Investigating the Use of Recycled Pork Fat-Based Biodiesel in Aviation Turbo Engines
Abstract
:1. Introduction
2. Feedstock and Methods for Bio-Fuel
3. Standards, Compatibility, and Characteristics
4. Test Bench and Experimental Procedure for Turbo Engine
5. Analysis of Physical-Chemical Properties for Fuel Blends
5.1. Density of the Fuel Determination
5.2. Flash Point Determination
5.3. Kinematic Viscosity Determination
5.4. Calorific Power Determination
5.5. Freezing Point Determination
- A mixture consisting of water and ice is used when temperatures higher than 0 °C must be attained;
- A mixture consisting of ice and salt is used when temperatures in the range −15 °C ÷ 0 °C must be attained;
- A mixture consisting of denatured alcohol/gasoline and liquid carbon dioxide/liquid propane is used when temperatures lower than −15 °C must be attained.
5.6. FTIR Analysis (Fourier Transform Infrared Spectroscopy)
6. Experimental Results
6.1. Physico-Chemical Properties for Fuel Blends Experimental Results
6.2. Micro-Turbojet Engine Experimental Results
7. Jet Engine Cycle Analysis
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EC. Flight Path 2050, Europe’s Vision for Aviation. In Report of the High Level Group on Aviation Research; Publications Office of the European Union: Luxembourg, 2011; Available online: https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf (accessed on 26 March 2019).
- European Aviation Environmental Report 2019; European Union Aviation Safety Agency: Köln, Germany, 2019.
- GRANT AGREEMENT EASA.2015.FC21 Sustainable Aviation Fuel ‘Facilitation Initiative’. Available online: https://www.easa.europa.eu/document-library/research-reports/grant-agreement-easa2015fc21-0 (accessed on 1 August 2020).
- GRANT AGREEMENT EASA.2015.FC21 Sustainable Aviation Fuel ‘Monitoring System’. Available online: https://www.easa.europa.eu/document-library/research-reports/grant-agreement-easa2015fc21 (accessed on 1 August 2020).
- Shah, S.H.; Raja, I.A.; Rizwan, M.; Rashid, N.; Mahmood, Q.; Shah, F.A.; Pervez, A. Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan. Renew. Sustain. Energy Rev. 2018, 81, 76–92. [Google Scholar] [CrossRef]
- Kandaramath Hari, T.; Yaakob, Z.; Binitha, N.N. Aviation Bio-fuel From Renewable Resources: Routes, Opportunities and Challenges. Renew. Sustain. Energy Rev. 2015, 42, 1234–1244. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Park, S.; Dhar, A.; Lee, C.S.; Park, S.; Gupta, T.; Gupta, N.K. Review of Experimental and Computational Studies on Spray, Combustion, Performance, and Emission Characteristics of Biodiesel Fueled Engines. ASME J. Energy Resour. Technol. 2018, 140, 120801. [Google Scholar] [CrossRef] [Green Version]
- Purna, C.M.; Swarup, K.N. Pre-and post-mixed hybrid biodiesel blends as alternative energy fuels-an experimental case study on turbo-charged direct injection diesel engine. Energy 2018, 160, 910e923. [Google Scholar]
- Ağbulut, Ü.; Sarıdemir, S.; Albayrak, S. Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 389. [Google Scholar] [CrossRef]
- Ahmet, K.; Mehmet, Ş.; Alaattin, O.E. Experimental studies on biodiesel production from leather industry waste fat, and its effect on diesel engine characteristics. Fuel 2020, 276, 118000. [Google Scholar]
- French, K. Recycled Fuel Performance in the SR-30 Gas Turbine. In Proceedings of the ASEE Annual Conference and Exposition: Staying in Tune with Engineering Education, Nashville, TN, USA, 22–25 June 2003; pp. 3651–3656. [Google Scholar]
- Habib, Z.B.; Parthasarathy, R.N.; Gollahalli, S.R. Effects of Bio-fuel on the Performance and Emissions Characteristics of a Small Scale Gas Turbine. In Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. AIAA Paper No. 2009–827. [Google Scholar]
- Chiang, H.W.D.; Chiang, I.; Li, H.L. Performance Testing of Microturbine Generator System Fueled by Biodiesel. In Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, Montreal, QC, Canada, 14–17 May 2007. ASME Paper No. GT2007-28075. [Google Scholar]
- Krishna, C.R. Performance of the Capstone C30 Microturbine on Biodiesel Blends; Technical Report No. BNL-77927-2007-IR; Brookhaven National Laboratory: Upton, NY, USA, 2007.
- Blakey, S.; Rye, L.; Wilson, C.W. Emissions from an APU Operating on a Range of Alternative Fuels; SWAFEA Members Meeting: Paris, France, 2010. [Google Scholar]
- Prussi, M.; Chiaramonti, D.; Riccio, G.; Martelli, F.; Pari, L. Straight Vegetable Oil Use in Micro-Gas Turbines: System Adaptation and Testing. J. Appl. Energy 2012, 89, 287–295. [Google Scholar] [CrossRef]
- Nascimento, M.A.R.; Sierra, G.A.; Lora, E.E.S.; Rendon, M.A. Performance and Emission Experimental Evaluation and Comparison of a Regenerative Gas Microturbine Using Biodiesel from Various Sources as Fuel. ASME J. Energy Resour. Technol. 2011, 133, 022204. [Google Scholar] [CrossRef]
- Zabihian, F.; Fung, A.S.; Chiang, H.W.D. Modeling of BiodieselFueled Micro Gas Turbine. In Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vancouver, BC, Canada, 6–9 June 2011. ASME Paper No. GT2011-46655. [Google Scholar]
- Ibrahim, M.N.; Ali, A.H.; Ookawara, S. Performance Assessmentof Turbojet Engine Operated with Alternative Biodiesel. In Proceedings of the ASME 2013 Power Conference, Boston, MA, USA, 39 July–1 August 2013. ASME Paper No.POWER2013-98183. [Google Scholar]
- Sundararaj, R.H.; Kumar, R.D.; Raut, A.K.; Sekar, T.C.; Pandey, V.; Kushari, A.; Puri, S.K. Combustion and emission characteristics from biojet fuel blends in a gas turbine combustor. Energy 2019, 182, 689–705. [Google Scholar] [CrossRef]
- Cican, G.; Plesu, V.; Deaconu, M.; Toma, A.; Cretu, M. Performances and Emissions Evaluation of a Microturbojet Engine Running on Biodiesel Blends. ASME J. Energy Resour. Technol. 2019, 141, 072003. [Google Scholar] [CrossRef]
- Agrisoma Biosciences Inc. Biojet Blend Fuels Transatlantic Flight, 2018, Biomass Magazine. Available online: http://biomassmagazine.com/articles/15596/biojet-blend-fuels-transatlantic-flight (accessed on 1 August 2020).
- Surgenor, C. United Operates Longest-Ever Transatlantic Bio-Fuel Flight and Pledges to Halve GHG Emissions by 2050. 2018, GreenAir. Available online: https://www.greenaironline.com/news.php?viewStory=2522 (accessed on 1 August 2020).
- Chakraborty, D.; Kotoky, A. Oil from Seeds Helps Propel SpiceJet’s First. 2018, Bloomberg. Available online: https://www.bloomberg.com/news/articles/2018-08-27/india-s-spicejet-makes-maiden-flight-using-blended-bio-fuel (accessed on 1 August 2020).
- Zhu, W.; Zheng, X. Waste Oil Fuels Aviation Breakthrough in China. 2017, China Daily. Available online: https://www.chinadaily.com.cn/business/2017-11/23/content_34880563.htm (accessed on 1 August 2020).
- Forest-Powered Bio-fuel Flight Heads to Washington, D.C. 2016, WSU Insider. Available online: https://news.wsu.edu/2016/11/14/forest-powered-biofuel-flight/ (accessed on 1 August 2020).
- Boeing, Boeing, Hainan Airlines, Sinopec Celebrate China’s First Commercial Flight with Sustainable Aviation Biofuel, 2015, CISION PR Newswire. Available online: https://www.prnewswire.com/news-releases/boeing-hainan-airlines-sinopec-celebrate-chinas-first-commercial-flight-with-sustainable-aviation-biofuel-300054006.html (accessed on 1 August 2020).
- Lufthansa. Lufthansa Conducts European Flight using Sugar-Based Bio-Fuel. 2014 Biomass Magazine. Available online: http://biomassmagazine.com/articles/10964/lufthansa-conducts-european-flight-using-sugar-based-biofuel (accessed on 1 August 2020).
- Flies NRC. World’s First Civil Jet Powered by 100 Percent bio-Fuel. 2012, Aero News Network. Available online: http://www.aero-news.net/index.cfm?do=main.textpost&id=a3309cef-59ee-4742-8f24-bb7d39a86cf8 (accessed on 1 August 2020).
- Porter Chittley, J. Airlines Operates First BIO-fuel-Powered Passenger Flight in Canada. 2012, Yahoo News. Available online: https://ca.news.yahoo.com/blogs/dailybrew/porter-airlines-operates-first-biofuel-powered-passenger-flight-143555317.html (accessed on 1 August 2020).
- Hilkevitch, J. Continental Airlines Flight is First in U.S. to Use Bio-Fuel. 2011, Los Angeles Times. Available online: https://www.latimes.com/business/la-xpm-2011-nov-11-la-fi-biofuel-airlines-20111111-story.html (accessed on 1 August 2020).
- Xin, D.; Wang, W. China Conducts its First jet BIO-fuel Trial. 2011, China Daily. Available online: http://www.chinadaily.com.cn/bizchina/2011-10/29/content_14000985.htm (accessed on 1 August 2020).
- Moore, R.H.; Thornhill, K.L.; Weinzierl, B.; Sauer, D.; D’Ascoli, E.; Kim, J.; Lichtenstern, M.; Scheibe, M.; Beaton, B.; Beyersdorf, A.J.; et al. Bio- fuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature 2017, 543, 411–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, W.; Raf, D.; Kyriakos, M.; John, W.; Tianwei, T.; Jan, B.; Yunming, F. Biomass-derived aviation fuels: Challenges and perspective. Prog. Energy Combust. Sci. 2019, 74, 31–49. [Google Scholar]
- Shahabuddin, M.; Alam, M.T.; Krishna, B.B.; Bhaskar, T.; Perkins, G. A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes. Bioresour. Technol. 2020, 312, 123596. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, M.; Aghbashlo, M.; Dehhaghi, M.; Panahi, H.K.S.; Mollahosseini, A.; Hosseini, M.; Soufiyan, M.M. Reactor technologies for biodiesel production and processing: A review. Prog. Energy Combust. Sci. 2019, 74, 239–303. [Google Scholar] [CrossRef]
- Corscadden, K.; Yang, J.; Xin, Z.; He, Q.S.; Niu, H. An overview on performance characteristics of bio-jet fuels. Fuel 2018, 237, 916–936. [Google Scholar]
- Kim, D.; Violi, A. Hydrocarbons for the next generation of jet fuel surrogates. Fuel 2018, 228, 438–444. [Google Scholar] [CrossRef]
- AlNouss, A.; McKay, G.; Al-Ansari, T. A techno-economic-environmental study evaluating the potential of oxygen-steam biomass gasification for the generation of value-added products. Energy Convers Manag. 2019, 196, 664–676. [Google Scholar] [CrossRef]
- Why, E.S.K.; Ong, H.C.; Lee, H.V.; Gan, Y.Y.; Chen, W.H.; Chong, C.T. Renewable aviation fuel by advanced hydroprocessing of biomass: Challenges and perspective. Energy Convers. Manag. 2019, 199, 112015. [Google Scholar] [CrossRef]
- Xu, J.; Long, F.; Jiang, J.; Li, F.; Zhai, Q.; Wang, F.; Liu, P.; Li, J. Integrated catalytic conversion of waste triglycerides to liquid hydrocarbons for aviation bio-fuels. J. Clean. Prod. 2019, 222, 784–792. [Google Scholar] [CrossRef]
- Abomohra, A.E.F.; Elsayed, M.; Esakkimuthu, S.; El-Sheekh, M.; Hanelt, D. Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives. Prog. Energy Combust. Sci. 2020, 81, 100868. [Google Scholar] [CrossRef]
- Krishania, N.; Rajak, U.; Chaurasiya, P.K.; Singh, T.S.; Birru, A.K.; Verma, T.N. Investigations of spirulina, waste cooking and animal fats blended biodiesel fuel on auto-ignition diesel engine performance, emission characteristics. Fuel 2020, 276, 118123. [Google Scholar] [CrossRef]
- Mata, T.M.; Mendes, A.M.; Caetano, N.S.; Martins, A.A. Properties and sustainability of biodiesel from animal fats and fish oil. Chem. Eng. Trans. 2014, 38, 175–180. [Google Scholar] [CrossRef]
- Alptekin, E.; Canakci, M.; Sanli, H. Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Manag. 2014, 34, 2146–2154. [Google Scholar] [CrossRef] [PubMed]
- Mata, T.M.; Cardoso, N.; Ornelas, M.; Neves, S.; Caetano, N.S. Evaluation of two purification methods of biodiesel from beef tallow, pork fat, and chicken fat. Energy Fuels 2011, 25, 4756–4762. [Google Scholar] [CrossRef]
- Sander, A.; Košćak, M.A.; Kosir, D.; Milosavljević, N.; Vuković, J.P.; Magić, L. The influence of animal fat type and purification conditions on biodiesel quality. Renew. Energy 2018, 118, 752–760. [Google Scholar] [CrossRef]
- Ndiaye, M.; Arhaliass, A.; Legrand, J.; Roelens, G.; Kerihuel, A. Reuse of waste animal fat in biodiesel: Biorefining heavily-degraded contaminant-rich waste animal fat and formulation as diesel fuel additive. Renew. Energy 2020, 145, 1073–1079. [Google Scholar] [CrossRef]
- Habib, M.S.; Asghar, O.; Hussain, A.; Imran, M.; Mughal, M.P.; Sarkar, B. A robust possibilistic programming approach toward animal fat-based biodiesel supply chain network design under uncertain environment. J. Clean. Prod. 2020, 278, 122403. [Google Scholar] [CrossRef]
- Enagi, I.; Al-attab, K.A.; Zainal, Z.A. Liquid bio-fuels utilization for gas turbines: A review. Renew. Sustain. Energy Rev. 2018, 90, 43–55. [Google Scholar] [CrossRef]
- Banković-Ilić, I.B.; Stojković, I.J.; Stamenković, O.S.; Veljkovic, V.B.; Hung, Y.T. Waste animal fats as feedstocks for biodiesel production. Renew. Sustain. Energy Rev. 2014, 32, 238–254. [Google Scholar] [CrossRef] [Green Version]
- Pereira, E.; Meirelles, A.J.; Maximo, G.J. Predictive models for physical properties of fats, oils, and biodieselfuels. Fluid Phase Equilibria 2020, 508, 112440. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Joo, H.S.; Yang, Y.H. Biowaste-to-bioenergy using biological methods–A mini-review. Energy Convers. Manag. 2018, 177, 640–660. [Google Scholar] [CrossRef]
- ASTM International. ASTM D1655-18a, Standard Specification for Aviation Turbine Fuels; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- ASTM International. ASTM D6751-15ce1, Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Sajjadi, B.; Raman, A.A.A.; Arandiyan, H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renew. Sustain. Energy Rev. 2016, 63, 62–92. [Google Scholar] [CrossRef]
- Jet Cat USA. Jet Cat Instruction Manual. U.S. Patent No. 6216440, 17 April 2001. [Google Scholar]
- European Committee for Standardization. SR EN ISO 3675/2003, Crude Petroleum and Liquid Petroleum Products—Laboratory Determination of Density—Hydrometer Method; ASRO: Bucharest, Romania, 2003. [Google Scholar]
- ASTM International. ASTM D92-05a, Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar]
- European Committee for Standardization. SR EN ISO 3104/2002, Petroleum Products. Transparent and Opaque Liquids. Determination of Kinematic Viscosity and Calculation of Dynamic Viscosity; ASRO: Bucharest, Romania, 2002. [Google Scholar]
- ASTM International. ASTM D240-17, Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Oyerinde, A.Y.; Bello, E.I. Use of Fourier Transformation Infrared (FTIR) Spectroscopy for Analysis of Functional Groups in Peanut Oil Biodiesel and Its Blends. Br. J. Appl. Sci. Technol. 2016, 13, 22178. [Google Scholar] [CrossRef]
- Alisaraei, A.T.; Ghobadian, B.; Hashjin, T.T.; Mohtasebi, S.S. Vibration analysis of a diesel engine using biodiesel and petrodiesel fuel blends. Fuel 2012, 102, 414–422. [Google Scholar] [CrossRef]
- Mattingly, J. Elements of Propulsion: Gas Turbines and Rockets, 2nd ed.; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2006. [Google Scholar]
Sample | Flash Point °C | Viscosity at 40 °C cSt | Density at 22 °C g/cm3 | Freezing Point °C | Higher Calorific Value kJ/kg |
---|---|---|---|---|---|
Ke + 5% Aeroshell | 42.3 | 1.39 | 0.817 | <−35 °C | 45.292 |
Ke + 10% BD pork | 44.2 | 1.51 | 0.823 | <−35 °C | 44.403 |
Ke + 20% BD pork | 50.2 | 1.82 | 0.830 | <−35 °C | 43.67 |
Ke + 30% BD pork | 54.7 | 2.06 | 0.836 | −29 °C | 43.302 |
Ke + 50% BD pork | 57 | 2.62 | 0.850 | −23 °C | 41.997 |
100% BD pork | 161 | 5.08 | 0.875 | −6 °C | 39.323 |
Regime | Blend | T3 (°C) | Qc (L/h) | F (N) | Acc-Radial (mm/s) | Acc-Axial (mm/s) |
---|---|---|---|---|---|---|
Regime 1—idle 18.7% | Ke | 651 | 7.1 | 4.15 | 1.9 | 1.5 |
Ke + 10%BD | 656 | 6.9 | 4.38 | 0.6 | 1.2 | |
Ke + 20%BD | 665 | 6.9 | 4.42 | 0.7 | 1.3 | |
Ke + 30%BD | 668 | 6.8 | 4.33 | 0.8 | 1.3 | |
Ke + 50%BD | 705 | 6.6 | 4.40 | 0.5 | 1.3 | |
Regime 2—cruise 30% | Ke | 648 | 10.3 | 12.26 | 1.2 | 1.1 |
Ke + 10% BD | 643 | 10.3 | 12.51 | 0.9 | 1.5 | |
Ke + 20% BD | 637 | 10.4 | 12.58 | 0.9 | 1.4 | |
Ke + 30% BD | 635 | 10.5 | 12.60 | 0.8 | 1.8 | |
Ke + 50% BD | 615 | 10.2 | 12.61 | 0.8 | 1.6 | |
Regime 3—intermediate 60% | Ke | 609 | 16.8 | 39.3 | 2.3 | 3.1 |
Ke + 10% BD | 608 | 16.7 | 38.8 | 2.8 | 3.7 | |
Ke + 20% BD | 602 | 16.6 | 38.9 | 4 | 4.7 | |
Ke + 30% BD | 596 | 16.7 | 39.1 | 3.5 | 4.2 | |
Ke + 50% BD | 593 | 16.8 | 39.3 | 3.4 | 4.5 | |
Regime 4—maxim 94% | Ke | 714 | 22.7 | 72.5 | 2.5 | 2.2 |
Ke + 10% BD | 714 | 22.5 | 72.0 | 1.9 | 1.8 | |
Ke + 20% BD | 713 | 22.7 | 72.0 | 1.8 | 1.8 | |
Ke + 30% BD | 714 | 22.7 | 71.7 | 1.7 | 1.7 | |
Ke + 50% BD | 704 | 22.7 | 71.9 | 1.8 | 1.8 |
Fuel | ηb (%) | ηT (%) | S (kg/Nh) |
Ke | 0.805 | 0.0516 | 0.0264 |
Ke + 10%BD | 0.805 | 0.0518 | 0.0266 |
Ke + 20%BD | 0.798 | 0.0514 | 0.0269 |
Ke + 30%BD | 0.802 | 0.0520 | 0.0275 |
Ke + 50%BD | 0.785 | 0.0516 | 0.0277 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cican, G.; Deaconu, M.; Mirea, R.; Ceatra, L.; Cretu, M.; Dobre, T. Investigating the Use of Recycled Pork Fat-Based Biodiesel in Aviation Turbo Engines. Processes 2020, 8, 1196. https://doi.org/10.3390/pr8091196
Cican G, Deaconu M, Mirea R, Ceatra L, Cretu M, Dobre T. Investigating the Use of Recycled Pork Fat-Based Biodiesel in Aviation Turbo Engines. Processes. 2020; 8(9):1196. https://doi.org/10.3390/pr8091196
Chicago/Turabian StyleCican, Grigore, Marius Deaconu, Radu Mirea, Laurentiu Ceatra, Mihaiella Cretu, and Tănase Dobre. 2020. "Investigating the Use of Recycled Pork Fat-Based Biodiesel in Aviation Turbo Engines" Processes 8, no. 9: 1196. https://doi.org/10.3390/pr8091196
APA StyleCican, G., Deaconu, M., Mirea, R., Ceatra, L., Cretu, M., & Dobre, T. (2020). Investigating the Use of Recycled Pork Fat-Based Biodiesel in Aviation Turbo Engines. Processes, 8(9), 1196. https://doi.org/10.3390/pr8091196