate: 425 mL/min

Ti/Ru0.3Ti0.7O;
14 cm2

Ti plate;
The same

geometric area
3 30 >98 [86]

Ceftriaxone
sodium 10 mg/L 0.1 mol/L

Na2SO4

(The
external
potential
of +2.0 V)

A cylindrical glass reactor made,
fused and sealed at one end TiO2(40)/Nano-G

Titanium
mesh;

gap 2 cm
- 120 97.70 [87]

Clofibric acid 50 mg/L 50mM
Na2SO4

33.6
250 mL undivided glass beaker
containing 200 mL solution, T

constant at 20 ◦C, constant current

Plate mixed metal
oxide (DSA,

Ti/RuO2–IrO2);
5.0 cm × 11.9 cm

SS;
Same

dimension;
gap 4.0 cm

4 180 64.70
(TOC) [88]
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4.2.4. Other Electrodes

The Pt electrode showed better performance in sulfamethoxazole and diclofenac degradation wit
electrolyte supports under the same conditions as the carbon electrode [89]. Compared to RuO2/Ti,
IrO2/Ti, and RuIrO2/Ti electrodes, Pt/Ti demonstrated that the removal efficiency of berberine was
considerably higher [90].

Carbon nanotubes are recognized in wastewater as an advanced anode material for recalcitrant
antibiotics for electrocatalysis oxidation. Cyclic voltammetry analysis of La2O3-CuO2/carbon nanotube
(CNT) showed a stronger catalytic activity of the modified electrode and stable working life with an
efficiency of 90% to 1 mg/L ceftazidime within 30 min, which is much higher than that of pristine
CNTs and DSA [91]. The addition of TiO2 could promote the electron transfer and reusability
of the CeO2-ZrO2/TiO2/CNT electrode [92]. In three electrodes promoted by multiwall carbon
nanotubes (MWCNTs) (MWCNT, MWCNT-COOH, and MWCNT-NH2), concerning the electrode
surface chemistry, MWCNT-NH2, with the highest isoelectric point (4.70), is the most promising
material due to improved reactant interactions [93].

4.3. Influence of Operational Parameters

4.3.1. Initial PPCPs Concentration

The initial drug concentration significantly influenced the rate of electrochemical decomposition
and the process efficiency for both drugs, ifosfamide, and cyclophosphamide [94]. The higher
degradation rate of ibuprofen achieved at relative lower initial concentrations at the initial ibuprofen
concentrations ranges from 1.0 to 20.0 mg/L [66]. The concentration of parabens in the aqueous matrix
was the element that, regardless of the aqueous matrix under investigation, exerts a more extraordinary
effect on the target variable. An increase in the initial parabens concentration resulted in a decrease in
the efficiency of removal [95] and the mineralization rate decreases when salicylic acid concentration
rose from 200 mg/L. During bulk electrolyzes at a low j value and high salicylic acid concentration,
salicylic acid was oxidized to aromatic compounds due to a low local concentration on the anode
surface of electrogenerated *OH relative to salicylic acid. As bulk electrolyzes at a high j value and
low salicylic acid concentration, the product was directly combusted to CO2 due to a high local
concentration on the anode surface of electrogenerated *OH relative to salicylic acid [96].

Interestingly, it could be seen that the efficiency improved with the increased concentration
of paracetamol and diclofenac due to the gradual increase in the concentration of *OH to oxidize
contaminants before participating in non-oxidizing reactions [50]. The removal of caffeine had two
stages, depending on its concentration. At low concentrations, the efficiency significantly increased
with j value, suggesting a crucial role of mediated oxidation processes [97].

4.3.2. Supporting Electrolytes

In the presence of NaCl as the supporting electrolyte, the degradation rate of PPCPs was favored.
Experiments on RuO2/Ti, IrO2/Ti, RuIrO2/Ti, and Pt Ti electrodes showed a constant reaction rate in
NaCl solution three to five times higher than in Na2SO4 and the oxidation rate of berberines increased
due to active chlorine formation [90]. Ambuludi et al. [98] indicated that the pseudo-first-order rate
constant increased when NaCl replaced Na2SO4 as the electrolyte support and it was almost unaffected
by the concentration of ibuprofen. Otherwise, the poor mineralization of ketoprofen was due to the
formation of chlorinated organic compounds, which are refractory, at both BDD and Pt anodes in the
presence of NaCl as supporting electrolyte while total mineralization using Na2SO4 as an electrolyte
was achieved [82]. Indermuhle et al. [97] found using NaCl, compared to Na2SO4, caffeine could reach
a faster degradation but more reaction intermediates are formed and the mechanism is consistent with
other proposed (Figure 6).
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Table 6. Selected results reported for PPCPs removal by EOP with BDD anodes.

PPCPs Initial C Electrolyte j/mA
cm−2

Reactors/Operational
Parameters

Electrodes
pH

Reaction
Time
(min)

Removal
(%) Ref.

Anode Cathode

Atenolol 0.19 mmol/L 14 mmol/L
Na2SO4

30

Double-jacket glass,
one-compartment flow

filter-press reactor, V 0.002
m3, pH: 3 and 10, flow rate

3.33 × 10−5 m3 s−1, j (5, 10, 20
and 30 mAcm−2), T = 25 ◦C

Nb/BDD500;
0.01 m2

AISI 304L;
Gap 0.02 m 10 120 100.00 [48]

Rifampicin 200 mg/L 0.5 mol/L
Na2SO4

90
250-mL undivided open cell,

equipped with magnetic
stirring at 30 ◦C

BDD;
3.0 × 2.5 cm

Ti/Ru0.3Ti0.7O2;
4.0 × 4.0 cm 3 180 95.00 [99]

Norfloxacin 100 mg/L 0.1 mol/L
Na2SO4

10

One-compartment filter-press
flow reactor, pH (3, 7, 10, and
without specific control), j (10,
20, and 30 mA cm−2), T (10,

25, and 40 ◦C)

BDD;
Thickness of

2.9 µm

SS;
area of 3.54 cm
× 6.71 cm

not pH
depen-
dent

300 100.00 [100]

Estrone 500 µg/L 0.1 mol/L
Na2SO4

10

A filter-press electrochemical
reactor, 0.5L solution, flow

rate (2.0, 3.0, 4.0, 5.0, 6.0, and
7.0 L/min), j (5, 10, and 25 mA
cm−2), pH (3.0, 7.0, and 10.0)

BDD;
each face was
2.5 cm × 3.0
cm 15 cm2

SS;
(3.0 cm × 4.0

cm)
<=7 30 98.00 [83]

Paracetamol
Diclofenac

50 mg/L, 100
mg/L

0.05 M
Na2SO4

1.56–6.25

4L undivided filter flow press
reactor, j (1.56 to 6.25

mAcm−2), flow rate kept
constant at 2 L/min

BDD;
64 cm2

SS;
Gap 2 cm 3 60 50.00

(TOC) [50]

Methyl
paraben 100 mg/L 0.05 mol/L

K2SO4
10.8

One-compartment pyrex cell
(400 mL) operated at 25 ± 1
◦C in batch mode, j (1.35 to

21.6 mA cm−2)

BDD;
9.68 cm−2

Titanium foil;
The same area 5.7 300 100.00 [101]

Sulfonamides 50 mg/L 6.1 g/L
Na2SO4

15

Undivided electrolytic cell, V
100 mL, pH (from 2.0 to 7.4),

T (from 25 to 60 ◦C), and j
(from 0.05 to 15 mA cm−2)

Si/BDD;
10 cm2

SS;
Gap 1cm 6.4 180 92.00 [102]
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Table 6. Cont.

PPCPs Initial C Electrolyte j/mA
cm−2

Reactors/Operational
Parameters

Electrodes
pH

Reaction
Time
(min)

Removal
(%) Ref.

Anode Cathode

Tetracycline 100 mg/L
5 g/L

Na2SO4 or
NaCl

25 to 300
A m−2

Up-flow electrochemical cell,
20 cm3, batch mode with

recirculation; pH (2 to 12), j
(25 to 300 A m−2)

BDD;
20 cm2

SS;
Gap 1 cm 5.6 30 min 100.00 [103]

Sulfachloropy-
ridazine 0.2 mM 0.05 M

Na2SO4
350 mA

An open, cylindrical and
undivided glass cell 250 mL

with magnetic stirring

BDD;
25 cm2

Carbon-felt;
77 cm2 (14.0
cm × 5.5 cm)

4.5 8h 95.00 [104]

Omeprazole 169 mg/L 0.05 Na2SO4 100

Undivided and cylindrical
glass cell of 150 mL, with a
double jacket, j = 33.3–150

mA cm−2, T = 35 ◦C, stirred
with 800 rpm

BDD;
3 cm2

Carbon-PTFE
air-diffusion;

Gap 1 cm
7 360 78.00

(TOC) [54]

Ibuprofen 0.2 mM 0.05 M
Na2SO4

50–500
mA

Cylindrical, open,
one-compartment cell 200

mL, at T (20 ± 2 ◦C)

BDD;
25 cm2

Carbon-felt;
14 cm×5 cm
each side, 0.5

cm width

3 480 >96
(TOC) [98]



Water 2020, 12, 1043 20 of 30

Water 2020, 12, x FOR PEER REVIEW 22 of 32 

In the presence of Na2SO4, the increasing concentration of Na2SO4 provided a higher rate of 

degradation of the anti-cancer drug carboplatin but further increased the concentration of Na2SO4, 

which did not offer a higher rate of degradation due to SO42− excess [59]. Moreover, 0.1 M electrolyte-

supporting Na2SO4 was found to be more active for sulfamethoxazole and diclofenac mineralization, 

with an efficiency of 15%–30% higher than 0.1 M electrolyte-supporting phosphate buffer on Pt and 

carbon electrodes [89].  

Various inorganic ions have significant effects on removing certain PPCPs that were compared 

with a higher removal rate in the presence of chloride species than other ions. Acetaminophen, 

diclofenac, and sulfamethoxazole degradation showed high removal efficiencies, and faster reaction 

rates may correlate with the presence of chloride species, which may be due to the involvement of 

hypochlorite ions. Although all of the drugs were degraded by indirect electrochemical oxidation, 

cyclic voltammograms suggested that chloride species may have coexisted with *OH and have been 

converted into by-products of degradation [49], whereas ions Cl− and PO43− significantly increased 

the decomposition rate of ifosfamide [94]. 

 

Figure 6. The mechanism model proposed for caffeine degradation by electrochemical oxidation with 

conductive-diamond electrodes using Na2SO4 or NaCl as the electrolyte. Reprinted from Indermuhle 

et al. [97], copyright ©  (2013) with permission from Elsevier. 

4.3.3. Current Density, pH, Temperature, and Stirring Rate 

Current density (j), pH, and temperature also among parameters that have been optimized and 

investigated in the EOP. Which factor most crucial for efficiency removal depends on the kinds of 

PPCPs, the material of electrodes and the nature of electrolytes applied. For naproxen removal, the 

current influence was the greatest among these variables, and the second was the salt concentration, 
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with conductive-diamond electrodes using Na2SO4 or NaCl as the electrolyte. Reprinted from
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In the presence of Na2SO4, the increasing concentration of Na2SO4 provided a higher rate of
degradation of the anti-cancer drug carboplatin but further increased the concentration of Na2SO4,
which did not offer a higher rate of degradation due to SO4

2− excess [59]. Moreover, 0.1 M
electrolyte-supporting Na2SO4 was found to be more active for sulfamethoxazole and diclofenac
mineralization, with an efficiency of 15%–30% higher than 0.1 M electrolyte-supporting phosphate
buffer on Pt and carbon electrodes [89].

Various inorganic ions have significant effects on removing certain PPCPs that were compared
with a higher removal rate in the presence of chloride species than other ions. Acetaminophen,
diclofenac, and sulfamethoxazole degradation showed high removal efficiencies, and faster reaction
rates may correlate with the presence of chloride species, which may be due to the involvement of
hypochlorite ions. Although all of the drugs were degraded by indirect electrochemical oxidation,
cyclic voltammograms suggested that chloride species may have coexisted with *OH and have been
converted into by-products of degradation [49], whereas ions Cl− and PO4

3− significantly increased
the decomposition rate of ifosfamide [94].

4.3.3. Current Density, pH, Temperature, and Stirring Rate

Current density (j), pH, and temperature also among parameters that have been optimized and
investigated in the EOP. Which factor most crucial for efficiency removal depends on the kinds of
PPCPs, the material of electrodes and the nature of electrolytes applied. For naproxen removal, the
current influence was the greatest among these variables, and the second was the salt concentration,
the third flow rate and the fourth pH [105]. Domínguez et al. [106] also proved that the influence
of the current was the greatest, then the concentration of salt and the flow rate, respectively, on
carbamazepine degradation.
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The j value shows a vital role in the removal efficiency with increasing removal efficiency when
j increased in most cases of PPCPs [66,97,104] and other factors are dependent or not significant
under certain operating conditions. Isothiazolin-3-ones degradation rate was faster as the j value
applied increased but nearly independent of electrolyte pH [81]. Moreover, the complete removal
of norfloxacin is dependent on pH. However, the removal increased with the temperature at 10 ◦C,
25 ◦C, and 40 ◦C may result from a gradual increase in the diffusion coefficient and the oxidation
of byproducts under temperature conditions [100]. Interestingly, DEET degradation increased with
increasing current density but was moderately affected by temperature (25–75 ◦C) [52]. Similarly,
the salicylic acid mineralization rate increased at 25 ◦C with an increase of applied current, the pH
impact was not significant [96]. This also can be seen in the case of ketoprofen [82], ifosfamide, and
cyclophosphamide [94]. Interestingly, the carboplatin degradation rates increased significantly in the
initial phases of electrolysis as j value increased on the Ti/RuO2 electrode. However, a further increase
in j did not affect the rate of degradation [59]. Sun et al. [107] found that pH decreased, the efficiency
of chloramphenicol degradation increased, and maximum degradation was achieved at pH 2, Figure 7.
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Stirring increased the rate of mass transfer and PPCPs formed a contentious relationship on the
electrode surface to increase the efficiency of removal. When the stirring speed was too slow, the
mass transfer resistance would be the limitation. With the free radical produced from the electrode
surface, PPCPs were unable to react quickly. It was also not possible to transfer the hydroxyls produced
to the solution in time. On the other hand, the high stirring speed turned leads to short time for
PPCPs touching the electrode surface, PPCPs could not be wholly oxidized and soon left the electrode
surface. O2 and H2 bubbles produced from H2O electrolysis would be more competitive to access
molecule surface with extreme disturbance, resulting in reducing removal efficiency. The kinetic
study of naproxen degradation at fix potential indicates that the rate of degradation increases with the
stirring speed at 250 and 500 rpm [93]. For diffusion reactions, the stirring rate is an essential factor.
The stirring rate showed a definite increase in the removal of ceftazidime and then decreased as the
stirring speed between 150 and 200 rad min−1 [76].

4.3.4. Electrode Spacing and Fluid Velocity

The changes in the spacing of the electrodes would affect not only the mass transfer limitations
but also the electron transport and electric resistance [108]. The effect of electrode spacing, however,
depends on the direct or indirect oxidation. In the latter case, the electrode spacing should be matched
with the diffusion length of *OH species. Duan, et al. [76] found that the oxidation of ceftazidime
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decreased as the spacing of the Ti/SnO2-Cu electrode changed at 1, 2, and 3 cm under the current of
20 mA. As the spacing increased, the electrochemical resistance also increased while the charge in the
electrolyte decreased. Xie et al. [65] (Figure 8) tested ofloxacin removal with the changes in electrode
spacing. The reaction rate increased with the first-order pseudo constant changed as the distance
decreased from 3 cm to 0.5 cm and the mass transfer coefficient increased.
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copyright© (2017) with permission from Elsevier.

It can be seen that the electrocatalytic oxidation process relied primarily on the high potential for
direct oxidation on the electrode surface and the generation of free radicals for indirect oxidation of
PPCPs. Consequently, the spacing increases, which leads to a loss in *OH production and oxidation
power on anode surfaces. Diffusion efficiency also affects removal efficiency and so at a larger electrode
spacing, the electrolysis process needs more time because of longer diffusion distance. Both electrode
spacing and fluid velocity are critical since increasing velocities that lead to an increase in the rate
of mass transfer while decreasing electrode spacing increases the surface area available for mass
transfer [65].

4.4. Applications for Real Water and Wastewater Containing PPCPs

EOP is a promising technique with different degradation rates for the removal of PPCPs from
water and WWTP effluents under optimal conditions concerning the ecological system [98,107,109,110].

Because of the presence of chloride ions in the effluent, oxidation in secondary treated wastewater
was faster than in pure water [111]. Carbamazepine electrodegradation is feasible for WWT in several
aqueous matrices [112], after 50 min of electrolysis time, caffeine was removed entirely in DIW and
was almost removed in the wastewater sample may be related to the organic matter in wastewater.
Having regard to these results, EOP is an effective method for further removal of caffeine from effluent
from aerobic or anaerobic reactors that treat municipal wastewater, even though a high concentration
of caffeine was used compared to low concentration in natural water. Compared to conventional
methods for removing caffeine from urban wastewater, this approach appears to be more feasible
for the following reasons: ease of operating, rapid removal of caffeine, and the effective efficiency
of treatment [110]. The caffeine elimination obtained in real wastewater was found to be higher
than in synthetic wastewater due to the contribution of electrogenerated oxidant species, such as
hypochlorite [113], when sulfonamides and DEET removal were most efficient in the presence of
municipal wastewater treatment plant (MWWTP) effluents [52,102].



Water 2020, 12, 1043 23 of 30

4.5. Combined Systems

While EOP has been widely demonstrated for their ability to remove trace and persistent PPCPs
in water and wastewater, complex water matrices could be found that inhibit their efficient operation.
As a result, they may potentially reduce or fully retard the efficiency, requiring longer hydraulic
retention time or higher volume capacity for compensation. System hybridization or combination of
EOP with other water technologies is possible to overcome the operational problems associated with
the complex water matrices.

Zaghdoudi et al. [114] investigated the possibility of coupling an electroreduction pretreatment
before a biological process for dimetridazole removal. Direct electrolysis was initially conducted at
the low potential to reduce amino derivatives formation and then azo dimer formation with a total
degradation of dimetridazole achieved and the ratio of biochemical oxygen demand (BOD5)/chemical
oxygen demand (COD) increased. As mineralization yields of all electrolyzed solutions increased
significantly, the enhancement of biodegradability was demonstrated during biological treatment.
Nevertheless, the real mineralization yields should most likely be significantly higher if the contribution
of titanocene, which is possibly biorecalcitrant, is not taken into account in the amount of TOC.
Belkheiri et al. [115] examined the biodegradability improvement of tetracycline-containing solutions
after an electrochemical pretreatment, as a large amount of the applied drugs are not metabolized
and, therefore, can be found in wastewater. BOD5 measurements verified biodegradability increased
with the oxidation potential as the ratio of BOD5/COD increased. Despite its chemical transformation,
none of the reduced tetracycline solutions are biodegradable. Yahiaoui et al. [116] found after 5 h
of electrochemical pre-treatment of tetracycline, the BOD5/COD ratio increased considerably and
confirmed during biological treatment, with 76% of dissolved organic carbon (DOC) removed.

Pharmaceutical degradation in conventional WWTPs is a problem because industrial sewage
and hospital effluents contain low-concentration pharmaceuticals. Rodríguez-Nava et al. [117]
found high efficiencies in removal without affecting activated sludge performance of integrating
EOP with a biological system for simultaneous removal from wastewater of recalcitrant drugs
(bezafibrate, gemfibrozil, indomethacin, and sulfamethoxazole). Drugs contained in wastewater
without electrochemical pretreatment was persistent in the biological process and encouraged bulking
formation. García-Gómez et al. [118] proved membrane bioreactor (MBR) high capacity to remove COD
and low capacity for degradation (20%) of carbamazepine after 120 days, which presumably suggests
that given the weak degradation and carbamazepine was not toxic to microorganisms. The EOP, on
the other hand, was able to degrade carbamazepine completely.

In an exciting study for investigating pre- and post-treatment in one system to remove synthetic
hospital wastewater fortified with four drug pollutants including carbamazepine, ibuprofen, estradiol,
and venlafaxine by the combination of MBR and EOP, MBR alone treatment of wastewater showed
a high percentage of ibuprofen and estradiol removal (about 90%), while carbamazepine and
venlafaxine performed a low elimination (at around 10%). EOP as post-treatment, this allowed
high removal (about 97%) of the four pharmaceutical pollutants and far more successful compared
to EOP as pre-treatment [119]. The integration of electrochemical processes into MBR systems
can utilize the mechanism of biodegradation, sorption, hydrolysis, and filtration on conventional
MBR and electrocoagulation, electroosmosis, and electrophoresis on electrochemical processes that
improve both the performance and the control of membrane fouling for eliminating recalcitrant
micropollutants [120,121].

5. Conclusions

EOP is a promising technique with different degradation rates for the removal of PPCPs from water
and wastewater, from synthetic or real, concerning the ecological system. There are numerous studies
that have recently focused on the finding of electrode materials and optimal conditions, including initial
PPCPs concentration, supporting electrolytes, j value, pH, temperature, stirring rate, and electrode
spacing that are effective for removing a certain or groups of PPCPs with considering reduce operating



Water 2020, 12, 1043 24 of 30

cost. In terms of operational parameters, it was shown that the current influence was the greatest
among these variables in some mentioned studies. Although the electrochemical process has recorded
several influential factors, only some of them show a significant impact on real systems.

Studies showed that the EOP system depends heavily on the type of anode. BDD anode shows
high performance on various kinds of PPCPs. The BDD anodes have been reported to produce
higher organic oxidation rates and higher current efficiencies than other metal oxides commonly used.
The development of BDD anodes and the enormous advantages of this electrode compared to others
make this material was investigated on most of the works published in the literature. The performance
of 3D electrolysis is much better, more cost-effective, and saves more energy consumption than
traditional 2D electrolysis. The results validate 3D electrolysis in pretreatment or advanced treatment
applications as a promising alternative method to remove PPCPs from secondary effluents.

Real field samples may contain other species of radical electrolytes that may participate in the
electrochemical process and therefore act as interferences within the EOP system. It is therefore
recommended that the electrochemical degradation process be the last step in the domestic water
treatment since the technique also largely depends on the electrolytes in the water.

Toxicity evaluation is an essential environmental pollution control factor since the degradation
by-products from the initial structure can be more toxic. It can be seen that in some kinds of PPCPs,
intermediates are more toxic than the molecule of the parent, while others are less harmful. By evaluating
toxicity, it helps significantly in optimizing treatment conditions to achieve the elimination of adverse
effects of by-products.

EOP has widely demonstrated their ability to remove trace and persistent PPCPs in water and
wastewater. Further, complex water matrices could be found that inhibit their efficient operation.
System hybridization or combination of EOP with other water technologies is possible to overcome the
operational problems associated with the complex water matrices.
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