Investigation of Coalescence-Induced Droplet Jumping on Mixed-Wettability Superhydrophobic Surfaces
Abstract
:1. Introduction
2. Simulation Method
3. Results and Discussion
3.1. Mixed-Wettability Superhydrophobic Surfaces with Equal Strip Width
3.2. Mixed-Wettability Superhydrophobic Surfaces with Center Moved
3.3. Mixed-Wettability Superhydrophobic Surfaces with Unequal Strip Width
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boreyko, J.B.; Chen, C.H. Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces. Phys. Rev. Lett. 2009, 103, 184501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, Y.; Kim, H.; Shin, S. Energy and Hydrodynamic Analyses Of Coalescence-Induced Jumping Droplets. Appl. Phys. Lett. 2013, 103, 161601. [Google Scholar] [CrossRef]
- Wang, K.; Liang, Q.; Jiang, R.; Zheng, Y.; Lan, Z.; Ma, X. Numerical Simulation of Coalescence-Induced Jumping of Multidroplets on Superhydrophobic Surfaces: Initial Droplet Arrangement Effect. Langmuir 2017, 33, 6258–6268. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Boreyko, J.B.; Liu, F.; Agapov, R.L.; Lavrik, N.V.; Retterer, S.T.; Chen, C.H. Self-Propelled Sweeping Removal of Dropwise Condensate. Appl. Phys. Lett. 2015, 106, 221601. [Google Scholar] [CrossRef]
- Enright, R.; Miljkovic, N.; Al-Obeidi, A.; Thompson, C.V.; Wang, E.N. Condensation on Superhydrophobic Surfaces: The Role of Local Energy Barriers and Structure Length Scale. Langmuir 2012, 28, 14424–14432. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, F.; Williams, A.J.; Qu, X.; Feng, J.J.; Chen, C.-H. Self-Propelled Droplet Removal from Hydrophobic Fiber-Based Coalescers. Phys. Rev. Lett. 2015, 115, 074502. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Ghigliotti, G.; Feng, J.J.; Chen, C.H. Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces. J. Fluid Mech. 2014, 752, 39–65. [Google Scholar] [CrossRef] [Green Version]
- Enright, R.; Miljkovic, N.; Sprittles, J.; Nolan, K.; Mitchell, R.; Wang, E.N. How Coalescing Droplets Jump. ACS Nano 2014, 8, 10352–10362. [Google Scholar] [CrossRef]
- Wang, F.C.; Yang, F.; Zhao, Y.P. Size Effect on The Coalescence-Induced Self-Propelled Droplet. Appl. Phys. Lett. 2011, 98, 053112. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Keblinski, P. Coalescence-Induced Jumping of Nanoscale Droplets on Super-Hydrophobic Surfaces. Appl. Phys. Lett. 2015, 107, 143105. [Google Scholar] [CrossRef]
- Xie, F.F.; Lu, G.; Wang, X.D.; Wang, B.B. Coalescence-Induced Jumping of Two Unequal-Sized Nanodroplets. Langmuir 2018, 34, 2734–2740. [Google Scholar] [CrossRef] [PubMed]
- Miljkovic, N.; Enright, R.; Nam, Y.; Lopez, K.; Dou, N.; Sack, J.; Wang, E.N. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces. Nano Lett. 2013, 13, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Rykaczewski, K.; Paxson, A.T.; Anand, S.; Chen, X.; Wang, Z.; Varanasi, K.K. Multimode Multidrop Serial Coalescence Effects during Condensation on Hierarchical Superhydrophobic Surfaces. Langmuir 2013, 29, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Wisdom, K.M.; Watson, J.A.; Qu, X.; Liu, F.; Watson, G.S.; Chen, C.H. Self-Cleaning of Superhydrophobic Surfaces by Self-Propelled Jumping Condensate. Proc. Natl. Acad. Sci. USA 2013, 110, 7992–7997. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; He, M.; Chen, J.; Wang, J.; Song, Y.; Jiang, L. Anti-Icing Surfaces Based on Enhanced Self-Propelled Jumping of Condensed Water Microdroplets. Chem. Commun. 2013, 49, 4516–4518. [Google Scholar] [CrossRef]
- Chen, X.; Ma, R.; Zhou, H.; Zhou, X.; Che, L.; Yao, S.; Wang, Z. Activating the Microscale Edge Effect in a Hierarchical Surface for Frosting Suppression and Defrosting Promotion. Sci. Rep. 2013, 3, 2515. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Pang, Y.; Qin, Z.; Ma, R.; Yao, S. Why Condensate Drops Can Spontaneously Move Away on Some Superhydrophobic Surfaces but Not on Others. ACS Appl. Mater. Interfaces 2012, 4, 6618–6625. [Google Scholar] [CrossRef]
- Li, H.; Yang, W.; Aili, A.; Zhang, T. Insights into The Impact of Surface Hydrophobicity On Droplet Coalescence And Jumping Dynamics. Langmuir 2017, 33, 8574–8581. [Google Scholar] [CrossRef]
- Chu, F.; Yuan, Z.; Zhang, X.; Wu, X. Energy Analysis of Droplet Jumping Induced By Multi-Droplet Coalescence: The Influences Of Droplet Number And Droplet Location. Int. J. Heat Mass Trans. 2018, 121, 315–320. [Google Scholar] [CrossRef]
- Mulroe, M.D.; Srijanto, B.R.; Ahmadi, S.F.; Collier, C.P.; Boreyko, J.B. Tuning Superhydrophobic Nanostructures to Enhance Jumping-Droplet Condensation. ACS Nano 2017, 11, 8499–8510. [Google Scholar] [CrossRef]
- Kim, A.; Lee, C.; Kim, H.; Kim, J. Simple Approach to Superhydrophobic Nanostructured Al for Practical Antifrosting Application Based on Enhanced Self-propelled Jumping Droplets. ACS Appl. Mater. Interface 2015, 7, 7206–7213. [Google Scholar] [CrossRef] [PubMed]
- Vahabi, H.; Wang, W.; Davies, S.; Mabry, J.M.; Kota, A.K. Coalescence-Induced Self-Propulsion of Droplets on Superomniphobic Surfaces. ACS Appl. Mater. Interfaces 2017, 9, 29328–29336. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Wang, X.D.; Duan, Y.Y. A Critical Review of Dynamic Wetting by Complex Fluids: From Newtonian Fluids to Non-Newtonian Fluids and Nanofluids. Adv. Colloid Interface Sci. 2016, 236, 43–62. [Google Scholar] [CrossRef] [PubMed]
- Derby, M.M.; Chatterjee, A.; Peles, Y.; Jensen, M.K. Flow Condensation Heat Transfer Enhancement in A Mini-Channel with Hydrophobic and Hydrophilic Patterns. Int. J. Heat Mass Transf. 2014, 68, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Derby, M.M.; Peles, Y.; Jensen, M.K. Enhancement of Condensation Heat Transfer with Patterned Surfaces. Int. J. Heat Mass Transf. 2014, 71, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.H.; Wang, B.B.; Xu, D.Q.; Lin, J.F. Filmwise Condensation Heat Transfer Enhancement with Dropwise and Filmwise Coexisting Condensation Surfaces. Chin. J. Chem. Eng. 1998, 6, 5–12. [Google Scholar]
- Ma, X.H.; Song, T.Y.; Lan, Z.; Zhou, X.D. Experimental Investigation of Enhancement of Dropwise Condensation Heat Transfer of Steam-Air Mixture: Falling Droplet Effect. J. Enhanc. Heat Transf. 2007, 7, 295–305. [Google Scholar] [CrossRef]
- Grooten, M.H.M.; van der Geld, C.W.M. Surface property effects on dropwise condensation heat transfer from flowing air-steam mixtures to promote drainage. Int. J. Therm. Sci. 2012, 54, 220–229. [Google Scholar] [CrossRef]
- Kumagai, S.; Tanaka, S.; Katsuda, H.; Shimada, R. On the Enhancement of Filmwise Condensation Heat Transfer by Means of the Coexistence with Dropwise Condensation Sections. Exp. Heat Transf. 1991, 4, 71–82. [Google Scholar] [CrossRef]
- Varanasi, K.K.; Hsu, M.; Bhate, N.; Yang, W.; Deng, T. Spatial Control in The Heterogeneous Nucleation of Water. Appl. Phys. 2009, 95, 094101. [Google Scholar] [CrossRef]
- Yamauchi, A.; Kumagai, S.; Takeyama, T. Condensation Heat Transfer on Various Dropwise- Filmwise Coexisting Surface. Trans. Jpn. Soc. Mech. Eng. Ser. B 1985, 51, 2606–2613. [Google Scholar] [CrossRef]
- Ma, X.H. Condensation Heat Transfer of Steam on Vertical Dropwise and Filmwise Coexisting Surfaces with a Thick Organic Film Promoting Dropwise Mode. Exp. Heat Transf. 2003, 16, 239–253. [Google Scholar] [CrossRef]
- Xie, F.F.; Wang, D.Q.; Wang, Y.B.; Yang, Y.R.; Wang, X.D. Coalescence-Induced Jumping of Nanodroplets on Mixed-Wettability Superhydrophobic Surfaces. Can. J. Phys. 2020, in press. [Google Scholar] [CrossRef]
- Foiles, S.M.; Baskes, M.I.; Daw, M.S. Embedded-atom-method Functions for the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys. Phys. Rev. B 1986, 33, 7983. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.J.; Duan, L.Q. Explosive Boiling Of Liquid Argon Films on Flat and Nanostructured Surfaces. Numer. Heat Tr. A Appl. 2020, 78, 94–105. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
Case | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lb | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 16 | 18 | 20 | 24 |
Ll | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 16 | 18 | 20 | 24 |
Case | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Lb = Ll = 5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | - |
Lb = Ll = 6 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 |
Case | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Lb | 2 | 3/4/5/6/8/10/12 | 6 | 7/8/9/10/12 |
Ll | 3/4/5/6/8/10/12 | 2 | 7/8/9/10/12 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, M.-J.; Duan, L.-Q. Investigation of Coalescence-Induced Droplet Jumping on Mixed-Wettability Superhydrophobic Surfaces. Processes 2021, 9, 142. https://doi.org/10.3390/pr9010142
Liao M-J, Duan L-Q. Investigation of Coalescence-Induced Droplet Jumping on Mixed-Wettability Superhydrophobic Surfaces. Processes. 2021; 9(1):142. https://doi.org/10.3390/pr9010142
Chicago/Turabian StyleLiao, Ming-Jun, and Li-Qiang Duan. 2021. "Investigation of Coalescence-Induced Droplet Jumping on Mixed-Wettability Superhydrophobic Surfaces" Processes 9, no. 1: 142. https://doi.org/10.3390/pr9010142
APA StyleLiao, M.-J., & Duan, L.-Q. (2021). Investigation of Coalescence-Induced Droplet Jumping on Mixed-Wettability Superhydrophobic Surfaces. Processes, 9(1), 142. https://doi.org/10.3390/pr9010142