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Abstract: The high carbon dioxide emission levels due to the increased consumption of fossil fuels has
led to various environmental problems. Efficient strategies for the capture and storage of greenhouse
gases, such as carbon dioxide are crucial in reducing their concentrations in the environment.
Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing
phosphate units were synthesized in high yields from the coupling reactions of phosphate esters
and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and
general procedure. The structures and physicochemical properties of the synthesized POPs were
established using various techniques. Field emission scanning electron microscopy (FESEM) images
showed that the surface morphologies of the synthesized POPs were similar to coral reefs. They had
grooved networks, long range periodic macropores, amorphous surfaces, and a high surface area
(SBET = 82.71–213.54 m2/g). Most importantly, they had considerable carbon dioxide storage capacity,
particularly at high pressure. The carbon dioxide uptake at 323 K and 40 bar for one of the POPs was
as high as 1.42 mmol/g (6.00 wt %). The high carbon dioxide uptake capacities of these materials
were primarily governed by their geometries. The POP containing a meta-phosphate unit leads to
the highest CO2 uptake since such geometry provides a highly distorted and extended surface area
network compared to other POPs.

Keywords: porous-organic polymers; metal–organic frameworks; polyphosphates; carbon dioxide;
gas storage media; surface area

1. Introduction

The high consumption of fossil fuels in power plants, automobiles, and various human activities
contributes to the dramatically increasing level of carbon dioxide (CO2) in the atmosphere [1]. Fossil fuel
contributes to about 60% of greenhouse gas emission [2]. Most of the CO2 emissions (70%) are produced
from health production and electricity, agriculture, and industry sectors [3]. The emission of CO2, in
turn, leads to serious environmental and economic problems globally [4–6]. The high CO2 level is the
main cause of global warming, climate changes, rise in sea and ocean levels, and increased acidity of
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the water bodies, which has disastrous consequences on the environment [7,8]. It is predicted that the
level of CO2 in the environment will decrease in the near future since fossil fuels are still the main
energy source. Therefore, considerable efforts have been made in order to reduce CO2 emission and to
overcome some of the problems associated with its high concentration in the environment [9–11].

The CO2 capture and storage technology is a very common technique to reduce the concentration
of CO2 in the environment [12–15]. The approach of capturing and storing CO2 has attracted significant
attention from researchers in industry and academia [16–18]. Although some progress has been
made to capture CO2 using chemical absorbents, such as ethanolamine [19], the process requires
high energy, use of volatile absorbents, and high-cost of operation [20]. Therefore, various chemical
adsorption techniques have been developed. These are simple and require less energy compared
with chemical absorption [21,22]. The CO2 adsorbents should exhibit high adsorption capacity (4.4%
by weight or > 1 mol/kg), have long working life, and require low energy for their regeneration
and reuse [23]. Recently, various materials were investigated as potential CO2 adsorbents such as
silica [24], zeolites [25], ionic liquids containing imidazolium salt [26], and activated carbon-containing
materials [27–29]. Zeolites, as traditional sorbents, have high thermal and chemical stability and
require low energy consumption for regeneration. However, they are strongly hydrophilic and cannot
be used for the capture of CO2 from flue gases [30]. Ionic liquids could be incorporated into a solid
matrix in which a heterogeneous system could be used for the capture of CO2. Carbon-containing
materials have high stability, high surface area, easy to modify, and low production cost, but have poor
selectivity [31].

The use of carbon-containing materials has been widely studied as potential media for CO2

capture [27]. Various sources containing carbon, such as biomass, polymers, and resins, have been used
to produce activated carbon materials [27]. Both porous volume and surface area of carbon-containing
materials could be enhanced using either physical or chemical activation processes [32,33]. The physical
activation process involves the use of a proper gas for carbonization [32]. However, the chemical
activation process involves the use of a strong base such potassium hydroxide or potassium carbonate
as a chemical activator [33]. The homogeneous distribution of the chemical activator within the
carbon-containing materials would improve their adsorption capacity towards CO2 uptake to a
significant level. Various porous nanocarbons were produced and tested as efficient media for the
adsorption of CO2. For example, polyacrylonitrile in the presence of potassium hydroxide led to a
CO2 uptake of 2.74 mmol/g at 25 ◦C and 1 bar [28]. The CO2 uptake was even higher (4.95 mmol/g) at
25 ◦C and 1 bar when resorcinol–formaldehyde resin was used as a carbon source in the presence of
potassium carbonate as an activator [34].

Porous solids such as metal-organic frameworks (MOFs) and porous-organic polymers (POPs)
have been used in various applications and particularly for gas separation and storage [35,36], primarily
because of their high surface area [37,38]. In general, porous solids can be synthesized from molecular
building blocks to produce well-designed frameworks [39]. The CO2 uptake can be scaled up by
increasing the surface area of the porous MOFs [40]. In addition, the inclusion of polar moieties on
the surface of the POPs could enhance the CO2 storage capacity [41,42]. The interaction between
MOFs and CO2 is strong due to the hydrogen bonding and dipole-quadrupole interaction between the
functional groups of POPs and CO2 [43]. For example, POPs containing nitrogen-functionalized pores
can efficiently capture CO2 [44].

POPs are potential sorbents for CO2 because they have high stability (chemical and thermal),
large surface area, low density, tunable structures, and pore size and can accommodate different
functionality [30]. The CO2 capture can be enhanced efficiently through the introduction of
various heteroatoms to the POPs skeleton via the improvement of the materials chemisorption
and physisorption [30]. Inorganic ions and organic functional groups can be used to change the
surface polarity of POPs, and therefore, increase the interaction between CO2 and the adsorbents.
Some progress has been made in the capture of CO2 using POPs; however, further developments are
still needed [30]. The most common remaining issue associated with the use of POPs as sorbents for
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CO2 is the development of an efficient synthetic procedure that does not involve the use of metal
catalysts, production of high surface area POPs that have 3D structures, the use of efficient and
moderate reaction conditions within the post-synthetic procedures, and the use of POPs that have
multiple adsorption sites to the capacity of CO2 adsorption at very low pressures [30].

Polyphosphates are highly stable and have excellent mechanical and physical properties [45,46].
They have been used as catalysts, fire retardants, reagents for surface adhesion, and tooth
preservers [47–49]. Recently, different polyphosphates [50] and organotin complexes [51] have
been reported as efficient media for CO2 storage. Polyphosphates containing benzidine are highly
porous, have a high surface area, tunable pore structures, and showed excellent efficiency in the
capture of CO2. Therefore, the aim of the current work was to synthesis novel POPs containing
phosphate units using a simple and general procedure to be used as potential media for CO2 storage.
The polyphosphate-based POPs could be synthesized easily and could reduce off the damage caused
to the environment due to the increased CO2 emission.

2. Materials and Methods

2.1. General

Chemicals and solvents were purchased from Merck (Schnelldorf, Germany). Melting points were
recorded on an MPD Mitamura Riken Kogyo apparatus (Tokushima, Japan). Fourier-transform infrared
(FT-IR) spectra in the range 400–4000 cm–1 were recorded on an 8300 Shimadzu FT-IR spectrophotometer
(Tokyo, Japan). Proton nuclear magnetic resonance (1H-NMR) spectra were recorded on a Bruker
DRX300 NMR spectrometer (Zurich, Switzerland). The surface morphology was examined using
TESCAN MIRA3 field emission-scanning electron microscope (FESEM, Kohoutovice, Czech Republic)
at an accelerating voltage of 15 kV. The nitrogen adsorption-desorption isotherms (77 K) were recorded
on a Quantchrome chemisorption analyzer. The samples were degassed in a vacuum oven at 70 ◦C
for 6 h under nitrogen flow. Surface areas were calculated using the Brunauer–Emmett–Teller (BET)
equation at a relative pressure (P/P◦) of 0.98. The Barrett–Joyner–Halenda (BJH) method was used
to verify the pore sizes. The CO2 uptake (at 40 bar and 323 K) was measured on an H-sorb 2600
high pressure volumetric adsorption analyzer (Beijing, China). The H-sorb 2600 analyzer has two
analyzing and degassing ports that work simultaneously. A known quantity of gas was injected into
the measurement tube containing the POP sample. When the equilibrium between the adsorbed
gas and the POP sample was obtained, software was used to record the final equilibrium pressure
automatically. The sample was degassed at a high temperature (200 ◦C) under vacuum for 5 h before
the adsorption test. The adsorbed quantity of gas was measured from the data generated. Figure 1
represents the synthesized POPs. The images represented in Figures 2–4 were captured using the
FESEM. The data represented in Figures 5–7 were calculated using the BJH method. The CO2 uptake
shown in Figure 8 was measured using the H-sorb 2600 analyzer.
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3.2. Morphologies of 1–3 

The surface morphologies of polyphosphates 1–3 were investigated by FESEM. Figures 2–4 show 
the coral reef surfaces of 1–3. The surfaces are relatively uniform and amorphous, with grooved 
network structures and long-range periodic macropores. The particles have micro-sized irregular 
blocks with pore dimensions ranging from 49 to 981 nm. It can be seen that the grooves were parallel 
to each other and simultaneously perpendicular to the particle’s outer surface cross the polymeric 
materials. Such a morphology improves both the porosity of the material and its efficiency for gas 
storage. 

 
Figure 2. Field emission-scanning electron microscope (FESEM) images of 1. 

 
Figure 3. Field emission-scanning electron microscope (FESEM) images of 2. 
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3.3. Porosity Measurements and Gas Storage Capacity of 1–3 

The CO2 adsorption isotherm can be predicted directly from the quantity of CO2 uptake using a 
gravimetric technique [52]. Also, the quantity of CO2 removed from the gas phase could be used to 
estimate the physisorption isotherms of the gas. The textural properties of the pores of 
polyphosphates 1–3 were determined from the N2 adsorption-desorption isotherms recorded at 77 K. 
The N2 isotherms and pore sizes of polyphosphates 1–3 are shown in Figures 5–7, respectively. 
Polyphosphates 1–3 have mesoporous structures and showed type-III nitrogen sorption isotherms, 
in which no monolayer formation was identified. 

The Brunauer–Emmett–Teller surface areas (SBET), pore volumes, and average pore diameters of 
1–3 are listed in Table 3. Among the synthesized polyphosphates, 2 exhibits the highest SBET (213.5 
m2/g) and total pore volume (0.32 cm3/gm) and the lowest average pore diameter (1.96 mm). 

Table 3. Porosity properties of 1–3. 

Polyphosphate SBET (m2/g) Pore Volume (cm3/gm) Average Pore Diameter (nm) 
1 82.7 0.11 2.43 
2 213.5 0.32 1.96 
3 86.1 0.13 2.43 
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2.2. Synthesis of Polyphosphates 1–3

Phosphate esters (tris(4-formylphenyl) phosphate, tris(3-formylphenyl) phosphate, and
tris(4-formylphenyl) phosphate) were synthesized from the reaction of an appropriate
hydroxybenzaldehyde and phosphoryl chloride in the presence of triethylamine in dry tetrahydrofuran
(THF), as reported previously [50]. A mixture of the phosphate ester (8.21 g, 20 mmol) and
1,4-diaminobenzene (6.49 g, 60 mmol) in boiling dry ethanol (EtOH; 25 mL) containing glacial
acetic acid (AcO2H; 0.5 mL) was stirred under reflux for 6 h. The mixture was allowed to cool to
room temperature, and the solid obtained was collected by filtration, washed with EtOH (3 × 10 mL),
and dried under vacuum for 4 h at 25 ◦C to give polyphosphates 1–3 (Figure 1) in high yields. The
structures of 1–3 were confirmed from the data obtained from the FT-IR, and 1H NMR spectra, and
their surface morphology was established by the use of FESEM.

3. Results and Discussion

3.1. Structural Characterization of Polyphosphates 1–3

Figure 1 shows the synthesized polyphosphates 1–3. Table 1 lists some of the physical properties of
the synthesized MOFs. The structures of polyphosphates 1–3 were established from the FT-IR and 1H
NMR spectra. The bands observed in the ranges 1205–1233, 1135–1185, 1566–1594, and 1600–1620 cm–1 in
the FT-IR spectra of 1–3 indicated the presence of P–O–P, P=O, C=C, and CH=N groups, respectively
(Table 2). The absence of any band corresponding to the carbonyl group confirmed the consumption of
the phosphate ester. The singlets at 9.03–9.30 ppm in the 1H-NMR spectra of 1–3 corresponded to the
azomethine protons, while the multiplets at 6.77–7.82 ppm correspond to the aromatic protons (Table 2).

Table 1. Physical properties of 1–3.

Polyphosphate Color Melting Point (◦C) Yield (%)

1 Light orange 160–162 77
2 Orange 134–137 75
3 Deep orange 176–178 79
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Table 2. FT-IR and 1H NMR spectral data for 1–3.

Polyphosphate
FT-IR (Wavenumber; cm–1) a

1H-NMR (Chemical
Shift; ppm) bP–O–C P=O C=C CH=N

1 1206 1162 1594 1600 6.84–7.78 (m, 24H, Ar),
9.03 (s, 3H, CH)

2 1205 1135 1568 1620 6.77–7.82 (m, 24H, Ar),
9.03 (s, 3H, CH)

3 1233 1185 1566 1616 6.80–7.68 (m, 24H, Ar),
9.30 (s, 3H, CH)

a Recorded using KBr disc; b Measured at 300 MHz in DMSO-d6 (δ in ppm and J in Hz).

3.2. Morphologies of 1–3

The surface morphologies of polyphosphates 1–3 were investigated by FESEM. Figures 2–4 show
the coral reef surfaces of 1–3. The surfaces are relatively uniform and amorphous, with grooved network
structures and long-range periodic macropores. The particles have micro-sized irregular blocks with
pore dimensions ranging from 49 to 981 nm. It can be seen that the grooves were parallel to each other
and simultaneously perpendicular to the particle’s outer surface cross the polymeric materials. Such a
morphology improves both the porosity of the material and its efficiency for gas storage.

3.3. Porosity Measurements and Gas Storage Capacity of 1–3

The CO2 adsorption isotherm can be predicted directly from the quantity of CO2 uptake using a
gravimetric technique [52]. Also, the quantity of CO2 removed from the gas phase could be used to
estimate the physisorption isotherms of the gas. The textural properties of the pores of polyphosphates
1–3 were determined from the N2 adsorption-desorption isotherms recorded at 77 K. The N2 isotherms
and pore sizes of polyphosphates 1–3 are shown in Figures 5–7, respectively. Polyphosphates 1–3
have mesoporous structures and showed type-III nitrogen sorption isotherms, in which no monolayer
formation was identified.

The Brunauer–Emmett–Teller surface areas (SBET), pore volumes, and average pore diameters
of 1–3 are listed in Table 3. Among the synthesized polyphosphates, 2 exhibits the highest SBET

(213.5 m2/g) and total pore volume (0.32 cm3/gm) and the lowest average pore diameter (1.96 mm).

Table 3. Porosity properties of 1–3.

Polyphosphate SBET (m2/g) Pore Volume (cm3/gm) Average Pore Diameter (nm)

1 82.7 0.11 2.43
2 213.5 0.32 1.96
3 86.1 0.13 2.43

Polyphosphates 1–3 have a tetrahedral geometry with sp3 hybridized phosphorus core [53].
The CO2 sorption isotherms for 1–3 (Figure 8) showed no apparent adsorption-desorption hysteresis,
indicating possible reversible adsorption of CO2 within the pores of 1–3 at 323 K and 40 bars. The CO2

uptake for polyphosphates 1, 2, and 3 was 2.04, 6.00, and 4.57 wt %, respectively (Table 4). The high
CO2 uptake could be due to the high SBET of the polyphosphates and strong van der Waals interaction
and hydrogen bonding between CO2 and the polyphosphates. In addition, polyphosphates 1–3 contain
strong Lewis base sites that help in capturing CO2. Indeed, POPs containing heteroatoms (O, N, S, or
P) can capture CO2 selectively over nitrogen and methane [50,54–56].

The CO2 uptake using carbon-containing materials such as porous nanocarbons in the presence
of additives (e.g., ethylenediamine and potassium oxalate) as media for CO2 adsorption was
1.9–4.6 mmol/g at 25 ◦C [27]. While carbon fibers containing polyacrylonitrile in the presence of
potassium hydroxide led to a CO2 uptake of 2.7 mmol/g at 25 ◦C and 1 atm [28]. The CO2 uptake
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using organotin complexes containing telmisartan as adsorbent media was in the range of 3.6–7.1 wt %
at 323 K and 50 bars [51]. Polyphosphates containing benzidine showed a remarkable CO2 uptake
(1.8–14.0 wt %) at 323 K and 50 bars [50].

Table 4. CO2 adsorption capacities of 1–3 at 323 K and 40 bar.

Polyphosphate CO2 Uptake (mmol/g) CO2 Uptake (wt %)

1 0.46 2.04
2 1.42 6.00
3 0.95 4.57

Polyphosphate 2 (meta-phosphate) was more effective in CO2 uptake as compared with 1
(para-phosphate) and 3 (ortho-phosphate). The meta-phosphate geometry of 2 imparts a highly
distorted network to this POP as compared to 3 and 1. The extended surface area resulted in high
CO2 uptake. Polyphosphate 1 has the least distorted geometry and the lowest surface area, because
of which the CO2 uptake is lowest among the three polyphosphates. A similar observation has been
previously made when tris(formylphenyl)phosphates containing benzidine were used as media for
CO2 capture [50].

4. Conclusions

The development materials for CO2 storage may lower down the level of this gas to safe limits.
With this viewpoint, three novel polyphosphates were synthesized in high yields, using a simple,
efficient, and general procedure as potential media for CO2 storage. The synthesized polyphosphates
have a relatively high surface area (SBET = 82.7–213.5 m2/g), small pore size distribution in terms of
pore volume (0.11–0.32 cm3/g), and small pore diameter (1.96–2.43 nm). The polyphosphates exhibit
type III isotherm and have a high affinity for CO2 uptake (up to 1.42 mmol/g; 6.00 wt %). The POP
containing a meta-phosphate unit was the most effective material towards the CO2 uptake since such
geometry leads to a highly distorted network with an extended surface area. Thus, such material has
potential to be used for reducing the environmental damage caused by high CO2 levels.
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