Ultrasonic Intensification of Mass Transfer in Organic Acid Extraction
Abstract
1. Introduction
2. Theoretical Part
2.1. Problem Formulation and Original Relationships
2.2. Calculation of the Intensity of Mass Transfer under the Effect of Ultrasonic Vibrations for a Single Droplet of the Dispersed Phase
- For the high frequencies of ultrasonic irradiation, when Ω << ω, it follows from Equation (15) that
- In the limit concerning a low-frequency acoustic signal when the condition Ω >> ω is satisfied, the solution to Equation (14) can be represented as
- In the resonance Ω ≈ ω, the vibration amplitude of the droplet surface has the maximum value
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zeng, Y.; Chen, K.; Ullah, E.; Li, S.; Zhang, L.; Ren, S. Solvent extraction performance of Sm (III) using a T-junction microreactorwith 2-ethylhexyl phosphonic acid mono-2-ethylhexyl (EHEHPA). Chem. Eng. Process. Process Intensif. 2019, 136, 28–35. [Google Scholar] [CrossRef]
- El-Hefny, N.E. Kinetics and mechanism of extraction of Cu(II) by CYANEX 302 from nitrate medium and oxidative stripping of Cu(I) using Lewis cell technique. Chem. Eng. Process. Process Intensif. 2010, 49, 84–90. [Google Scholar] [CrossRef]
- Zakhodyaeva, Y.A.; Izyumova, K.V.; Solov’eva, M.S.; Voshkin, A.A. Extraction separation of the components of leach liquors of batteries. Theor. Found. Chem. Eng. 2017, 51, 883–887. [Google Scholar] [CrossRef]
- Belova, V.V.; Egorova, N.S.; Voshkin, A.A.; Khol’kin, A.I. Extraction of rare earth metals, uranium, and thorium from nitrate solutions by binary extractants. Theor. Found. Chem. Eng. 2005, 49, 545–549. [Google Scholar] [CrossRef]
- Belova, V.V.; Voshkin, A.A.; Egorova, N.S.; Khol’kin, A.I. Extraction of rare earth metals from nitrate solutions with a binary extractant based on Cyanex 272. Russ. J. Inorg. Chem. 2010, 55, 629–633. [Google Scholar] [CrossRef]
- Palma, M.; Barbero, G.F.; Piñeiro, Z.; Liazid, A.; Barroso, C.G.; Rostagno, M.A.; Prado, J.M.; Meireles, M.A.A. Extraction of natural products: Principles and fundamental aspects. In Natural Product Extraction: Principles and Applications; Rostagno, M.A., Prado, J.M., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2013; pp. 58–88. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Zakhodyaeva, Y.A.; Voshkin, A.A.; Belova, V.V.; Khol’kin, A.I. Extraction of monocarboxylic acids with binary extracting agents based on amines and quaternary ammonium bases. Theor. Found. Chem. Eng. 2011, 45, 739–743. [Google Scholar] [CrossRef]
- Belova, V.V.; Kulichenkov, S.A.; Voshkin, A.A.; Khol’kin, A.I.; Kuvaeva, Z.I.; Soldatov, V.S. Extraction of mineral acids with methyltrioctylammonium dinonylnaphthalenesulfonate. R.J. Inorg. Chem. 2007, 52, 460–464. [Google Scholar] [CrossRef]
- Voshkin, A.A.; Zakhodyaeva, Y.A.; Zinov’eva, I.V.; Shkinev, V.M. Interphase distribution of aromatic acids in the polyethylene glycol-sodium sulfate-water system. Theor. Found. Chem. Eng. 2018, 52, 890–893. [Google Scholar] [CrossRef]
- Zinov’eva, I.V.; Zakhodyaeva, Y.A.; Voshkin, A.A. Data on the extraction of benzoic, salicylic and sulfosalicylic acids from dilute solutions using PEG-based aqueous two-phase systems. Data Brief 2020, 28, e105033. [Google Scholar] [CrossRef]
- Zinov’eva, I.V.; Zakhodyaeva, Y.A.; Voshkin, A.A. Interphase distribution of caffeine and coumarin in extraction systems with polyethylene glycol and sodium sulfate. Theor. Found. Chem. Eng. 2019, 53, 996–1000. [Google Scholar] [CrossRef]
- Zakhodyaeva, Y.A.; Solov’ev, V.O.; Zinov’eva, I.V.; Rudakov, D.G.; Timoshenko, A.V.; Voshkin, A.A. Interphase distribution of thiophene, toluene, and o-xylene in the hexane–polymer–water extraction system. Theor. Found. Chem. Eng. 2019, 53, 550–555. [Google Scholar] [CrossRef]
- Mullakaev, M.S.; Vexler, G.B.; Mullakaev, R.M. Sonochemical technology for separating oil sludge and oil-contaminated soil. Pet. Sci. Technol. 2018, 36, 604–608. [Google Scholar] [CrossRef]
- Abramov, V.O.; Abramov, O.V.; Sommer, F.; Gradov, O.M.; Smirnov, O.M. Surface hardening of a metals by ultrasonically accelerated small metal balls. J. Eng. Appl. Sci. 1998, 36, 1013–1019. [Google Scholar] [CrossRef]
- Newman, A.P.; Lorimer, J.P.; Mason, T.J.; Hunt, K.R. An investigation into the ultrasonic treatment of polluted solids. Ultrason. Sonochem. 1997, 4, 153–156. [Google Scholar] [CrossRef]
- Entezari, M.H.; Kruus, P. Effect of frequency on sonochemical reactions. I: Oxidation of iodide. Ultrason. Sonochem. 1994, 1, S75–S79. [Google Scholar] [CrossRef]
- Dashamiri, S.; Ghaedi, M.; Dashtian, K.; Rahimi, M.R.; Goudarzi, A.; Jannesar, R. Ultrasonic enhancement of the simultaneous removal of quaternary toxic organic dyes by CuO nanoparticles loaded on activated carbon: Central composite design, kinetic and isotherm study. Ultrason. Sonochem. 2016, 31, 546–557. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Luo, X. Advances in ultrasound assisted extraction of bioactive compounds from cash crops—A review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef]
- Zhong, K.; Wang, Q. Optimization of ultrasonic extraction of polysaccharides from dried long an pulp using response surface methodology. Carbohydr. Polym. 2010, 80, 19–25. [Google Scholar] [CrossRef]
- Tor, A.; Aydin, M.E.; Ozcan, S. Ultrasonic solvent extraction of organochlorine pesticides from soil. Anal. Chim. Acta 2006, 559, 173–180. [Google Scholar] [CrossRef]
- Diehl, L.O.; Gatiboni, T.L.; Mello, P.A.; Muller, E.I.; Duarte, F.A.; Flores, E.M. Ultrasound-assisted extraction of rare-earth elements from carbonatite rocks. Ultrason. Sonochem. 2018, 40, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Makos, P.; Przyjazny, A.; Boczkaj, G. Hydrophobic deep eutectic solvents as “green” extraction media for polycyclic aromatic hydrocarbons in aqueous samples. J. Chromatogr. A 2018, 1570, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Saien, J.; Daneshamoz, S. Experimental studies on the effect of ultrasonic waves on single drop liquid–liquid extraction. Ultrason. Sonochem. 2018, 40, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Amiri, S.; Shakeri, A.; Sohrabi, M.R.; Khalajzadeh, S.; Ghasemi, E. Optimization of ultrasonic assisted extraction of fatty acids from Aesculus hippocastanum fruit by response surface methodology. Food Chem. 2019, 271, 762–766. [Google Scholar] [CrossRef]
- Hu, Y.; Kwan, T.H.; Daoud, W.A.; Lin, C.S.K. Continuous ultrasonic-mediated solvent extraction of lactic acid from fermentation broths. J. Cleaner Prod. 2017, 145, 142–150. [Google Scholar] [CrossRef]
- Dordevic, T.; Antov, M. Ultrasound assisted extraction in aqueous two-phase system for the integrated extraction and separation of antioxidants from wheat chaff. Sep. Purif. Technol. 2017, 182, 52–58. [Google Scholar] [CrossRef]
- Voshkin, A.A.; Gradov, O.M. Parametric splitting and transfer of liquid cuts for the intensification of mass exchange in a cylindrical volume. Theor. Found. Chem. Eng. 2017, 51, 274–281. [Google Scholar] [CrossRef]
- Gradov, O.M.; Voshkin, A.A.; Zakhodyaeva, Y.A. Analysis of the possible applications of the acoustic flow effect for the breakup and transfer of liquid substances in a cylindrical volume. Theor. Found. Chem. Eng. 2017, 51, 876–882. [Google Scholar] [CrossRef]
- Gradov, O.M.; Voshkin, A.A.; Zakhodyaeva, Y.A. Estimating the parameters of ultrasonically induced mass transfer and flow of liquids in the pseudomembrane method. Chem. Eng. Process. Process Intensif. 2017, 118, 54–61. [Google Scholar] [CrossRef]
- Gradov, O.M.; Voshkin, A.A.; Zakhodyaeva, Y.A. Breakup of immiscible liquids at the interface using high-power acoustic pulses. Chem. Eng. Process. Process Intensif. 2018, 131, 125–130. [Google Scholar] [CrossRef]
- Flynn, H.G. Physics of acoustic cavitation in liquids. In Physical Acoustics; Mason, W., Ed.; Academic Press: New York, NY, USA, 1964. [Google Scholar]
- Ginkll, R.; Ginell, A.M. Tait coefficients of water in humidity and moisture. In Humidity and Moisture: Fundamentals and Standards; Wexler, A., Wildhack, W.A., Eds.; Reinhold Publishing Corporation: New York, NY, USA, 1965. [Google Scholar]
- Gradov, O.M.; Zakhodyaeva, Y.A.; Zinov’eva, I.V.; Voshkin, A.A. Some features of the ultrasonic liquid extraction of metal ions. Molecules 2019, 24, 3549. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gradov, O.M.; Zakhodyaeva, Y.A.; Zinov’eva, I.V.; Voshkin, A.A. Ultrasonic Intensification of Mass Transfer in Organic Acid Extraction. Processes 2021, 9, 15. https://doi.org/10.3390/pr9010015
Gradov OM, Zakhodyaeva YA, Zinov’eva IV, Voshkin AA. Ultrasonic Intensification of Mass Transfer in Organic Acid Extraction. Processes. 2021; 9(1):15. https://doi.org/10.3390/pr9010015
Chicago/Turabian StyleGradov, Oleg M., Yulia A. Zakhodyaeva, Inna V. Zinov’eva, and Andrey A. Voshkin. 2021. "Ultrasonic Intensification of Mass Transfer in Organic Acid Extraction" Processes 9, no. 1: 15. https://doi.org/10.3390/pr9010015
APA StyleGradov, O. M., Zakhodyaeva, Y. A., Zinov’eva, I. V., & Voshkin, A. A. (2021). Ultrasonic Intensification of Mass Transfer in Organic Acid Extraction. Processes, 9(1), 15. https://doi.org/10.3390/pr9010015