Eucalyptus camaldulensis, Citrus aurantium, and Citrus sinensis Essential Oils as Antifungal Activity against Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Fusarium culmorum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrodistillation Method for Isolation of Essential Oils
2.2. GC-MS Analysis of Essential Oils and Their Combinations
2.3. Antifungal Activity of Essential Oils and Their Combinations
2.4. Statistical Analysis
3. Results
3.1. Chemical Constituents of the Essential Oils
3.2. Fungal Inhibition by Visual Observation
3.3. Antifungal Activity of Essential Oils and Their Combinations In Vitro
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salem, M.Z.M.; Zidan, Y.E.; Mansour, M.M.A.; El Hadidi, N.M.N.; Abo Elgat, W.A.A. Antifungal activities of two essential oils used in the treatment of three commercial woods deteriorated by five common mold fungi. Int. Biodeterior. Biodegrad. 2016, 106, 88–96. [Google Scholar] [CrossRef]
- Pinto, M.E.R.; Vale-Silva, L.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 2009, 58, 1454–1462. [Google Scholar] [CrossRef]
- Rana, I.S.; Singh, R.I.; Rajak, R.C. Evaluation of antifungal activity in essential oil of the Syzygium aromaticum (L.) by extraction, purification and analysis of its main component eugenol. Braz. J. Microbiol. 2011, 42, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Ashmawy, N.A.; Al Farraj, D.A.; Salem, M.Z.M.; Elshikh, M.S.; Al-Kufaidy, R.; Alshammari, M.K.; Salem, A.Z.M. Potential impacts of Pinus halepensis Miller trees as a source of phytochemical compounds: Antibacterial activity of the cones essential oil and n-butanol extract. Agrofor. Syst. 2020, 94, 1403–1413. [Google Scholar] [CrossRef]
- EL-Hefny, M.; Abo Elgat, W.A.A.; Al-Huqail, A.; Ali, H.M. Essential and recovery oils from Matricaria chamomilla flowers as environmentally friendly fungicides against four fungi isolated from cultural heritage objects. Processes 2019, 7, 809. [Google Scholar] [CrossRef] [Green Version]
- Okla, M.K.; Alamri, S.; Salem, M.Z.M.; Ali, H.M.; Behiry, S.I.; Nasser, R.A.; Alaraidh, I.A.; Al-Ghtani, S.M.; Soufan, W. Yield, Phytochemical constituents, and antibacterial activity of essential oils from the leaves/twigs, branches, branch wood, and branch bark of sour orange (Citrus aurantium L.). Processes 2019, 7, 363. [Google Scholar] [CrossRef] [Green Version]
- Mansour, M.M.A.; EL-Hefny, M.; Salem, M.Z.M.; Ali, H.M. The biofungicide activity of some plant essential oils for the cleaner production of model linen fibers similar to those used in ancient Egyptian mummification. Processes 2020, 8, 79. [Google Scholar] [CrossRef] [Green Version]
- Tinkeu, L.S.N.; Goudoum, A.; Ngassoum, M.B.; Mapongmetsem, P.M.; Kouninki, H.; Hance, T. Persistance of the insecticidal activity of five essential oils on the maize weevil Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae). Commun. Agric. Appl. Biol. Sci. 2004, 69, 145–147. [Google Scholar]
- Zhu, J.; Zeng, X.; Ma, Y.; Liu, T.; Qian, K.; Han, Y.; Xue, S.; Tucker, B.; Schultz, G.; Coats, J.; et al. Adult repellency and larvicidal activity of five plant essential oils against mosquitoes. J. Am. Mosq. Control Assoc. 2006, 22, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Jaenson, T.G.T.; Garboui, S.; Pålsson, K. Repellency of oils of lemon Eucalyptus, Geranium, and Lavender and the mosquito repellent MyggA Natural to Ixodes ricinus (Acari: Ixodidae) in the laboratory and field. J. Med. Entomol. 2006, 43, 731–736. [Google Scholar] [CrossRef]
- Hussein, H.S.; Salem, M.Z.M.; Soliman, A.M. Repellent, attractive, and insecticidal effects of essential oils from Schinus terebinthifolius fruits and Corymbia citriodora leaves on two whitefly species, Bemisia tabaci, and Trialeurodes ricini. Sci. Hortic. 2017, 216, 111–119. [Google Scholar] [CrossRef]
- Abdelsalam, N.R.; Salem, M.Z.M.; Ali, H.M.; Mackled, M.I.; EL-Hefny, M.; Elshikh, M.S.; Hatamleh, A.A. Morphological, biochemical, molecular, and oil toxicity properties of Taxodium trees from different locations. Ind. Crop. Prod. 2019, 139, 111515. [Google Scholar] [CrossRef]
- El-Sabrout, A.M.; Salem, M.Z.M.; Bin-Jumah, M.; Allam, A.A. Toxicological activity of some plant essential oils against Tribolium castaneum and Culex pipiens larvae. Processes 2019, 7, 933. [Google Scholar] [CrossRef] [Green Version]
- Hamad, Y.K.; Abobakr, Y.; Salem, M.Z.M.; Ali, H.M.; Al-Sarar, A.S.; Al-Zabib, A.A. Activity of plant extracts/essential oils against some plant pathogenic fungi and mosquitoes: GC/MS analysis of bioactive compounds. BioResources 2019, 14, 4489–4511. [Google Scholar]
- Abdoul-Latif, F.M.; Mohamed, N.; Edou, P.; Ali, A.A.; Djama, S.O.; Obame, L.C.; Bassolé, I.H.N.; Dicko, M.H. Antimicrobial and antioxidant activities of essential oil and methanol extract of Matricaria chamomilla L. from Djibouti. J. Med. Plants Res. 2011, 5, 1512–1517. [Google Scholar]
- Salem, M.Z.M.; Elansary, H.O.; Ali, H.M.; El-Settawy, A.A.; Elshikh, M.S.; Abdel-Salam, E.; Skalicka-Woźniak, K. Bioactivity of essential oils extracted from Cupressus macrocarpa branchlets and Corymbia citriodora leaves grown in Egypt. BMC Complement. Altern. Med. 2018, 18, 23. [Google Scholar] [CrossRef] [PubMed]
- Roby, M.H.; Sarhan, M.A.; Selim, K.A.H.; Khalel, K.I. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Ind. Crop. Prod. 2013, 44, 437–445. [Google Scholar] [CrossRef]
- Stanojević, L.; Marjanovic-Balaban, Z.R.; Kalaba, V.D.; Stanojević, J.S.; Cvetkovic, D.J. Chemical composition, antioxidant and antimicrobial activity of chamomile flowers essential oil (Matricaria chamomilla L.). J. Essent. Oil Bear. Plants 2016, 19, 2017–2028. [Google Scholar] [CrossRef]
- Smith-Palmer, A.; Stewart, J.; Fyfe, L. The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiol. 2001, 18, 463–470. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential oils: Sources of antimicrobials and food preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef] [Green Version]
- Begum, S.; Sultana, I.; Siddiqui, B.S.; Shaheen, F.; Gilani, A.-U.-H. Structure and spasmolytic activity of eucalyptanoic acid from Eucalyptus camaldulensis var. obtusa and synthesis of its active derivative from oleanolic Acid. J. Nat. Prod. 2002, 65, 1939–1941. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.Z.M.; Ashmawy, N.A.; Elansary, H.O.; El-Settawy, A.A. Chemotyping of diverse Eucalyptus species grown in Egypt and antioxidant and antibacterial activities of its respective essential oils. Nat. Prod. Res. 2014, 29, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Behiry, S.I.; Nasser, R.A.; El-Kareem, M.S.A.; Ali, H.M.; Salem, M.Z.M. Mass spectroscopic analysis, MNDO quantum chemical studies and antifungal activity of essential and recovered oil constituents of lemon-scented gum against three common molds. Processes 2020, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.S.; Huang, C.G.; Chen, Y.J.; Yu, J.J.; Chen, W.J.; Chang, S.T. Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresour. Technol. 2009, 100, 452–456. [Google Scholar] [CrossRef]
- Barra, A.; Coroneo, V.; Dessi, S.; Cabras, P.; Angioni, A. Chemical variability, antifungal and antioxidant activity of Eucalyptus camaldulensis essential oil from Sardinia. Nat. Prod. Commun. 2010, 5, 329–335. [Google Scholar] [CrossRef] [Green Version]
- No, O.; Zs, O. Eucalyptus camaldulensis var. nancy and Eucalyptus camaldulensis var. petford Seed Essential Oils: Phytochemicals and therapeutic potentials. Chem. Sci. J. 2017, 8, 148. [Google Scholar] [CrossRef] [Green Version]
- Tepe, B.; Akpulat, H.A.; Sokmen, M.; Daferera, D.; Yumrutas, O.; Aydin, E.; Polissiou, M.; Sokmen, A. Screening of the antioxidative and antimicrobial properties of the essential oils of Pimpinella anisetum and Pimpinella flabellifolia from Turkey. Food Chem. 2006, 97, 719–724. [Google Scholar] [CrossRef]
- Jayaprakasha, G.; Girennavar, B.; Patil, B.S. Radical scavenging activities of Rio Red grapefruits and Sour orange fruit extracts in different in vitro model systems. Bioresour. Technol. 2008, 99, 4484–4494. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Alvarez, J.A. Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control. 2008, 19, 1130–1138. [Google Scholar] [CrossRef]
- Favela-Hernández, J.M.J.; González-Santiago, O.; Ramírez-Cabrera, M.A.; Esquivel-Ferriño, P.C.; Del Rayo, C.C.M. Chemistry and pharmacology of Citrus sinensis. Molecules 2016, 21, 247. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.; Kainulainen, P.; Aflatuni, A. Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: With special reference to limonene and its suitability for control of insect pests. Agric. Food Sci. 2001, 10, 243–259. [Google Scholar] [CrossRef]
- Chutia, M.; Bhuyan, P.D.; Pathak, M.; Sarma, T.; Boruah, P. Antifungal activity and chemical composition of Citrus reticulata Blanco essential oil against phytopathogens from North East India. LWT 2009, 42, 777–780. [Google Scholar] [CrossRef]
- Moufida, S.; Marzouk, B. Biochemical characterization of blood orange, sweet orange, lemon, bergamot and bitter orange. Phytochemicals 2003, 62, 1283–1289. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Borghei, A.; Zenouzi, A.; Ashrafi, N.; Taherzadeh, M.J. Optimization of essential oil extraction from orange peels using steam explosion. Heliyon 2018, 4, e00893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njoroge, S.M.; Koaze, H.; Karanja, P.N.; Sawamura, M. Essential oil constituents of three varieties of Kenyan sweet oranges (Citrus sinensis). Flavour Fragr. J. 2004, 20, 80–85. [Google Scholar] [CrossRef]
- Raina, A.K.; Bland, J.; Dollittle, M.; Lax, A.; Boopathy, R.; Lolkins, M. Effect of orange oil extract on the formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 2007, 100, 880–885. [Google Scholar] [CrossRef]
- Hamdani, F.Z.; Allem, R.; Meziane, M.; Setti, B.; Ali, A.S.; Bourai, M.; Malika, M.; Benali, S.; Samir, A.A.; Meriem, B.; et al. Chemical composition and antifungal activity of essential oils of Algerian citrus. Afr. J. Biotechnol. 2015, 14, 1048–1055. [Google Scholar] [CrossRef] [Green Version]
- Ashmawy, N.A.; Salem, M.Z.M.; El Shanhorey, N.; Al-Huqail, A.A.; Ali, H.M.; Behiry, S.I. Eco-friendly wood-biofungicidal and antibacterial activities of various Coccoloba uvifera L. leaf extracts: HPLC analysis of phenolic and flavonoid compounds. BioResources 2020, 15, 4165–4187. [Google Scholar]
- Salem, M.Z.M.; Elgat, W.A.A.A.; Taha, A.S.; Fares, Y.G.D.; Ali, H.M. Impact of three natural oily extracts as pulp additives on the mechanical, optical, and antifungal properties of paper sheets made from Eucalyptus camaldulensis and Meryta sinclairii wood branches. Materials 2020, 13, 1292. [Google Scholar] [CrossRef] [Green Version]
- EL-Hefny, M.; Salem, M.Z.M.; Behiry, S.I.; Ali, H.M. The potential antibacterial and antifungal activities of wood treated with Withania somnifera fruit extract, and the phenolic, caffeine, and flavonoid composition of the extract according to HPLC. Processes 2020, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Abo Elgat, W.A.A.; Taha, A.S.; Böhm, M.; Vejmelková, E.; Mohamed, W.S.; Fares, Y.G.D.; Salem, M.Z.M. Evaluation of the mechanical, physical, and anti-fungal properties of flax laboratory papersheets with the nanoparticles treatment. Materials 2020, 13, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, A.A.; Behiry, S.I.; Ali, H.M.; EL-Hefny, M.; Salem, M.Z.M.; Ashmawy, N.A. Phytochemical compounds of branches from P. halepensis oily liquid extract and S. terebinthifolius essential oil and their potential antifungal activity. Processes 2020, 8, 330. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, F.C.; Chalfoun, S.M.; De Siqueira, V.M.; Botelho, D.M.D.S.; Lima, N.; Batista, L.R. Evaluation of antifungal activity of essential oils against potentially mycotoxigenic Aspergillus flavus and Aspergillus parasiticus. Rev. Bras. Farm. 2012, 22, 1002–1010. [Google Scholar] [CrossRef]
- Avasthi, S.; Gautam, A.K.; Bhadauria, R. Antifungal activity of plant products against Aspergillus niger: A potential application in the control of a spoilage fungus. Biol. Forum 2010, 2, 53–55. [Google Scholar]
- Paster, N.; Barkai-Golan, R. Mouldy fruits and vegetables as a source of mycotoxins: Part 2. World Mycotoxin J. 2008, 1, 385–396. [Google Scholar] [CrossRef]
- Cimanga, K.; Kambu, K.; Tona, L.; Apers, S.; De Bruyne, T.; Hermans, N.; Totté, J.; Pieters, L.; Vlietinck, A.J. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J. Ethnopharmacol. 2002, 79, 213–220. [Google Scholar] [CrossRef]
- Fiori, A.C.G.; Stangarlin, J.; Vida, J.B.; Scapim, C.A.; Cruz, M.; Pascholati, S.F.; Schwan-Estrada, K. Antifungal activity of leaf extracts and essential oils of some medicinal plants against Didymella bryoniae. J. Phytopathol. 2000, 148, 483–487. [Google Scholar] [CrossRef]
- Dhaliwal, H.J.S.; Thind, T.S.; Chander, M. Relative activity of essential oils from plants against Penicillium digitatum causing post-harvest fruit rot of Kinnow Mandarin. Plant Dis. Res. 2004, 19, 140–143. [Google Scholar]
- Singh, P.; Shukla, R.; Prakash, B.; Kumar, A.; Singh, S.; Mishra, P.K.; Dubey, N.K. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. And Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, dl-limonene. Food Chem. Toxicol. 2010, 48, 1734–1740. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Zayed, M.; Ali, H.M.; El-Kareem, M.S.M.A. Chemical composition, antioxidant and antibacterial activities of extracts from Schinus molle wood branch growing in Egypt. J. Wood Sci. 2016, 62, 548–561. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, W.A.; Mansour, M.M.A.; Salem, M.Z.M. Lemna gibba and Eichhornia crassipes extracts: Clean alternatives for deacidification, antioxidation and fungicidal treatment of historical paper. J. Clean. Prod. 2019, 219, 846–855. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Mansour, M.M.; Elansary, H.O. Evaluation of the effect of inner and outer bark extracts of sugar maple (Acer saccharum var. saccharum) in combination with citric acid against the growth of three common molds. J. Wood Chem. Technol. 2019, 39, 1–12. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Behiry, S.I.; El-Hefny, M. Inhibition of Fusarium culmorum, Penicillium chrysogenum and Rhizoctonia solani by n-hexane extracts of three plant species as a wood-treated oil fungicide. J. Appl. Microbiol. 2019, 126, 1683–1699. [Google Scholar] [CrossRef]
- Taha, A.S.; Abo Elgat, W.A.A.; Salem, M.Z.M.; Ali, H.M.; Fares, Y.G.E.; Elshikh, M.S. Impact of some plant source additives on enhancing the properties and antifungal activities of pulp made from linen fibers. BioResources 2019, 14, 6025–6046. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard, 2nd ed.; CLSI document M38-A2; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Pandey, D.K.; Tripathi, N.N.; Tripathi, R.D.; Dixit, S.N. Fungitoxic and phytotoxic properties of the essential oil of Hyptis suaveolens. J. Plant Dis. Prot. 1982, 89, 344–349. [Google Scholar]
- SAS. User Guide: Statistics (Release 8.02); SAS Institute: Cary, NC, USA, 2001. [Google Scholar]
- Njoroge, S.M.; Phi, N.T.L.; Sawamura, M. Chemical composition of peel essential oils of sweet oranges (Citrus sinensis) from Uganda and Rwanda. J. Essent. Oil Bear. Plants 2009, 12, 26–33. [Google Scholar] [CrossRef]
- Velázquez-Nuñez, M.J.; Ávila-Sosa, R.; Palou, E.; López-Malo, A. Antifungal activity of orange (Citrus sinensis var. Valencia) peel essential oil applied by direct addition or vapor contact. Food Control. 2013, 31, 1–4. [Google Scholar] [CrossRef]
- Dunlop, P.J.; Bignell, C.M.; Hibbert, D.B. Use of gas chromatograms of essential leaf oils to compare clones of Eucalyptus camaldulensis. Biochem. Syst. Ecol. 2000, 28, 383–391. [Google Scholar] [CrossRef]
- Bignel, C.M.; Dunlop, P.J.; Brophy, J.J.; Jackson, J.F. Volatile leaf oils of some South-Western and Southern Australian species of genus Eucalyptus. Part VII. Subgenus Symphyomyrtus, section exertaria. Flav. Fragr. J. 1996, 11, 35–41. [Google Scholar] [CrossRef]
- Giamakis, A.; Kretsi, O.; Chinou, I.; Spyropoulos, C.G. Eucalyptus camaldulensis: Volatiles from immature flowers and high production of 1,8-cineole and β-pinene by in vitro cultures. Phytochemicals 2001, 58, 351–355. [Google Scholar] [CrossRef]
- Gakuubi, M.M.; Maina, A.W.; Wagacha, J.M. Antifungal Activity of Essential Oil of Eucalyptus camaldulensis Dehnh. against Selected Fusarium spp. Int. J. Microbiol. 2017, 2017, 8761610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Almeida, I.; Alviano, D.S.; Vieira, D.P.; Alves, P.B.; Blank, A.F.; Lopes, A.H.C.S.; Alviano, C.S.; Rosa, M.D.S.S. Antigiardial activity of Ocimum basilicum essential oil. Parasitol. Res. 2007, 101, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Vitali, C.; De Laurentis, N.; Armenise, D.; Milillo, M.A. Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine 2007, 14, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Glisic, S.B.; Milojevic, S.; Dimitrijevic-Brankovic, S.; Orlovic, A.; Skala, D. Antimicrobial activity of the essential oil and different fractions of Juniperus communis L. and a comparison with some commercial antibiotics. J. Serbian Chem. Soc. 2007, 72, 311–320. [Google Scholar] [CrossRef]
- Proestos, C.; Chorianopoulos, N.; Nychas, G.-J.; Komaitis, M. RP-HPLC analysis of the phenolic compounds of plant extracts. investigation of their antioxidant capacity and antimicrobial activity. J. Agric. Food Chem. 2005, 53, 1190–1195. [Google Scholar] [CrossRef]
- Sousa, A.; Ferreira, I.C.; Calhelha, R.C.; Andrade, P.B.; Valentão, P.; Seabra, R.; Estevinho, L.M.; Bento, A.A.; Pereira, J.A. Phenolics and antimicrobial activity of traditional stoned table olives ‘alcaparra’. Bioorganic Med. Chem. 2006, 14, 8533–8538. [Google Scholar] [CrossRef]
- Kamal, G.M.; Ashraf, M.Y.; Hussain, A.I.; Shahzadi, A.; Chughtai, M.I. Antioxidant potential of peel essential oils of three Pakistani citrus species: Citrus reticulata, Citrus sinensis and Citrus paradisii. Pak. J. Bot. 2013, 45, 1449–1454. [Google Scholar]
- Tao, N.G.; Liu, Y.J.; Zhang, M.L. Chemical composition and antimicrobial activities of essential oil from the peel of bingtang sweet orange (Citrus sinensis Osbeck). Int. J. Food Sci. Technol. 2009, 44, 1281–1285. [Google Scholar] [CrossRef]
- Azar, A.; Nekoei, M.; Larijani, K.; Bahraminasab, S. Chemical composition of the essential oils of Citrus sinensis cv. valencia and a quantitative structure-retention relationship study for the prediction of retention indices by multiple linear regression. J. Serbian Chem. Soc. 2011, 76, 1627–1637. [Google Scholar] [CrossRef]
- Kamal, G.M.; Anwar, F.; Hussain, A.I.; Sarri, N.; Ashraf, M.Y. Yield and chemical composition of Citrus essential oils as affected by drying pretreatment of peels. Inter. Food Res. J. 2011, 18, 1275–1282. [Google Scholar]
- Dias, A.L.B.; Sousa, W.C.; Batista, H.R.F.; Alves, C.C.F.; Souchie, E.L.; Silva, F.G.; Pereira, P.S.; Sperandio, E.M.; Cazal, C.M.; Forim, M.R.; et al. Chemical composition and in vitro inhibitory effects of essential oils from fruit peel of three Citrus species and limonene on mycelial growth of Sclerotinia sclerotiorum. Braz. J. Biol. 2020, 80, 460–464. [Google Scholar] [CrossRef] [Green Version]
- Ngele, K.K.; Olugbue, V.U.; Okorie, U.V. Phytochemical constituents antimicrobial effect of unripe epicarp of orange fruits (Citrus sinensis) against Escherichia coli Staphylococcus aureus. IJSN 2014, 5, 418–422. [Google Scholar]
- Mohamed, A.A.; Behiry, S.I.; Younes, H.A.; Ashmawy, N.A.; Salem, M.Z.M.; Márquez-Molina, O.; Pliego, A.B. Antibacterial activity of three essential oils and some monoterpenes against Ralstonia solanacearum phylotype II isolated from potato. Microb. Pathog. 2019, 135, 103604. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Lei, Z.; Li, L.; Xie, R.; Xi, W.; Guan, Y.; Sumner, L.; Zhou, Z. Antifungal activity of citrus essential oils. J. Agric. Food Chem. 2014, 62, 3011–3033. [Google Scholar] [CrossRef]
- Ma, B.; Ban, X.; Huang, B.; He, J.; Tian, J.; Zeng, H.; Chen, Y.; Wang, Y. Interference and mechanism of dill seed essential oil and contribution of carvone and limonene in preventing sclerotinia rot of rapeseed. PLoS ONE 2015, 10, e0131733. [Google Scholar] [CrossRef] [Green Version]
- Clarke, S. Composition of essential oils and other materials. In Essential Chemistry for Aromatherapy, 2nd ed.; Elsevier Health Sciences: Amsterdam, The Netherlands; Edinburgh: Churchill Livingstone, Scotland, 2008; pp. 123–229. [Google Scholar]
- Boussaada, O.; Chemli, R. Chemical composition of essential oils from flowers, leaves and peel of Citrus aurantium L. var. amara from Tunisia. J. Essent. Oil Bear. Plants 2006, 9, 133–139. [Google Scholar] [CrossRef]
- Družić, J.; Jerković, I.; Marijanović, Z.; Roje, M. Chemical biodiversity of the leaf and flower essential oils of Citrus aurantium L. from Dubrovnik area (Croatia) in comparison with Citrus sinensis L. Osbeck cv. Washington navel, Citrus sinensis L. Osbeck cv. Tarocco and Citrus sinensis L. Osbeck cv. Doppio Sanguigno. J. Essent. Oil Res. 2016, 28, 283–291. [Google Scholar]
- Almeida, L.A.D.H.; Santos, J.Z.; Soares-Filho, W.D.S.; Bizzo, H.R.; Silva, J.P.; Vieira, R.F. Chemical characterization of leaf essential oil from seven accessions of sour orange (Citrus aurantium L.). J. Essent. Oil Bear. Plants 2015, 18, 426–435. [Google Scholar] [CrossRef]
- Giordani, R.; Trebaux, J.; Masi, M.; Regli, P. Enhanced antifungal activity of ketoconazole by Euphorbia characias latex against Candida albicans. J. Ethnopharmacol. 2001, 78, 1–5. [Google Scholar] [CrossRef]
- Shin, S.; Kang, C.A. Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. Lett. Appl. Microbiol. 2003, 36, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Dehghani-Samani, A.; Madreseh-Ghahfarokhi, S.; Dehghani-Samani, A.; Pirali, Y. In-vitro antigiardial activity and GC-MS analysis of Eucalyptus globulus and Zingiber officinalis essential oils against Giardia lamblia cysts in simulated condition to human’s body. Ann. Parasitol. 2019, 65, 129–138. [Google Scholar] [PubMed]
- Stević, T.; Berić, T.; Šavikin, K.; Sokovic, M.; Gođevac, D.; Dimkić, I.; Stanković, S. Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Ind. Crop. Prod. 2014, 55, 116–122. [Google Scholar] [CrossRef]
- De Azerêdo, G.A.; Stamford, T.L.M.; Nunes, P.C.; Neto, N.J.G.; De Oliveira, M.E.G.; De Souza, E.L. Combined application of essential oils from Origanum vulgare L. and Rosmarinus officinalis L. to inhibit bacteria and autochthonous microflora associated with minimally processed vegetables. Food Res. Int. 2011, 44, 1541–1548. [Google Scholar] [CrossRef] [Green Version]
- Bassolé, I.H.N.; Lamien-Meda, A.; Bayala, B.; Tirogo, S.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Composition and antimicrobial activities of Lippia multiflora moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in Combination. Molecules 2010, 15, 7825–7839. [Google Scholar] [CrossRef]
- Fu, Y.J.; Zu, Y.; Chen, L.; Shi, X.; Wang, Z.; Sun, S.; Efferth, T. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother. Res. 2007, 21, 989–994. [Google Scholar] [CrossRef]
- Bassolé, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [Green Version]
- Burt, S.A. Essential oils: Their antimicrobial properties and potential applications in foods: A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Burt, S.A.; Van Der Zee, R.; Koets, A.P.; De Graaff, A.M.; Van Knapen, F.; Gaastra, W.; Haagsman, H.P.; Veldhuizen, E.J.A. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7. Appl. Environ. Microbiol. 2007, 73, 4484–4490. [Google Scholar] [CrossRef] [Green Version]
- Santiesteban-Lopez, A.; Palou, E.; López-Malo, A. Susceptibility of food-borne bacteria to binary combinations of antimicrobials at selected a(w) and pH. J. Appl. Microbiol. 2007, 102, 486–497. [Google Scholar] [CrossRef]
- Hayouni, E.A.; Bouix, M.; Abedrabba, M.; Leveau, J.Y.; Hamdi, M. Mechanism of action of Melaleuca armillaris (Sol. Ex Gaertu) Sm. essential oil on six LAB strains as assessed by multiparametric flow cytometry and automated microtiter-based assay. Food Chem. 2008, 111, 707–718. [Google Scholar] [CrossRef]
- Devi, K.P.; Nisha, S.A.; Rathinasamy, S.; Pandian, S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130, 107–115. [Google Scholar] [CrossRef] [PubMed]
Source or Composition |
---|
Eucalyptus camaldulensis oil |
Citrus aurantium oil |
C. sinensis peels oil |
E. camaldulensis oil + C. aurantium oil (1:1 v/v) |
E. camaldulensis oil + C. sinensis oil (1:1 v/v) |
C. aurantium oil + C. sinensis oil (1:1 v/v) |
RT (min.) | Compound | Percentage in the Oil (%) | RSI-SI * |
---|---|---|---|
6.68 | 2-Thujene | 1.12 | (944–905) |
6.98 | α-Pinene | 1.14 | (938–919) |
8.63 | β-pinene | 0.77 | (931–897) |
9.44 | α-Phellandrene | 8.18 | (939–938) |
9.70 | 4-Terpinenyl acetate | 0.38 | (913–882) |
10.10 | D-Limonene | 2.28 | (924–916) |
10.39 | Sabinene | 9.73 | (940-936) |
10.53 | p–Cymene | 15.16 | (923-906) |
10.68 | Eucalyptol | 12.01 | (921–902) |
11.16 | γ-Terpinene | 1.09 | (919–879) |
12.06 | (E)-α-Ocimene | 0.7 | (871–860) |
14.11 | cis-β-Terpineol | 0.64 | (918–885) |
14.87 | cis-para-2-menthen-1-ol | 0.38 | (913–863) |
16.11 | Terpinen-4-ol | 3.69 | (928–923) |
16.83 | α-Terpineol | 0.42 | (869–853) |
17.85 | Crypton | 7.69 | (952–932) |
19.36 | Cuminaldehyde | 1.81 | (949–855) |
20.19 | Phellandral | 3.54 | (952–884) |
20.94 | 2-ethylidene-6-methyl-3,5-Heptadienal | 1.54 | (823–807) |
23.61 | Aromadendrene | 1.71 | (932–847) |
24.85 | Nerolidyl acetate | 0.41 | (797–787) |
27.59 | Spathulenol | 20.84 | (947–922) |
28.26 | 2-Methylene-5α-cholestan-3β-ol | 0.41 | (843–781) |
28.54 | Linoleic acid ethyl ester | 1.65 | (743–735) |
28.82 | Oleic acid | 0.27 | (808–792) |
29.06 | α-Vetivol | 1.12 | (772–759) |
29.23 | α-Sinensal | 0.21 | (793–759) |
29.30 | (E,E,E)-9-Octadecenoic acid, 1,2,3-propanetriyl ester | 0.23 | (845–773) |
29.54 | (Z,Z)-1,3-Dioctadecenoyl glycerol | 0.17 | (836–816) |
29.77 | (11Z)-12-(2-Oxiranyl)-11-dodecenyl acetate | 0.18 | (805–766) |
RT (min.) | Compound | Percentage in the Oil (%) | RSI-SI |
---|---|---|---|
8.63 | β-pinene | 1.27 | (931–889) * |
10.54 | (E)-α-Ocimene | 1.4 | (919–884) |
12.89 | Linalool | 29.76 | (968–960) |
16.83 | α-Terpineol | 7.38 | (934–930) |
17.25 | Linalyl acetate | 42.29 | (959–957) |
18.25 | nerol | 1.18 | (928–871) |
21.05 | Neryl acetate | 3.27 | (939–894) |
21.73 | Geranyl acetate | 5.23 | (933–903) |
22.31 | Caryophyllene | 2.35 | (895–861) |
24.86 | Nerolidyl acetate | 1.08 | (797–772) |
27.69 | Oleic acid | 0.69 | (835–817) |
29.91 | Z-(13,14-Epoxy)tetradec-11-e n-1-ol acetate | 0.72 | (812–767) |
RT (min.) | Compound | Percentage in the oil (%) | RSI-SI * |
---|---|---|---|
8.57 | Myrcene | 1.13 | (952–944) |
10.13 | D-Limonene | 73.4 | (945–944) |
10.46 | p–Cymene | 1.02 | (923–840) |
11.13 | γ–Terpinene | 22.6 | (950–949) |
16.74 | α–Terpineol | 0.81 | (931–923) |
29.42 | Ylangenal | 1.04 | (803–783) |
Oil Source. | Concentration (µL/mL) | Inhibition Percentage of Diameter Growth (%) | |||
---|---|---|---|---|---|
Aspergillus flavus | Aspergillus niger | Aspergillus terreus | Fusarium culmorum | ||
C. aurantium | 12.5 | 0.33 ± 0.33 | 22.33 ± 2.72 | 3.66 ± 0.88 | 5 ± 0.57 |
25 | 2 ± 0.57 | 48.33 ± 0.88 | 48 ± 2 | 45 ± 0.57 | |
50 | 62.66 ± 1.21 | 75.66 ± 0.66 | 100 | 65.66 ± 0.33 | |
E. camaldulensis | 12.5 | 2.33 ± 0.33 | 48.66 ± 0.66 | 13 ± 1.15 | 21.33 ± 0.66 |
25 | 63 ± 1.15 | 65.66 ± 0.33 | 57 ± 1.52 | 58 ± 1.52 | |
50 | 74.33 ± 0.88 | 91.66 ± 4.17 | 79 ± 2 | 100 | |
C. sinensis | 12.5 | 5 ± 0.57 | 65 ± 0.57 | 60.33 ± 0.33 | 60 ± 1.73 |
25 | 61.33 ± 0.33 | 77.66 ± 0.33 | 70.33 ± 1.66 | 66.33 ± 0.88 | |
50 | 86.66 ± 0.33 | 96 ± 4 | 100 | 100 | |
C. aurantium + E. camaldulensis | 12.5 | 0.66 ± 0.33 | 51 ± 0.57 | 24 ± 1.15 | 14.33 ± 0.88 |
25 | 9.33 ± 1.33 | 57 ± 1.52 | 40 ± 2 | 30.66 ± 1.45 | |
50 | 24.33 ± 1.21 | 70.66 ± 0.66 | 74.33 ± 1.45 | 41.66 ± 1.21 | |
C. aurantium + C. sinensis | 12.5 | 1.33 ± 0.33 | 32.66 ± 0.33 | 45.66 ± 1.20 | 27.33 ± 0.33 |
25 | 22.66 ± 0.33 | 46.66 ± 0.33 | 53.66 ± 0.88 | 34 ± 0.57 | |
50 | 46.33 ± 1.85 | 53.33 ± 0.66 | 63.33 ± 1.45 | 47.66 ± 0.33 | |
E. camaldulensis + C. sinensis | 12.5 | 23.66 ± 1.21 | 43.33 ± 0.66 | 62.66 ± 1.66 | 34 ± 0.57 |
25 | 35.33 ± 1.21 | 50 ± 1.15 | 67 ± 0.57 | 50.66 ± 0.66 | |
50 | 64.66 ± 0.66 | 71.33 ± 0.66 | 70.66 ± 0.66 | 65.66 ± 0.33 | |
Negative control (DMSO) | 10% | 0.00 | 0.00 | 0.00 | 0.00 |
Sertaconazol | 3 g/L | 88.66 ± 0.66 | 87 ± 0.57 | 91 ± 0.57 | 89.66 ± 0.88 |
P value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Essential Oil | MIC (µL/mL) | |||
---|---|---|---|---|
Aspergillus flavus | Aspergillus niger | Aspergillus terreus | Fusarium culmorum | |
C. aurantium | 25 | 8 | 12 | 12 |
E. camaldulensis | 12 | 7 | 10 | 8 |
C. sinensis | 12 | 6 | 6 | 6 |
C. aurantium + E. camaldulensis | 40 | 6 | 12 | 40 |
C. aurantium + C. sinensis | 30 | 8 | 10 | 40 |
E. camaldulensis + C. sinensis | 8 | 6 | 8 | 20 |
Sertaconazol (reference fungicide) | 8 | 6 | 8 | 6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elgat, W.A.A.A.; Kordy, A.M.; Böhm, M.; Černý, R.; Abdel-Megeed, A.; Salem, M.Z.M. Eucalyptus camaldulensis, Citrus aurantium, and Citrus sinensis Essential Oils as Antifungal Activity against Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Fusarium culmorum. Processes 2020, 8, 1003. https://doi.org/10.3390/pr8081003
Elgat WAAA, Kordy AM, Böhm M, Černý R, Abdel-Megeed A, Salem MZM. Eucalyptus camaldulensis, Citrus aurantium, and Citrus sinensis Essential Oils as Antifungal Activity against Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Fusarium culmorum. Processes. 2020; 8(8):1003. https://doi.org/10.3390/pr8081003
Chicago/Turabian StyleElgat, Wael A.A. Abo, Ahmed M. Kordy, Martin Böhm, Robert Černý, Ahmed Abdel-Megeed, and Mohamed Z.M. Salem. 2020. "Eucalyptus camaldulensis, Citrus aurantium, and Citrus sinensis Essential Oils as Antifungal Activity against Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Fusarium culmorum" Processes 8, no. 8: 1003. https://doi.org/10.3390/pr8081003
APA StyleElgat, W. A. A. A., Kordy, A. M., Böhm, M., Černý, R., Abdel-Megeed, A., & Salem, M. Z. M. (2020). Eucalyptus camaldulensis, Citrus aurantium, and Citrus sinensis Essential Oils as Antifungal Activity against Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Fusarium culmorum. Processes, 8(8), 1003. https://doi.org/10.3390/pr8081003