A Review of Gum Hydrocolloid Polyelectrolyte Complexes (PEC) for Biomedical Applications: Their Properties and Drug Delivery Studies
Abstract
:1. Introduction
- Plants: cellulose, hemicellulose, starch, pectin, gum.
- Marine algae: alginate, carrageenan, cellulose.
- Crustaceans: chitin.
2. The Mechanism of Gum as Hydrocolloid PEC
2.1. The Ratio of Polyanion and Polycation
2.1.1. Particle Size
2.1.2. Mechanical Properties
2.2. pH
2.2.1. Zeta Potential
2.2.2. Swelling Behavior
2.3. Mixing Order
3. Gum-Based PECs for Biomedical Applications
3.1. Gum-Based PECs for Tissue and Bone Regeneration
3.2. Gum-Based PECs for Drug Delivery
3.2.1. Gum-Based PECs for Peroral Delivery
3.2.2. Gum-Based PECs for Transdermal Delivery
3.2.3. Gum-Based PECs for Other’s Delivery Route
3.2.4. Drug Release Mechanism of Gum-Based PECs
4. Future Perspective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- BeMiller, J.N. Polysaccharides. In Carbohydrate Chemistry for Food Scientists; Elsevier: Amsterdam, The Netherlands, 2019; pp. 75–101. ISBN 9780128120699. [Google Scholar]
- O’Sullivan, J.J.; O’Mahony, J.A. Food Ingredients. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–3. ISBN 9780081005965. [Google Scholar]
- Williams, P.A.; Phillips, G.O. Introduction to food hydrocolloids. In Handbook of Hydrocolloids; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–26. [Google Scholar]
- Verbeken, D.; Dierckx, S.; Dewettinck, K. Exudate gums: Occurrence, production, and applications. Appl. Microbiol. Biotechnol. 2003, 63, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Nussinovitch, A. Hydrocolloids for coatings and adhesives. In Handbook of Hydrocolloids; Elsevier: Amsterdam, The Netherlands, 2009; pp. 760–806. ISBN 9781845695873. [Google Scholar]
- Mirhosseini, H.; Amid, B.T. A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Res. Int. 2012, 46, 387–398. [Google Scholar] [CrossRef]
- Rao, P.S.; Sharma, R.K. Studies on indian plant gums: Composition and graded hydrolysis of gum karaya (Sterculia urens Roxb). Proc. Indian Acad. Sci.-Sect. A 1957, 45, 24–29. [Google Scholar] [CrossRef]
- Assaad, E.; Ispas-Szabo, P. Chitosan-based polyelectrolyte complexes as pharmaceutical excipients. In Controlled Drug Delivery; Mateescu, M.A., Ispas-Szabo, P., Assaad, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 127–161. [Google Scholar]
- Schlenoff, J.B.; Yang, M.; Digby, Z.A.; Wang, Q. Ion Content of Polyelectrolyte Complex Coacervates and the Donnan Equilibrium. Macromolecules 2019, 52, 9149–9159. [Google Scholar] [CrossRef]
- Müller, M. Sizing, Shaping and Pharmaceutical Applications of Polyelectrolyte Complex Nanoparticles. Adv. Polym. Sci. 2014, 256, 197–260. [Google Scholar] [CrossRef]
- Kulkarni, A.D.; Vanjari, Y.H.; Sancheti, K.H.; Patel, H.M.; Belgamwar, V.S.; Surana, S.J.; Pardeshi, C.V. Polyelectrolyte complexes: Mechanisms, critical experimental aspects, and applications. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1615–1625. [Google Scholar] [CrossRef] [Green Version]
- Buriuli, M.; Verma, D. Polyelectrolyte Complexes (PECs) for Biomedical Applications. In Advances in Biomaterials for Biomedical Applications; Springer: Singapore, 2017; pp. 45–93. [Google Scholar]
- Subbotin, A.V.; Semenov, A.N. The Structure of Polyelectrolyte Complex Coacervates and Multilayers. Macromolecules 2021, 54, 1314–1328. [Google Scholar] [CrossRef]
- Meka, V.S.; Sing, M.K.G.; Pichika, M.R.; Nali, S.R.; Kolapalli, V.R.M.; Kesharwani, P. A comprehensive review on polyelectrolyte complexes. Drug Discov. Today 2017, 22, 1697–1706. [Google Scholar] [CrossRef]
- Martins, A.F.; Piai, J.F.; Schuquel, I.T.A.; Rubira, A.F.; Muniz, E.C. Polyelectrolyte complexes of chitosan/heparin and N,N,N-trimethyl chitosan/heparin obtained at different pH: I. Preparation, characterization, and controlled release of heparin. Colloid Polym. Sci. 2011, 289, 1133–1144. [Google Scholar] [CrossRef]
- Márquez-Beltrán, C.; Castañeda, L.; Enciso-Aguilar, M.; Paredes-Quijada, G.; Acuña-Campa, H.; Maldonado-Arce, A.; Argillier, J.F. Structure and mechanism formation of polyelectrolyte complex obtained from PSS/PAH system: Effect of molar mixing ratio, base-acid conditions, and ionic strength. Colloid Polym. Sci. 2013, 291, 683–690. [Google Scholar] [CrossRef]
- Chen, J.; Heitmann, J.A.; Hubbe, M.A. Dependency of polyelectrolyte complex stoichiometry on the order of addition. 1. Effect of salt concentration during streaming current titrations with strong poly-acid and poly-base. Colloids Surfaces A Physicochem. Eng. Asp. 2003, 223, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Logothetidis, S.; Sleiman, A.; Sayers, P.W.; Zeze, D.A.; Mabrook, M.F. Handbook of Flexible Organic Electronics; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9781782420354. [Google Scholar]
- Lounis, F.M.; Chamieh, J.; Gonzalez, P.; Cottet, H.; Leclercq, L. Prediction of Polyelectrolyte Complex Stoichiometry for Highly Hydrophilic Polyelectrolytes. Macromolecules 2016, 49, 3881–3888. [Google Scholar] [CrossRef]
- Dragan, E.S.; Mihai, M.; Schwarz, S. Polyelectrolyte complex dispersions with a high colloidal stability controlled by the polyion structure and titrant addition rate. Colloids Surfaces A Physicochem. Eng. Asp. 2006, 290, 213–221. [Google Scholar] [CrossRef]
- Tsuchida, E. Formation of Polyelectrolyte Complexes and Their Structures. J. Macromol. Sci. Part A 1994, 31, 1–15. [Google Scholar] [CrossRef]
- Dragan, S.; Cristea, M. Polyelectrolyte complexes IV. Interpolyelectrolyte complexes between some polycations with N,N-dimethyl-2-hydroxypropyleneammonium chloride units and poly(sodium styrenesulfonate) in dilute aqueous solution. Polymer 2002, 43, 55–62. [Google Scholar] [CrossRef]
- Fu, J.; Fares, H.M.; Schlenoff, J.B. Ion-Pairing Strength in Polyelectrolyte Complexes. Macromolecules 2017, 50, 1066–1074. [Google Scholar] [CrossRef]
- Narkar, M.; Sher, P.; Pawar, A. Stomach-specific controlled release gellan beads of acid-soluble drug prepared by ionotropic gelation method. AAPS PharmSciTech 2010, 11, 267–277. [Google Scholar] [CrossRef]
- Chen, P.H.; Kuo, T.Y.; Wang, D.M.; Lai, J.Y.; Hsieh, H.J. Use of Chitosan as a Material Stabilizer for Acidic Polysaccharides. In Materials Science Forum; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2010; Volume 638–642, pp. 570–575. [Google Scholar] [CrossRef]
- Manconi, M.; Mura, S.; Manca, M.L.; Fadda, A.M.; Dolz, M.; Hernandez, M.J.; Casanovas, A.; Díez-Sales, O. Chitosomes as drug delivery systems for C-phycocyanin: Preparation and characterization. Int. J. Pharm. 2010, 392, 92–100. [Google Scholar] [CrossRef]
- Silva, D.A.; Maciel, J.S.; Feitosa, J.P.A.; Paula, H.C.B.; de Paula, R.C.M. Polysaccharide-based nanoparticles formation by polyeletrolyte complexation of carboxymethylated cashew gum and chitosan. J. Mater. Sci. 2010, 45, 5605–5610. [Google Scholar] [CrossRef]
- Vasiliu, S.; Bunia, I.; Racovita, S.; Neagu, V. Adsorption of cefotaxime sodium salt on polymer coated ion exchange resin microparticles: Kinetics, equilibrium and thermodynamic studies. Carbohydr. Polym. 2011, 85, 376–387. [Google Scholar] [CrossRef]
- Amin, K.A.M.; in het Panhuis, M. Polyelectrolyte complex materials from chitosan and gellan gum. Carbohydr. Polym. 2011, 86, 352–358. [Google Scholar] [CrossRef] [Green Version]
- Mat Amin, K.A.; Gilmore, K.J.; Matic, J.; Poon, S.; Walker, M.J.; Wilson, M.R.; in het Panhuis, M. Polyelectrolyte Complex Materials Consisting of Antibacterial and Cell-Supporting Layers. Macromol. Biosci. 2012, 12, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Lankalapalli, S.; Kolapalli, R.M. Biopharmaceutical evaluation of diclofenac sodium controlled release tablets prepared from gum karaya-chitosan polyelectrolyte complexes. Drug Dev. Ind. Pharm. 2012, 38, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, D.F.; Sant, S.; Shakiba, M.; Wang, B.; Gomes, M.E.; Neves, N.M.; Reis, R.L.; Khademhosseini, A. Microfabricated photocrosslinkable polyelectrolyte-complex of chitosan and methacrylated gellan gum. J. Mater. Chem. 2012, 22, 17262. [Google Scholar] [CrossRef]
- Manca, M.L.; Manconi, M.; Valenti, D.; Lai, F.; Loy, G.; Matricardi, P.; Fadda, A.M. Liposomes Coated with Chitosan–Xanthan Gum (Chitosomes) as Potential Carriers for Pulmonary Delivery of Rifampicin. J. Pharm. Sci. 2012, 101, 566–575. [Google Scholar] [CrossRef]
- Ferstl, M.; Drechsler, M.; Rachel, R.; Rischer, M.; Engel, J.; Backofen, M.; Goepferich, A. The Impact of Polyelectrolyte Structure on the Shape of Nanoassemblies with Cationic Peptides. J. Pharm. Sci. 2013, 102, 2599–2607. [Google Scholar] [CrossRef]
- Kumar, A.; Ahuja, M. Carboxymethyl gum kondagogu–chitosan polyelectrolyte complex nanoparticles: Preparation and characterization. Int. J. Biol. Macromol. 2013, 62, 80–84. [Google Scholar] [CrossRef]
- Ahuja, M.; Kumar, A. Gum ghatti-chitosan polyelectrolyte nanoparticles: Preparation and characterization. Int. J. Biol. Macromol. 2013, 61, 411–415. [Google Scholar] [CrossRef]
- Mahammad, S.S.; Chetty, C.M.; Murthy, K.V.R. Studies on Preparation and Characterization of Polyelectrolyte Complex of Gum Kondagogu and Chitosan: pH-Induced Changes in Swelling, Stability and Bound Water Content. Polym. Plast. Technol. Eng. 2013, 52, 30–37. [Google Scholar] [CrossRef]
- Roy, P.S.; Samanta, A.; Mukherjee, M.; Roy, B.; Mukherjee, A. Designing Novel pH-Induced Chitosan–Gum Odina Complex Coacervates for Colon Targeting. Ind. Eng. Chem. Res. 2013, 52, 15728–15745. [Google Scholar] [CrossRef]
- Argin, S.; Kofinas, P.; Lo, Y.M. The cell release kinetics and the swelling behavior of physically crosslinked xanthan-chitosan hydrogels in simulated gastrointestinal conditions. Food Hydrocoll. 2014, 40, 138–144. [Google Scholar] [CrossRef]
- Li, L.; Wang, L.; Li, J.; Jiang, S.; Wang, Y.; Zhang, X.; Ding, J.; Yu, T.; Mao, S. Insights into the mechanisms of chitosan–anionic polymers-based matrix tablets for extended drug release. Int. J. Pharm. 2014, 476, 253–265. [Google Scholar] [CrossRef]
- Sandeep, C.; Deb, T.K.; Moin, A.; Shivakumar, H.G. Cationic guar gum polyelectrolyte complex micro particles. J. Young Pharm. 2014, 6, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Tsai, R.-Y.; Chen, P.-W.; Kuo, T.-Y.; Lin, C.-M.; Wang, D.-M.; Hsien, T.-Y.; Hsieh, H.-J. Chitosan/pectin/gum Arabic polyelectrolyte complex: Process-dependent appearance, microstructure analysis and its application. Carbohydr. Polym. 2014, 101, 752–759. [Google Scholar] [CrossRef]
- Shao, Y.; Li, L.; Gu, X.; Wang, L.; Mao, S. Evaluation of chitosan–anionic polymers based tablets for extended-release of highly water-soluble drugs. Asian J. Pharm. Sci. 2015, 10, 24–30. [Google Scholar] [CrossRef] [Green Version]
- da Silva, B.C.; de Oliveira, M.; Ferreira, J.G.L.; Sierakowski, M.R.; Simas-Tosin, F.F.; Orth, E.S.; Riegel-Vidotti, I.C. Polyelectrolyte complexes from gum arabic and gelatin: Optimal complexation pH as a key parameter to obtain reproducible microcapsules. Food Hydrocoll. 2015, 46, 201–207. [Google Scholar] [CrossRef]
- Ahuja, M.; Bhatt, D.C. Carboxymethyl gum katira: Synthesis, characterization and evaluation for nanoparticulate drug delivery. RSC Adv. 2015, 5, 82363–82373. [Google Scholar] [CrossRef]
- Sarika, P.R.; Pavithran, A.; James, N.R. Cationized gelatin/gum arabic polyelectrolyte complex: Study of electrostatic interactions. Food Hydrocoll. 2015, 49, 176–182. [Google Scholar] [CrossRef]
- Sakloetsakun, D.; Preechagoon, D.; Bernkop-Schnürch, A.; Pongjanyakul, T. Chitosan–gum arabic polyelectrolyte complex films: Physicochemical, mechanical and mucoadhesive properties. Pharm. Dev. Technol. 2016, 21, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, G.A., Jr.; Moura Neto, E.; Sombra, V.G.; Richter, A.R.; Abreu, C.M.W.S.; Feitosa, J.P.A.; Paula, H.C.B.; Goycoolea, F.M.; de Paula, R.C.M. Chitosan/Sterculia striata polysaccharides nanocomplex as a potential chloroquine drug release device. Int. J. Biol. Macromol. 2016, 88, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Sonje, A.G.; Mahajan, H.S. Nasal inserts containing ondansetron hydrochloride based on Chitosan–gellan gum polyelectrolyte complex: In vitro–in vivo studies. Mater. Sci. Eng. C 2016, 64, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Wang, T.; Zhou, M.; Xue, J.; Luo, Y. Formation of redispersible polyelectrolyte complex nanoparticles from gallic acid-chitosan conjugate and gum arabic. Int. J. Biol. Macromol. 2016, 92, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Sant, S.; Coutinho, D.F.; Gaharwar, A.K.; Neves, N.M.; Reis, R.L.; Gomes, M.E.; Khademhosseini, A. Self-Assembled Hydrogel Fiber Bundles from Oppositely Charged Polyelectrolytes Mimic Micro-/Nanoscale Hierarchy of Collagen. Adv. Funct. Mater. 2017, 27, 1606273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anirudhan, T.S.; Nair, S.S.; Sekhar, V.C. Deposition of gold-cellulose hybrid nanofiller on a polyelectrolyte membrane constructed using guar gum and poly(vinyl alcohol) for transdermal drug delivery. J. Memb. Sci. 2017, 539, 344–357. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, J.; Seo, Y.; Jo, Y.; Son, J.; Choi, J. Engineered chitosan–xanthan gum biopolymers effectively adhere to cells and readily release incorporated antiseptic molecules in a sustained manner. J. Ind. Eng. Chem. 2017, 46, 68–79. [Google Scholar] [CrossRef]
- Mahajan, H.S.; Patil, P.P. In situ cross Linked Chitosan-Gellan Gum Polyelectrolyte Complex Based Nanogels Containing Curcumin for Delivery to Cancer Cells. Indian J. Pharm. Educ. Res. 2017, 51, s40–s45. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.-Q.; Du, Y.-L.; Xiao, J.-X.; Wang, G.-Y. Effect of coacervation conditions on the viscoelastic properties of N,O-carboxymethyl chitosan–gum Arabic coacervates. Food Chem. 2017, 228, 236–242. [Google Scholar] [CrossRef]
- Lal, N.; Dubey, J.; Gaur, P.; Verma, N.; Verma, A. Chitosan based in situ forming polyelectrolyte complexes: A potential sustained drug delivery polymeric carrier for high dose drugs. Mater. Sci. Eng. C 2017, 79, 491–498. [Google Scholar] [CrossRef]
- Ahuja, M.; Bhatt, D.C. Polyelectrolyte complex of carboxymethyl gum katira-chitosan: Preparation and characterization. Int. J. Biol. Macromol. 2018, 106, 1184–1191. [Google Scholar] [CrossRef]
- Kathle, P.K.; Gautam, N.; Kesavan, K. Tamoxifen citrate loaded chitosan-gellan nanocapsules for breast cancer therapy: Development, characterisation and in-vitro cell viability study. J. Microencapsul. 2018, 35, 292–300. [Google Scholar] [CrossRef]
- Nur, M.; Vasiljevic, T. Insulin Inclusion into a Tragacanth Hydrogel: An Oral Delivery System for Insulin. Materials 2018, 11, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, K.M.; Kumar, A.; Han, S.S. Polysaccharide-based magnetically responsive polyelectrolyte hydrogels for tissue engineering applications. J. Mater. Sci. Technol. 2018, 34, 1371–1377. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, G. Optimization of pH conditions and characterization of polyelectrolyte complexes between gellan gum and cationic guar gum. Polym. Adv. Technol. 2018, 29, 3035–3048. [Google Scholar] [CrossRef]
- Brar, V.; Kaur, G. Preparation and Characterization of Polyelectrolyte Complexes of Hibiscus esculentus (Okra) Gum and Chitosan. Int. J. Biomater. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lopes, S.A.; Veiga, I.G.; Bierhalz, A.C.K.; Pires, A.L.R.; Moraes, Â.M. Physicochemical properties and release behavior of indomethacin-loaded polysaccharide membranes. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 956–964. [Google Scholar] [CrossRef]
- de Oliveira, A.C.; Vilsinski, B.H.; Bonafé, E.G.; Monteiro, J.P.; Kipper, M.J.; Martins, A.F. Chitosan content modulates durability and structural homogeneity of chitosan-gellan gum assemblies. Int. J. Biol. Macromol. 2019, 128, 114–123. [Google Scholar] [CrossRef]
- Khoerunisa, A.D.N.; Nugraheni, P.S.; Fahrurrozi, M.; Budhijanto, W. Selection of Polyanions as Complexation Agent in the Formation of Nanochitosan by Polyelectrolyte Complex Method. In Materials Science Forum; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2019; Volume 948, pp. 140–145. [Google Scholar] [CrossRef]
- Slavutsky, A.M.; Bertuzzi, M.A. Formulation and characterization of hydrogel based on pectin and brea gum. Int. J. Biol. Macromol. 2019, 123, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Maciejewski, B.; Sznitowska, M. Gelatin Films Modified with Acidic and Polyelectrolyte Polymers—Material Selection for Soft Gastroresistant Capsules. Polymers 2019, 11, 338. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rodríguez, R.; Espinosa-Andrews, H.; Morales-Hernández, N.; Lobato-Calleros, C.; Vernon-Carter, E.J. Mesquite gum/chitosan insoluble complexes: Relationship between the water state and viscoelastic properties. J. Dispers. Sci. Technol. 2019, 40, 1345–1352. [Google Scholar] [CrossRef]
- de Oliveira, L.C.; Barbosa, J.R.; Ribeiro, S.D.C.A.; de Vasconcelos, M.A.M.; de Aguiar, B.A.; da Silva Pereira, G.V.; Albuquerque, G.A.; da Silva, F.N.L.; Crizel, R.L.; Campelo, P.H.; et al. Improvement of the characteristics of fish gelatin–gum arabic through the formation of the polyelectrolyte complex. Carbohydr. Polym. 2019, 223, 115068. [Google Scholar] [CrossRef]
- Pereira, V.d.A.; Ribeiro, I.S.; Paula, H.C.B.; de Paula, R.C.M.; Sommer, R.L.; Rodriguez, R.J.S.; Abreu, F.O.M.S. Chitosan-based hydrogel for magnetic particle coating. React. Funct. Polym. 2020, 146, 104431. [Google Scholar] [CrossRef]
- de Oliveira, A.C.; Sabino, R.M.; Souza, P.R.; Muniz, E.C.; Popat, K.C.; Kipper, M.J.; Zola, R.S.; Martins, A.F. Chitosan/gellan gum ratio content into blends modulates the scaffolding capacity of hydrogels on bone mesenchymal stem cells. Mater. Sci. Eng. C 2020, 106, 110258. [Google Scholar] [CrossRef] [PubMed]
- Ćirić, A.; Medarević, Đ.; Čalija, B.; Dobričić, V.; Mitrić, M.; Djekic, L. Study of chitosan/xanthan gum polyelectrolyte complexes formation, solid state and influence on ibuprofen release kinetics. Int. J. Biol. Macromol. 2020, 148, 942–955. [Google Scholar] [CrossRef]
- Zia, I.; Jolly, R.; Mirza, S.; Umar, M.S.; Owais, M.; Shakir, M. Hydroxyapatite Nanoparticles Fortified Xanthan Gum–Chitosan Based Polyelectrolyte Complex Scaffolds for Supporting the Osteo-Friendly Environment. ACS Appl. Bio Mater. 2020, 3, 7133–7146. [Google Scholar] [CrossRef]
- da Silva, C.E.P.; de Oliveira, M.A.S.; Simas, F.F.; Riegel-Vidotti, I.C. Physical chemical study of zein and arabinogalactans or glucuronomannans polyelectrolyte complexes and their film-forming properties. Food Hydrocoll. 2020, 100, 105394. [Google Scholar] [CrossRef]
- Rana, V.; Rai, P.; Tiwary, A.K.; Singh, R.S.; Kennedy, J.F.; Knill, C.J. Modified gums: Approaches and applications in drug delivery. Carbohydr. Polym. 2011, 83, 1031–1047. [Google Scholar] [CrossRef]
- Koyyada, A.; Orsu, P. Natural gum polysaccharides as efficient tissue engineering and drug delivery biopolymers. J. Drug Deliv. Sci. Technol. 2021, 63, 102431. [Google Scholar] [CrossRef]
- Nazarzadeh Zare, E.; Makvandi, P.; Tay, F.R. Recent progress in the industrial and biomedical applications of tragacanth gum: A review. Carbohydr. Polym. 2019, 212, 450–467. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int. J. Biol. Macromol. 2014, 64, 353–367. [Google Scholar] [CrossRef]
- Cazorla-Luna, R.; Notario-Pérez, F.; Martín-Illana, A.; Ruiz-Caro, R.; Tamayo, A.; Rubio, J.; Veiga, M.D. Chitosan-based mucoadhesive vaginal tablets for controlled release of the anti-HIV drug tenofovir. Pharmaceutics 2019, 11, 20. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Thangavelu, M.; Cheolui, S.; Kim, H.S.; Choi, M.J.; Song, J.E.; Khang, G. Effect of different concentration of demineralized bone powder with gellan gum porous scaffold for the application of bone tissue regeneration. Int. J. Biol. Macromol. 2019, 134, 749–758. [Google Scholar] [CrossRef]
- Bal, Z.; Kaito, T.; Korkusuz, F.; Yoshikawa, H. Bone regeneration with hydroxyapatite-based biomaterials. Emergent Mater. 2020, 3, 521–544. [Google Scholar] [CrossRef]
- Shariatinia, Z. Pharmaceutical applications of natural polysaccharides. In Natural Polysaccharides in Drug Delivery and Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 15–57. ISBN 9780128170557. [Google Scholar]
- Liu, L.; Yao, W.D.; Rao, Y.F.; Lu, X.Y.; Gao, J.Q. pH-responsive carriers for oral drug delivery: Challenges and opportunities of current platforms. Drug Deliv. 2017, 24, 569–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.N.; Trombetta, L.D.; Kim, K.H. Biodegradation behavior of gellan gum in simulated colonic media. Pharm. Dev. Technol. 2004, 9, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.; Maji, B.; Moorthy, N.S.H.N.; Maiti, S. Xanthan gum derivatives: Review of synthesis, properties and diverse applications. RSC Adv. 2020, 10, 27103–27136. [Google Scholar] [CrossRef]
- Assifaoui, A.; Chambin, O. Pectin as Drug-Release Vehicle. In Pectin: Technological and Physiological Properties; Springer International Publishing: Cham, Germany, 2020; pp. 189–207. ISBN 9783030534202. [Google Scholar]
- Samprasit, W.; Opanasopit, P.; Chamsai, B. Mucoadhesive chitosan and thiolated chitosan nanoparticles containing alpha mangostin for possible Colon-targeted delivery. Pharm. Dev. Technol. 2021, 26, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Tang, X.; Jia, Y.; Ho, C.T.; Huang, Q. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery—A review. Int. J. Pharm. 2020, 578, 119127. [Google Scholar] [CrossRef]
- Safdar, R.; Omar, A.A.; Arunagiri, A.; Regupathi, I.; Thanabalan, M. Potential of Chitosan and its derivatives for controlled drug release applications—A review. J. Drug Deliv. Sci. Technol. 2019, 49, 642–659. [Google Scholar] [CrossRef]
- Peppas, N.A.; Narasimhan, B. Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. J. Control. Release 2014, 190, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T. Mechanism of Sustained- Action Medication. J. Pharm. Sci. 1963, 52, 1145–1149. [Google Scholar] [CrossRef]
- Siepmann, J.; Peppas, N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2012, 64, 163–174. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Peppas, N.A. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv. 1985, 60, 110–111. [Google Scholar] [PubMed]
- Bruschi, M.L. Mathematical models of drug release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Bruschi, M.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 63–86. ISBN 978-0-08-100092-2. [Google Scholar]
- Klech, C.M.; Simonelli, A.P. Examination of the moving boundaries associated with non-fickian water swelling of glassy gelatin beads: Effect of solution pH. J. Memb. Sci. 1989, 43, 87–101. [Google Scholar] [CrossRef]
- Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 1989, 57, 169–172. [Google Scholar] [CrossRef]
- Byrne, J.; Huang, H.-W.; McRae, J.C.; Babaee, S.; Soltani, A.; Becker, S.L.; Traverso, G. Devices for drug delivery in the gastrointestinal tract: A review of systems physically interacting with the mucosa for enhanced delivery. Adv. Drug Deliv. Rev. 2021, 113926. [Google Scholar] [CrossRef]
- Gutiérrez-Hernández, J.M.; Escobar-García, D.M.; Escalante, A.; Flores, H.; González, F.J.; Gatenholm, P.; Toriz, G. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration. Mater. Sci. Eng. C 2017, 75, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Webster, T.J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 2009, 4, 66–80. [Google Scholar] [CrossRef]
Natural Polymers | Parameters | |
---|---|---|
Anionic | Cationic | |
Gellan gum (G) | Chitosan (C) | (% w/v) ratio G:C of (1.5, 1.75, 2):1, acid and alkaline condition [24] |
Gum Arabic (A) | Chitosan | % weight ratio A:C = 7:3 [25] |
Xanthan gum (X) | Chitosan | % weight ratio X:C = (2–10):0.5, spray dried and freeze dried [26] |
Carboxymethylated cashew gum | Chitosan | pH 4, ionic strength 0.05, molar charge ratio n+/n−: 0.1 to 20 [27] |
Gellan gum | Acrylic ion exchange resin | Weight ratio polyanion solution:acrylic ion exchange resin = 5:5, pH 5.5, 25 °C, 24 h [28] |
Xanthan gum | ||
Gellan gum | Chitosan | (% w/v) ratio G:C = 1:2, pH Chitosan ~1.8, pH Gellan gum ~12 [29] |
Gellan gum | TiO2, ZnO, Ag nanoparticles (NP) | (gram) weight ratio G:NP = 1:0.2, 1:0.4, and 1:0.6 [30] |
Gum karaya (K) | Chitosan | (gram) Weight ratio K:C = 0.938:0.062 [31] |
Methacrylated gellan gum (MeGG) | Chitosan | Ratio MeGG:C = 2:1, 1:1, and 1:2. pH MeGG 5.42 (−17 mV), pH Chitosan 4.06 (+38 mV) [32] |
Xanthan gum | Chitosan | % weight ratio X:C = 2:1, 1:1, and 0.5:1, 25 °C, volume of each polymers is 37.5 mL [33] |
Xanthan gum | Ozarelix (O) | Mass ratio X:O = 1:6, each polymer was dissolved in pH 6 of deionized water [34] |
Carboxymethyl gum kondagogu (CMGK) | Chitosan | (% w/v) ratio CMGK:C = 0.01:0.05 until 0.1:0.2 (statistical studies) [35] |
Gum ghatti (GG) | Chitosan | (% w/v) ratio GG:C = 0.1:0.05 until 0.5:0.25 (statistical studies) [36] |
Gum kondagogu (GKG) | Chitosan | Weight ratio GKG:C = 10:1 until 50:1, pH 1.2–6.0 [37] |
Gum odina (GO) | Chitosan | Weight ratio GO:C = 4:1, 5:1, 6:1. pH 4.5 [38] |
Xanthan gum | Chitosan | (% w/v) ratio X:C = 0.7:0.7 and 1.0:0.7 with pH Chitosan 4.5 and 6.2 [39] |
Alginate | Chitosan | Weight ratio polyanion:C = 75:75 [40] |
Xanthan gum | ||
Xanthan gum | Cationic guar gum (CGG) | (% w/v) ratio X:CGG = (0.02–0.18): (0.18–0.02) [41] |
Arabic gum | Chitosan | % weight ratio C:A = 0.99:0.01, 0.98:0.02, 0.97:0.03, 0.95:0.05, 0.9:0.1, 0.8:0.2, 0.7:0.3 [42] |
Pectin/Gum arabic (P/A) | % weight ratio C:P/A * = 0.98:0.01, 0.96:0.02, 0.92:0.04, 0.84:0.08, 0.78:0.11, 0.7:0.15 [42] | |
Xanthan gum | Chitosan | Ratio C:X = 3:1, 1:1, 1:3 [43] |
Gum Arabic | Gelatin (Gn) | % weight ratio A:Gn = 2.5:2.5, pH 3.5–4.5 [44] |
Carboxymethyl gum katira (CGK) | Chitosan | (% w/v) ratio CK:C = (0.1–0.4): (0.03–0.05) [45] |
Gum Arabic | Cationized gelatin (CGn) | (% w/v) concentration of A or CGn = 0.1–1, (v/v) mixing ratio A:CGn = (1–4):(1–5) [46] |
Gum Arabic | Chitosan (Low and high molecular weight) | Molar ratio C:A = 1:0, 1:0.25; 1:0.5, 1:0.75, 1:1 [47] |
Sterculia striata rhamnogalacturonoglycan (RG) | Chitosan (high and low molecular weight) | Mixing charge ratio (n+/n−) = 0.1–10 [48] |
Gellan gum | Chitosan | (% w/v) ratio G:C = 0.85:0.4, pH 5 acetate buffer solution, room temperature, 24 h [49] |
Gum Arabic | Chitosan | Mass ratio C ‡:A = 5:1, 4:1, 3:1, 2:1, 1:1. pH solution 4.0, 4.5, 5.0, 5.5 [50] |
Methacrylated gellan gum | Chitosan | (% w/v) ratio MeGG:C = 1:1, flow rate 50 mL/hour [51] |
Borate modified Polyvinyl alcohol (PVA) | Cationic guar gum | The film PEC is combined with 0, 1, 4, 7, 10% wt. of gold nanoparticle-nanocellulose filler [52] |
Xanthan gum | Chitosan | Ratio X:C = 1:1 and 2:1. pH 5.8 and 6.5 [53] |
Xanthan gum + Polyethylene oxide (PEO) | Ratio X:PEO:C = 2:0.1:2 and 2:1:2, pH 5.8 and 6.5 [53] | |
Gellan gum | Chitosan | % w/v ratio G:C = 0.04:0.85, pH 5.4, 80 °C, 20 min [54] |
Gum Arabic | N,O-carboxymethyl chitosan (NOCC) | % w/v ratio A:NOCC = 3:1 to 7:1. Temperature 25 °C, pH 3, 8 h [55] |
Gum ghatti | Chitosan | Mass ratio G:C = 10:5 and 15:5. With 100 mg of lactose or starch, talc 30 mg, and 10 mg of Mg-stearate [56] |
Xanthan gum | Mass ratio X:C = 10:5 and 15:5. With 100 mg of lactose, talc 30 mg, and 10 mg of Mg-stearate [56] | |
Carboxymethyl gum katira (CGK) | Chitosan | (% w/v) ratio CGK:C = 0.5:0.5 [57] |
Gellan gum | Chitosan | Mass ratio G:C = 5:10, 6:12, 7:14 [58] |
Tragacanth gum (T) | Insulin (I) | (% w/w) ratio T:I = (0.1, 0.5, 1): 0.02, pH of Tragacanth was adjusted to 3.7, 4.3, 4.6 or 6 [59] |
Xanthan gum | Chitosan | % weight ratio X:C = 1.5:1.5 [60] |
Gellan gum | Cationic guar gum | Mixing ratios G:CGG = 10:90 until 90:10, pH 3.72, 5.5, and 7.13 [61] |
Okra gum (O) | Chitosan | Ratio O:C = 10:90 until 90:10, pH 5.0 [62] |
Xanthan gum | Chitosan | (% w/v) ratio X:C = 0.5:0.5 [63] |
Gellan gum | Chitosan | Ratio G:C = 10:90 until 65:35, 60 °C, pH Chitosan and Gellan are 1 and 6, respectively [64] |
Gum Arabic | Chitosan | Mass ratio C:A = 2:1, 3:1, 5:1, 10:1 [65] |
Pectin | Brea gum (B) | Ratio B:P = 1:1, pH Brea gum 2.75 [66] |
Gellan gum | Gelatin | Polysaccharide added 1.5% of the dry content modified gelatin [67] |
Xanthan gum | ||
Mesquite gum (M) | Chitosan | Mixing ratio M:C = 7:1, 8.5:1, 10:1, 12:1. pH 4.5 [68] |
Gum Arabic | Fish gelatin | % (g of A/100 g of Gn) = 0, 15, 25, 35. 150 rpm, 15 min, 25 °C [69] |
Sterculia striata gum (CHG) | Chitosan | (w/w) ratio C:CHG = 4:1, n+/n− = 10 [70] |
Gellan gum | Chitosan | (% w/w) ratio C:G = 80:20 and 60:40. 60 °C, Gellan gum solution was dropped into the Chitosan solution, pH 6 [71] |
Xanthan gum | Chitosan | (% w/v) ratio C:X = 0.65:0.65. pH Chitosan 3.6, 4.6, and 5.6 (by HCl and CH3COOH), mixing ratio C:X = 1:1 [72] |
Xanthan gum | Chitosan/Hydroxyapatite nanoparticle (NHA) | Weight ratio X:C:NHA = 30:30:40, 25:25:50, and 20:20:60 [73] |
Arabinogalactans gum acacia (GA) | Zein | Final volume ratio polysaccharide:Zein = 1:1 (concentration of each polymers is 1 mg/mL), two methods were used: nanoprecipitation (n) and desolvation (d) [74] |
Acacia mearnsii gum (GN) | ||
Glucuromannans gum ghatti (GGG) | ||
Vochysia thyrsoidea gum (VT) |
A Tissue and Bone Regeneration | ||||
---|---|---|---|---|
Gum-Based PECs Composite | Carrier Form | Application | ||
Methacrylate Gellan Gum-Chitosan/Arginylglycylaspartic acid | Hydrogel Fibers | Tissue engineering [51] | ||
Xanthan Gum-Chitosan@ Magnetic Fe3O4 | Hydrogel Scaffolds | Tissue engineering [60] | ||
Gellan Gum-Chitosan | Hydrogel Scaffolds | Tissue engineering [64] | ||
Xanthan Gum-Chitosan/Hydroxyapatite | Scaffolds | Bone-Regeneration [73] | ||
B Cargo Delivery | ||||
Gum-Based PECs Composite | Cargo Model | Carrier Form | Application | Release Parameter |
Xanthan Gum-Chitosan (Spray Dried) coated Liposomes | C-phycocyanin | Tablets | Colon-Specific delivery [26] | t~18% = 24 h (Simulated Gastric Fluid (SGF; pH 2; T = 37 °C) t~39% = 24 h (Simulated Intestinal Fluid (SIF); pH 6,8; T = 37 °C) |
Xanthan Gum-Chitosan (Freeze Dried) coated Liposomes | t~48% = 24 h (Simulated Gastric Fluid (SGF; pH 2; T = 37 °C) t~68 = 24 h (Simulated Intestinal Fluid (SIF); pH 6,8; T = 37 °C) | |||
Gellan Gum-Chitosan | Amoxicillin trihydrate | Hydrogel Beads | Gastrointestinal Delivery [24] | t~83% = 24 h (0.1 M HCl; pH 1,2; T = 37 °C) |
Gum Karaya (GK)-Chitosan | Diclofenac Sodium (DS) | Tablets | Oral Delivery [31] | t92,94% = 24 h (Phosphate Buffer; pH 7.4; T = 37 °C) |
carboxymethyl gum kondagogu-chitosan | Ofloxacin (OX) | Nanoparticles | - | t50% = 24 h (Phosphate Buffer; pH 7.4; T = 37 °C) [35] |
Gum Ghatti–Chitosan@ Pluronic F-127 | Ofloxacin | Nanoparticles | Drug Delivery and Antibiotic activity [36] | t32% = 12 h (Phosphate Buffer; pH 7.4; T = 37 °C) |
Gum Odina-Chitosan | - | Microspheres | Colon-specific delivery [38] | - |
Xanthan gum-Chitosan | Pediococcus acidilactici cells | Hydrogel microspheres | Gastrointestinal Delivery [39] | tnegligible = 2 h (Simulated Gastric Fluid (SGF; pH 2; T = 37 °C) t100% = 5 h (Simulated Intestinal Fluid (SIF); pH 6,8; T = 37 °C) |
Cationic guar gum-Xanthan Gum | Diclofenac Sodium | Microspheres | Gastrointestinal Delivery [41] | t61.02% = 12 h (Phosphate Buffer; pH 7.4; T = 37 °C) |
Xanthan gum-Chitosan | Theophylline (Th) | Tablets | Oral Delivery [40] | t~28% = 2 h; t~99.8% = 24 h; (Simulated Gastric Fluid (SGF) for 2 h followed with Simulated Intestinal fluid (SIF) for 22 h; pH 1,2 and 7.4 respectively; T = 37 °C) |
Metoprolol succinate (MS) | t~37% = 2 h; t~92% = 24 h; (Simulated Gastric Fluid (SGF) for 2 h followed with Simulated Intestinal fluid (SIF) for 22 h; pH 1,2 and 7.4 respectively; T = 37 °C) | |||
Alginate-Chitosan | Theophylline (Th) | t~18% = 2 h; t~84% = 24 h; (Simulated Gastric Fluid (SGF) for 2 h followed with Simulated Intestinal fluid (SIF) for 22 h; pH 1,2 and 7.4 respectively; T = 37 °C) | ||
Metoprolol succinate (MS) | t~37% = 2 h; t~96% = 24 h; (Simulated Gastric Fluid (SGF) for 2 h followed with Simulated Intestinal fluid (SIF) for 22 h; pH 1,2 and 7.4 respectively; T = 37 °C) | |||
carboxymethyl gum katira-Chitosan | Ofloxacin | Nanoparticles | Ophthalmic delivery [45] | t~92% = 24 h (0.1 M HCl; pH 1,2; T = 37 °C) |
Xanthan gum-Chitosan | Combination of Valproic acid (VPA) and sodium valproate (VPS) with ratio 1:2 | Tablets | Oral Delivery [43] | t4.8% = 1 h; t95% = 24 h (Simulated Gastric Fluid (SGF) for 1 h followed with Phosphate Buffer for 23 h; pH 1,2 and 6.8 respectively; T = 37 °C) |
Rhamnogalacturonoglycan (Rh)-Chitosan (low molecular weight) (Mixing charge ratio n+/n− 5) | Chloroquine | Nanoparticles | Localized Drug Delivery (Malaria Chemotherapy) [48] | t~60% = 10 h; t100% = 12 days (Phosphate Buffer; pH 7.4; T = 25 °C) |
Rhamnogalacturonoglycan (Rh)-Chitosan (low molecular weight) (mixing charge ratio n+/n− 0.1) | t~40% = 24 h; t100% = 12 days (Phosphate Buffer; pH 7.4; T = 25 °C) | |||
Gellan Gum-Chitosan | Ondansetron Hydrochloride | Solid Dosage | Nasal delivery [49] | t99% = 8 h (Phosphate Buffer; pH 7.4; T = 37 °C) |
Gellan Gum-Chitosan | Curcumin | Nanogel | Intra-tumoral [54] | t~94% = 20 h (Phosphate Buffer; pH 7.4; T = 37 °C) |
Xanthan Gum-Chitosan | Chlorhexidine (CHX) | Hydrogel | Topical Delivery [53] | t~1772(μg/mL) = 168 h (Phosphate Buffer; pH 7.4; T = 37 °C) |
Xanthan Gum-Chitosan @Polyethylene Oxide (PEO) | t~1103 (μg/mL) = 168 h (Phosphate Buffer; pH 7.4; T = 37 °C) | |||
Gum Ghatti (GG)-Chitosan | Paracetamol | Tablets | Gastrointestinal Delivery [56] | t54.93% = 6 h (0.1 M HCl; pH 1,2; T = 37 °C) |
Xanthan Gum (XG)-Chitosan | t62.27% = 6 h (0.1 M HCl; pH 1,2; T = 37 °C) | |||
Gellan Gum-Chitosan | Tamoxifen citrate | Nano capsules | Intra-tumoral [58] | t77.16% = 8 h (Phosphate Buffer; pH 7.4; T = 37 °C) |
carboxymethyl gum katira-Chitosan | Ofloxacin | Nanoparticles | t~45% = 2h; t84.32% = 24 h (0.1 M HCl for 2 h followed with Phosphate Buffer for 22 h; pH 1,2 and 7.4 respectively; T = 37 °C) [57] | |
Xanthan Gum (XG)-Chitosan | Indometachin | Membranes | Topical Delivery [63] | t20 (mg drug/mg carrier) = 6 h (Phosphate Buffer; pH 7.4; T = 37 °C; 0.092 mm thickness) |
Pectin-Chitosan | Tenofovir | Tablets | Vaginal Delivery [79] | t~98% = 75 h (Simulated Vaginal Fluid (SVF; pH 4.2; T = 37 °C) |
Locust Beam Gum-Chitosan | t~93% = 75 h (Simulated Vaginal Fluid (SVF; pH 4.2; T = 37 °C) | |||
Xanthan gum-Chitosan (Prepare in Hydrochloric acid (HCl) solution (pH 5.6) | Ibuprofen | Solid Dosage | Oral Delivery [72] | t48% = 10 h (PEC: drug ratio = 1:1) t50.67% = 10 h(PEC: drug ratio = 1:2) (Phosphate Buffer; pH 7.2; T = 37 °C) |
Xanthan gum-Chitosan (Prepare in Acetic Acid (AA) (pH 5.6) | t56.84% = 10 h (PEC: drug ratio = 1:1) t67.75% = 10 h (PEC: drug ratio = 1:2) (Phosphate Buffer; pH 7.2; T = 37 °C) |
Gum-Based PECs | Drug Model | Carrier Form | Suitable Model |
---|---|---|---|
Xanthan Gum-Chitosan (Spray Dried)/Liposomes | C-phycocyanin | Hydrogel Tablets [26] | Korsmeyer Peppas (n < 0.45) (Fickian diffusion) |
Xanthan Gum-Chitosan (Freeze Dried)/Liposomes | |||
Gum karaya−chitosan | Diclofenac Sodium | Tablets [31] | First Order Kinetics (Simultaneous diffusion and erosion mechanism) |
Carboxymethyl gum kondagogu-chitosan | Ofloxacin | Nanoparticles [35] | Higuchi (Diffusion controlled Release) |
Xanthan gum-Chitosan | Pediococcus acidilactici cells | Hydrogel microcapsules [39] | Korsmeyer Peppas (n > 0.85—Super II transport mechanism) (Chain relaxation (mobility)-governed mechanism) |
Xanthan Gum-Chitosan | Theophylline (Th) | Tablet [40] | Korsmeyer Peppas (0.45 < n < 0.89—anomalous or non-Fickian release) |
Pepper and Sahlin (4 h-polymer relaxation or polymer erosion; 12 h-diffusional release mechanism) | |||
Metoprolol succinate | Korsmeyer Peppas (0.45 < n < 0.89—anomalous or non-Fickian release) | ||
Pepper and Sahlin (2–12 h diffusional release mechanism) | |||
Carboxymethyl gum katira-Chitosan | Ofloxacin | Nanoparticles [45] | Higuchi (Diffusional governed mechanism) |
Gellan Gum-Chitosan | Ondasetron Hydrochloride | Solid Dosage [49] | Korsmeyer Peppas (0.5 < n < 1—anomalous (non-Fickian) transport) |
Rhamnogalacturonoglycan (Rh)-Chitosan (low molecular weight) (Mixing charge ratio n+/n− 5) | Chloroquine | Nanoparticles [48] | Korsmeyer Peppas (n > 0.89) Super case-II transport of diffusion |
Rhamnogalacturonoglycan (Rh)-Chitosan (low molecular weight) (mixing charge ratio n+/n− 0.1) | |||
Gellan Gum-Chitosan | Curcumin | Nanogel [54] | Korsmeyer Peppas (0.5 < n < 1-anomalous (non-Fickian) transport) |
Gum Ghatti-Chitosan | Paracetamol | Tablets [56] | Zero Order Equation (drug release independent to paracetamol concentration) |
Xanthan Gum-Chitosan | Chlorhexidine (CHX) | Hydrogel Microspheres [53] | Korsmeyer Peppas (0.45 < n < 0.89-anomalous or non-Fickian release) |
Xanthan Gum-Chitosan (prepared in Hydrochloric acid (HCl) solution (pH 5.6) | Ibuprofen (mass ratio of gum-based PECs: Drug (1:1)) | Hard capsules [72] | Korsmeyer Peppas (0.5 < n < 1-anomalous (non-Fickian) transport) |
Ibuprofen (mass ratio of gum-based PECs: Drug (1:2)) | |||
Xanthan Gum-Chitosan (prepared in Acetic Acid (AA) (pH 5.6) | Ibuprofen (mass ratio of gum-based PECs: Drug (1:1)) | ||
Ibuprofen (mass ratio of gum-based PECs: Drug (1:2)) |
Model of Drug Release Mechanism | Geometrical Shape of Drug Carrier | Value of Exponential n Release | Function of n in Terms of Time Variable |
---|---|---|---|
Fickian Diffusion | Planar (Thin Films) | 0.5 | t0.5 |
Cylinders | 0.45 | t0.45 | |
Sphere | 0.43 | t0.43 | |
Anomalous Transport | Planar (Thin Films) | 0.5 < n < 1.0 | t0.5 < n < 1.0 |
Cylinders | 0.45 < n < 0.89 | t0.45 < n < 0.89 | |
Sphere | 0.43 < n < 0.85 | t0.43 < n < 0.85 | |
Case I Transport | Planar (Thin Films) | 1 | t1 |
Cylinders | 0.89 | t0.89 | |
Sphere | 0.85 | t0.85 | |
Supercase II Transport | Planar (Thin Films) | n > 1 | tn > 1 |
Cylinders | n > 0.89 | tn > 0.85 | |
Sphere | n > 0.85 | tn > 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putro, J.N.; Lunardi, V.B.; Soetaredjo, F.E.; Yuliana, M.; Santoso, S.P.; Wenten, I.G.; Ismadji, S. A Review of Gum Hydrocolloid Polyelectrolyte Complexes (PEC) for Biomedical Applications: Their Properties and Drug Delivery Studies. Processes 2021, 9, 1796. https://doi.org/10.3390/pr9101796
Putro JN, Lunardi VB, Soetaredjo FE, Yuliana M, Santoso SP, Wenten IG, Ismadji S. A Review of Gum Hydrocolloid Polyelectrolyte Complexes (PEC) for Biomedical Applications: Their Properties and Drug Delivery Studies. Processes. 2021; 9(10):1796. https://doi.org/10.3390/pr9101796
Chicago/Turabian StylePutro, Jindrayani Nyoo, Valentino Bervia Lunardi, Felycia Edi Soetaredjo, Maria Yuliana, Shella Permatasari Santoso, I Gede Wenten, and Suryadi Ismadji. 2021. "A Review of Gum Hydrocolloid Polyelectrolyte Complexes (PEC) for Biomedical Applications: Their Properties and Drug Delivery Studies" Processes 9, no. 10: 1796. https://doi.org/10.3390/pr9101796
APA StylePutro, J. N., Lunardi, V. B., Soetaredjo, F. E., Yuliana, M., Santoso, S. P., Wenten, I. G., & Ismadji, S. (2021). A Review of Gum Hydrocolloid Polyelectrolyte Complexes (PEC) for Biomedical Applications: Their Properties and Drug Delivery Studies. Processes, 9(10), 1796. https://doi.org/10.3390/pr9101796