Next Article in Journal
Influence of Carbon Quantum Dots on the Biome
Next Article in Special Issue
Conversion of Potato Industry Waste into Fodder Yeast Biomass
Previous Article in Journal
A Review of Methane Activation Reactions by Halogenation: Catalysis, Mechanism, Kinetics, Modeling, and Reactors
Previous Article in Special Issue
Thermal Degradation of Cassava Rhizome in Thermosyphon-Fixed Bed Torrefaction Reactor
Open AccessArticle

Experimental Study on Hydrothermal Carbonization of Lignocellulosic Biomass with Magnesium Chloride for Solid Fuel Production

1
Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2162, 2362854 Valparaíso, Chile
2
Departamento de Ingeniería Química, Universidad de Santiago de Chile, Av Libertador Bernardo O’Higgins 3363, 9170022 Estación Central, Chile
3
Programa Centro de Valorización de Residuos y Economía Circular, Av Libertador Bernardo O’Higgins 3363, 9170022 Estación Central, Chile
4
Institute for Applied Research, University of Applied Forest Sciences Rottenburg, Schadenweilerhof 1, 72108 Rottenburg, Germany
5
Centro de Tecnologías Ambientales, Universidad Técnica Federico Santa María, General Bari 699, 2390136 Valparaíso, Chile
6
Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, 7620001 Las Condes, Chile
7
Escuela Técnica Superior de Ingenieros Industriales, University of Castilla-La Mancha, Edificio Politécnico, Avda. Camilo José Cela, s/n, 13071 Ciudad Real, Spain
8
Instituto de Investigación en Energías Renovables, University of Castilla-La Mancha, 02006 Albacete, Spain
9
Desert Research Institute, 2215 Raggio Pkwy, Reno, NV 89512, USA
*
Author to whom correspondence should be addressed.
Processes 2020, 8(4), 444; https://doi.org/10.3390/pr8040444
Received: 12 March 2020 / Revised: 2 April 2020 / Accepted: 7 April 2020 / Published: 10 April 2020
(This article belongs to the Special Issue Biomass Processing and Conversion Systems)
The effect of magnesium chloride as an additive of hydrothermal carbonization (HTC) of lignocellulosic biomass (Pinus radiata sawdust) was studied. The HTC tests were carried out at fixed conditions of temperature and residence time of 220 °C and 1 h, respectively, and varying the dose of magnesium chloride in the range 0.0–1.0 g MgCl2/g biomass. The carbonized product (hydrochar) was tested in order to determine its calorific value (HHV) while using PARR 6100 calorimeter, mass yield by gravimetry, elemental analysis using a LECO TruSpec elemental analyzer, volatile matter content, and ash content were obtained by standardized procedures using suitable ovens for it. The results show that using a dose of 0.75 g MgCl2/g biomass results in an impact on the mass yield that was almost equal to change operating conditions from 220 to 270 °C and from 0.5 to 1 h, without additive. Likewise, the calorific value increases by 33% for this additive dose, resulting in an energy yield of 68%, thus generating a solid fuel of prominent characteristics. View Full-Text
Keywords: hydrothermal carbonization; waste to energy; additives; lignocellulosic biomass; magnesium chloride hydrothermal carbonization; waste to energy; additives; lignocellulosic biomass; magnesium chloride
Show Figures

Figure 1

MDPI and ACS Style

Carrasco, S.; Silva, J.; Pino-Cortés, E.; Gómez, J.; Vallejo, F.; Díaz-Robles, L.; Campos, V.; Cubillos, F.; Pelz, S.; Paczkowski, S.; Cereceda-Balic, F.; Vergara-Fernández, A.; Lapuerta, M.; Pazo, A.; Monedero, E.; Hoekman, K. Experimental Study on Hydrothermal Carbonization of Lignocellulosic Biomass with Magnesium Chloride for Solid Fuel Production. Processes 2020, 8, 444.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop