New Porous Silicon-Containing Organic Polymers: Synthesis and Carbon Dioxide Uptake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Synthesis of Organosilicons 1–3
2.3. Synthesis of Polymers 4–6
3. Results
3.1. Synthesis of Organosilicons 1–3
3.2. Synthesis of Polymers 4–6
3.3. Surface Morphology of Polymers 4–6
3.4. TGA and DSC of Polymers 4–6
3.5. Surface Area and Porosity of Polymers 4–6
3.6. CO2 Adsorption of Polymers 4–6
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kweku, D.W.; Bismark, O.; Maxwell, A.; Desmond, K.A.; Danso, K.B.; Oti-Mensah, E.A.; Quachie, A.T.; Adormaa, B.B. Greenhouse effect: Greenhouse gases and their impact on global warming. J. Sci. Res. Rep. 2017, 17, 39630. [Google Scholar] [CrossRef]
- Singh, U. Carbon capture and storage: An effective way to mitigate global warming. Curr. Sci. 2013, 105, 914–922. [Google Scholar]
- Wang, X.P.; Yu, J.J.; Cheng, J.; Hao, J.P.; Xu, Z.P. High-temperature adsorption of carbon dioxide on mixed oxides derived from hydrotalcite-like compounds. Environ. Sci. Technol. 2008, 42, 614–618. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef] [Green Version]
- De Coninck, H.; Benson, S.M. Carbon dioxide capture and storage: Issues and prospects. Annu. Rev. Environ. Resour. 2014, 39, 243–270. [Google Scholar] [CrossRef]
- Leunga, D.Y.C.; Caramanna, G.; Maroto-Valerb, M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef] [Green Version]
- D’Alessandro, D.M.; Smit, B.; Long, J.R. Carbon dioxide capture: Prospects for new materials carbon dioxide capture: Prospects for new materials. Angew. Chem. Int. Ed. 2010, 49, 6058–6082. [Google Scholar] [CrossRef] [Green Version]
- Rochelle, G.T. Amine scrubbing for CO2 capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef]
- Electric Power Research Institute. Program on Technology Innovation: Post-Combustion CO2 Capture Technology Development; Electric Power Research Institute: Palo Alto, CA, USA, 2008. [Google Scholar]
- Abu-Khader, M.M. Recent progress in CO2 capture/sequestration: A review. Energy Sources Part A 2006, 28, 1261–1279. [Google Scholar] [CrossRef]
- Smiglak, M.; Metlen, A.; Rogers, R.D. The second evolution of ionic liquids: From solvents and separations to advanced materials—Energetic examples from the ionic liquid cookbook. Acc. Chem. Res. 2007, 40, 1182–1192. [Google Scholar] [CrossRef]
- Bates, E.D.; Mayton, R.D.; Ntai, I.; Davis, J.H. CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc. 2002, 124, 926–927. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.B.; Beaver, M.G.; Caram, H.S.; Sircar, S. Reversible chemisorbents for carbon dioxide and their potential applications. Ind. Eng. Chem. Res. 2008, 47, 8048–8062. [Google Scholar] [CrossRef]
- Choi, S.; Drese, J.H.; Jones, C.W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2009, 2, 796–854. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.C.; Drese, J.H.; Fauth, D.J.; Gray, M.L.; Qi, G.; Jones, C.W. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. J. Am. Chem. Soc. 2008, 130, 2902–2903. [Google Scholar] [CrossRef] [PubMed]
- Dawson, R.; Cooper, A.I.; Adams, D.J. Nanoporous organic polymer networks. Prog. Polym. Sci. 2012, 37, 530–563. [Google Scholar] [CrossRef]
- Henis, J.M.S. Commercial and Practical Aspects of Gas Separation Membranes. In Polymeric Gas Separation Membranes; Paul, D.R., Yampol’skii, Y.P., Eds.; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K. Design and preparation of porous polymers. Chem. Rev. 2012, 112, 3959–4015. [Google Scholar] [CrossRef]
- Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Conjugated microporous polymers: Design, synthesis and application. Chem. Soc. Rev. 2013, 42, 8012–8031. [Google Scholar] [CrossRef]
- Jones, J.T.A.; Hasell, T.; Wu, X.; Bacsa, J.; Jelfs, K.E.; Schmidtmann, M.; Chong, S.Y.; Adams, D.J.; Trewin, A.; Schiffman, F.; et al. Modular and predictable assembly of porous organic molecular crystals. Nature 2011, 474, 367–371. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Madden, D.G.; Lusi, M.; Chen, K.-J.; Daniels, E.A.; Curtin, T.; Perry, J.J., IV; Zaworotko, M.J. Direct air capture of CO2 by physisorbent materials. Angew. Chem. Int. Ed. 2015, 54, 14372–14377. [Google Scholar] [CrossRef]
- Xiang, Z.; Mercado, R.; Huck, J.M.; Wang, H.; Guo, Z.; Wang, W.; Cao, D.; Haranczyk, M.; Smit, B. Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture. J. Am. Chem. Soc. 2015, 137, 13301–13307. [Google Scholar] [CrossRef]
- Lau, C.H.; Konstas, K.; Thornton, A.W.; Liu, A.C.Y.; Mudie, S.; Kennedy, D.F.; Howard, S.C.; Hill, A.J.; Hill, M.R.G. Gas-separation membranes loaded with porous aromatic frameworks that improve with age. Angew. Chem. Int. Ed. 2015, 54, 2669–2673. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Dai, Z.; Meng, X.; Wang, L.; Xiao, F.-S. Task-specific design of porous polymer heterogeneous catalysts beyond homogeneous counterparts. ACS Catal. 2015, 5, 4556–4567. [Google Scholar] [CrossRef]
- Ahmed, D.S.; El-Hiti, G.A.; Yousif, E.; Ali, A.A.; Hameed, A.S. Design and synthesis of porous polymeric materials and their applications in gas capture and storage: A review. J. Polym. Res. 2018, 25, 75. [Google Scholar] [CrossRef]
- Choi, J.H.; Choi, K.M.; Jeon, H.J.; Choi, Y.J.; Lee, Y.; Kang, J.K. Acetylene gas mediated conjugated microporous polymers (ACMPs): First use of acetylene gas as a building unit. Macromolecules 2010, 43, 5508–5511. [Google Scholar] [CrossRef]
- Jiang, J.-X.; Trewin, A.; Adams, D.J.; Cooper, A.I. Band gap engineering in fluorescent conjugated microporous polymers. Chem. Sci. 2011, 2, 1777–1781. [Google Scholar] [CrossRef]
- Yuan, D.; Lu, W.; Zhao, D.; Zhou, H.-C. Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv. Mater. 2011, 23, 3723–3725. [Google Scholar] [CrossRef]
- Wang, D.; Xue, L.; Li, L.; Deng, B.; Feng, S.; Liu, H.; Zhao, X. Rational design and synthesis of hybrid porous polymers derived from polyhedral oligomeric silsesquioxanes via Heck coupling reactions. Macromol. Rapid Commun. 2013, 34, 861–866. [Google Scholar] [CrossRef]
- Dawson, R.; Stockel, E.; Holst, J.R.; Adams, D.J.; Cooper, A.I. Microporous organic polymers for carbon dioxide capture. Energy Environ. Sci. 2011, 4, 4239–4245. [Google Scholar] [CrossRef]
- Panek, R.; Wdowin, M.; Franus, W.; Czarna, D.; Stevens, L.A.; Deng, H.; Liu, J.; Sun, C.; Liu, H.; Snape, C.E. Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture. J. CO2 Util. 2017, 22, 81–90. [Google Scholar] [CrossRef]
- Chaubey, R.; Sahu, S.; James, O.O.; Maity, S. A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew. Sustain. Energy Rev. 2013, 23, 443–462. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Moliner, R.; Lázaro, M.J.; Suelves, I. Analysis of the strategies for bridging the gap towards the hydrogen economy. Int. J. Hydrog. Energy 2016, 41, 19500–19508. [Google Scholar] [CrossRef]
- Pudukudy, M.; Yaakob, Z.; Mohammad, M.; Narayanan, B.; Sopian, K. Renewable hydrogen economy in Asia–opportunities and challenges: An overview. Renew. Sustain. Energy Rev. 2014, 30, 743–757. [Google Scholar] [CrossRef]
- Lim, K.L.; Liu, Y.; Zhang, Q.-A.; Chan, S.L.I. Effects of partial substitutions of cerium and aluminum on the hydrogenation properties of La(0.65-x)CexCa1.03Mg1.32Ni(9-y)Aly alloy. Int. J. Hydrog. Energy 2014, 39, 10537–10545. [Google Scholar] [CrossRef]
- Ren, J.; Musyoka, N.M.; Langmi, H.W.; North, B.C.; Mathe, M.; Kang, X.; Liao, S. Hydrogen storage in Zr-fumarate MOF. Int. J. Hydrog. Energy 2015, 40, 10542–10546. [Google Scholar] [CrossRef]
- Najim, L.H.; El-Hiti, G.A.; Ahmed, D.S.; Mohammed, A.; Alotaibi, M.H.; Yousif, E. Valsartan metal complexes as capture and reversible storage media for methane. Appl. Petrochem. Res. 2020, 10. [Google Scholar] [CrossRef]
- Mohammed, A.; Yousif, E.; El-Hiti, G.A. Synthesis and use of valsartan metal complexes as media for carbon dioxide storage. Materials 2020, 13, 1183. [Google Scholar] [CrossRef] [Green Version]
- Hadi, A.G.; Jawad, K.; Yousif, E.; El-Hiti, G.A.; Alotaibi, M.H.; Ahmed, D.S. Synthesis of telmisartan organotin(IV) complexes and their use as carbon dioxide capture media. Molecules 2019, 24, 1631. [Google Scholar] [CrossRef] [Green Version]
- Satar, H.A.; Ahmed, A.A.; Yousif, E.; Ahmed, D.S.; Alotibi, M.F.; El-Hiti, G.A. Synthesis of novel heteroatom-doped porous-organic polymers as environmentally efficient media for carbon dioxide storage. Appl. Sci. 2019, 9, 4314. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, D.S.; El-Hiti, G.A.; Yousif, E.; Hameed, A.S.; Abdalla, M. New eco-friendly phosphorus organic polymers as gas storage media. Polymers 2017, 9, 336. [Google Scholar] [CrossRef]
- Omer, R.M.; Al-Tikrity, E.T.B.; El-Hiti, G.A.; Alotibi, M.F.; Ahmed, D.S.; Yousif, E. Porous aromatic melamine Schiff bases as highly efficient media for carbon dioxide storage. Processes 2020, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Konno, M.; Ogashiwa, T.; Sunaoshi, T.; Orai, Y.; Sato, M. Lattice imaging at an accelerating voltage of 30 kV using an in-lens type cold field-emission scanning electron microscope. Ultramicroscopy 2014, 145, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Bates, S.; Zografi, G.; Engers, D.; Morris, K.; Crowley, K.; Newman, A. Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns. Pharm. Res. 2006, 23, 2333–2349. [Google Scholar] [CrossRef] [PubMed]
- Lattimer, B.Y.; Ouellette, J. Properties of composite materials for thermal analysis involving fires. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1068–1081. [Google Scholar] [CrossRef]
- Shyichuk, A.V.; White, J.R. Analysis of chain-scission and crosslinking rates on the photooxidation of polystyrene. J. Appl. Polym. Sci. 2000, 77, 3015–3023. [Google Scholar] [CrossRef]
- Wampler, T.P. Applied Pyrolysis Handbook, 2nd ed.; CRC Press, Taylor and Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Lopes, C.M.A.; Felisberti, M.I. Thermal conductivity of PET/(LDPE/AI) composites determined by MDSC. Polym. Test. 2004, 23, 637–643. [Google Scholar] [CrossRef]
- Srisuda, S.; Virote, B. Adsorption of formaldehyde vapor by amine-functionalized mesoporous silica materials. J. Environ. Sci. 2008, 20, 379–384. [Google Scholar] [CrossRef]
- Rouquerol, J.; Rouquerol, F.; Sing, K.S.W.; Llewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd ed.; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Kwiatkowski, M.; Fierro, V.; Celzard, A. Confrontation of various adsorption models for assessing the porous structure of activated carbons. Adsorption 2019, 25, 1673–1682. [Google Scholar] [CrossRef] [Green Version]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Suresh, V.M.; Bonakala, S.; Atreya, H.S.; Balasubramanian, S.; Maji, T.K. Amide functionalized microporous organic polymer (Am-MOP) for selective CO2 sorption and catalysis. ACS Appl. Mater. Interfaces 2014, 6, 4630–4637. [Google Scholar] [CrossRef]
- Xu, C.; Hedin, N. Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and CO2 adsorption. J. Mater. Chem. A 2013, 1, 3406–3414. [Google Scholar] [CrossRef]
- Dawson, R.; Cooper, A.I.; Adams, D.J. Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers. Polym. Int. 2013, 62, 345–352. [Google Scholar] [CrossRef]
- Song, W.-C.; Xu, X.-K.; Chen, Q.; Zhuang, Z.-Z.; Bu, X.-H. Nitrogen-rich diaminotriazine-based porous organic polymers for small gas storage and selective uptake. Polym. Chem. 2013, 4, 4690–4696. [Google Scholar] [CrossRef]
- Jeon, H.J.; Choi, J.H.; Lee, Y.; Choi, K.M.; Park, J.H.; Kang, J.K. Highly selective CO2-capturing polymeric organic network structures. Adv. Energy Mater. 2012, 2, 225–228. [Google Scholar] [CrossRef]
Organosilicon | FTIR (ν, cm−1) | ||||
---|---|---|---|---|---|
C–H | C = O | C = C | Si–O | C–O | |
1 | 3010 | 1686 | 1599 | 1161 | 1136 |
2 | 3036 | 1709 | 1587 | 1174 | 1155 |
3 | 3077 | 1713 | 1612 | 1167 | 1142 |
Organosilicon | 1H NMR (500 MHz: DMSO-d6, δ, μmol/mol, J in Hz) |
---|---|
1 | 9.93 (s, 3H, 3 × CHO), 7.54–7.39 (m, 5H, Ph), 7.11–6.96 (m, 12H, Ar) |
2 | 9.92 (s, 3H, 3 × CHO), 7.81–7.72 (m, 5H Ph), 7.61–7.32 (m, 12H, Ar) |
3 | 9.91 (s, 3H, 3 × CHO), 7.89–7.80 (m, 5H, Ph), 7.74 (d, J = 8.3 Hz, 6H, Ar), 7.62 (d, J = 8.3 Hz, 6H, Ar) |
Polymer | Melting Point (°C) | Yield (%) | Color | FTIR (ν, cm−1) | ||
---|---|---|---|---|---|---|
C = N | C = C | Si–O | ||||
4 | 261–265 | 79 | Light yellow | 1605 | 1572 | 1169 |
5 | 286–291 | 80 | Light brown | 1647 | 1584 | 1173 |
6 | 246–250 | 85 | Dark yellow | 1626 | 1580 | 1113 |
Polymer | DSC | TGA | |
---|---|---|---|
Tg (°C) | Tm (°C) | Weight Loss Temperature (°C) | |
4 | 220 | 253 | 400 |
5 | 225 | 290 | 295 |
6 | 175 | 245 | 285 |
Polymer | SBET (m2 g−1) a | Total Volume (cm3 g−1) b | Pore Size (nm) c,d |
---|---|---|---|
4 | 12.112 | 0.016 | 1.950 |
5 | 18.012 | 0.034 | 1.952 |
6 | 8.174 | 0.015 | 1.947 |
Polymer | CO2 Uptake | ||
---|---|---|---|
cm3 g−1 a | mmol g−1 b | Wt % | |
4 | 20.418 | 0.910 | 4.0 |
5 | 30.581 | 1.364 | 6.0 |
6 | 11.295 | 0.503 | 2.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, S.H.; Hameed, A.S.; Yousif, E.; Alotaibi, M.H.; Ahmed, D.S.; El-Hiti, G.A. New Porous Silicon-Containing Organic Polymers: Synthesis and Carbon Dioxide Uptake. Processes 2020, 8, 1488. https://doi.org/10.3390/pr8111488
Mohamed SH, Hameed AS, Yousif E, Alotaibi MH, Ahmed DS, El-Hiti GA. New Porous Silicon-Containing Organic Polymers: Synthesis and Carbon Dioxide Uptake. Processes. 2020; 8(11):1488. https://doi.org/10.3390/pr8111488
Chicago/Turabian StyleMohamed, Safaa H., Ayad S. Hameed, Emad Yousif, Mohammad Hayal Alotaibi, Dina S. Ahmed, and Gamal A. El-Hiti. 2020. "New Porous Silicon-Containing Organic Polymers: Synthesis and Carbon Dioxide Uptake" Processes 8, no. 11: 1488. https://doi.org/10.3390/pr8111488
APA StyleMohamed, S. H., Hameed, A. S., Yousif, E., Alotaibi, M. H., Ahmed, D. S., & El-Hiti, G. A. (2020). New Porous Silicon-Containing Organic Polymers: Synthesis and Carbon Dioxide Uptake. Processes, 8(11), 1488. https://doi.org/10.3390/pr8111488