Entropy Generation and Dual Solutions in Mixed Convection Stagnation Point Flow of Micropolar Ti6Al4V Nanoparticle along a Riga Surface
Abstract
:1. Introduction
2. Construction of Problem
3. Entropy Analysis
4. Results and Discussions
5. Concluding Remarks
- ➢
- The dual solutions are attained in opposing flow only.
- ➢
- Increasing the micropolar parameter decreases the liquid velocity and micro rotation and raises the temperature distribution within the region of boundary layer in both branches.
- ➢
- Micropolar parameter impedes the boundary layer separation.
- ➢
- Velocity and micro rotation fields augment for escalating values of in the second solution, while in the first solution, the reverse behavior is seen. Temperature field rises in the upper solution and falloffs in the lower solution due to
- ➢
- The results exposed that liquid velocity is accelerated and micro rotation is decelerated by modified Hartmann number in both solutions, whereas temperature field is decelerated in the uphill solution and accelerated in the downhill solution.
- ➢
- Radiation parameter enhances the temperature and micro rotation fields and reduces the liquid velocity in both solutions.
- ➢
- Increasing behavior is observed for an entropy generation in both solutions via , , and . In contrast, an entropy generation augments due to and declines due to in the first solution.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
positive constants | |
skin friction coefficient | |
specific heat of fluid [J kg−1 K−1] | |
electrodes and magnets width | |
acceleration caused by gravity [ms−2] | |
Grashof number | |
applied current density in the electrodes | |
micro inertia per unit mass [m2] | |
micropolar parameter | |
absorption coefficient | |
thermal conductivity of regular liquid [W m−1 K−1] | |
thermal conductivity of nanoliquid [W m−1 K−1] | |
magnetization of thepermanents magnets | |
micro rotation vector [ms−1] | |
micro gyration parameter | |
Nusselt number | |
Prandtl number | |
radiative heat flux [W m−2] | |
radiation parameter | |
local Reynolds number | |
temperature [T] | |
free stream temperature [T] | |
fluid temperature at wall [T] | |
free stream velocity [ms−1] | |
velocity components [ms−1] | |
Cartesian coordinates [m] | |
Greek symbols | |
modified Hartmann number | |
thermal diffusivity [m2 s−1] | |
nanofluid thermal expansion [K−1] | |
spin−gradient viscosity [kg m s−1] | |
vortex viscosity [kg m−1 s−1] | |
mixed convective parameter | |
nanofluid dynamic viscosity [kg m−1 s−1] | |
volume fraction of nanoliquid | |
dimensionless temperature | |
kinematic viscosity [m2 s−1] | |
density [kg m−3] | |
density of nanoliquid [kg m−3] | |
density of base fluid [kg m−3] | |
stream function [m2 s−1] | |
dimensionless parameter | |
Stefan–Boltzmann constant [Wm−2K−4] | |
similarity variable | |
Subscripts | |
condition at wall | |
condition at free stream | |
Superscripts | |
‘ | derivative w.r.t. |
References
- Eringen, A.C. Theory of micropolar fluids. J. Appl. Math. Mech. 1966, 16, 1–18. [Google Scholar] [CrossRef]
- Mohammadein, A.A.; Gorla, R.S.R. Heat transfer in a micropolar fluid over a stretching sheet with viscous dissipation and internal heat generation. Int. J. Numer. Methods Heat Fluid Flow 2001, 11, 50–58. [Google Scholar] [CrossRef]
- Lok, Y.Y.; Amin, N.; Pop, I. Unsteady mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface. Int. J. Thermal Sci. 2006, 45, 1149–1157. [Google Scholar] [CrossRef]
- Aman, F.; Ishak, A.; Pop, I. Mixed convection boundary layer flow near stagnation-point on vertical surface with slip. Appl. Math. Mech. Engl. Ed. 2011, 32, 1599–1606. [Google Scholar] [CrossRef] [Green Version]
- Turkyilmazoglu, M. Flow of a micropolar fluid due to a porous stretching sheet and heat transfer. Int. J. Non-Linear Mech. 2016, 83, 59–64. [Google Scholar] [CrossRef]
- Hussanan, A.; Salleh, M.Z.; Khan, I.; Tahar, R.M. Unsteady free convection flow of a micropolar fluid with Newtonian heating: Closed form solution. Therm. Sci. 2017, 21, 2313–2326. [Google Scholar] [CrossRef] [Green Version]
- Waqas, H.; Hussain, S.; Sharif, H.; Khalid, S. MHD forced convective flow of micropolar fluids past a moving boundary surface with prescribed heat flux and radiation. Br. J. Math. Comput. Sci. 2017, 21, 1–14. [Google Scholar] [CrossRef]
- Das, K.; Duari, P.R. Micropolar nanofluid flow over a stretching sheet with chemical reaction. Int. J. Appl. Comput. Math. 2017, 3, 3229–3239. [Google Scholar] [CrossRef]
- Hsiao, K.L. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. Int. J. Heat Mass Transf. 2017, 112, 983–990. [Google Scholar] [CrossRef]
- Hussanan, A.; Salleh, M.Z.; Khan, I.; Tahar, R.M. Heat and mass transfer in a micropolar fluid with Newtonian heating: An exact analysis. Neural Comput. Appl. 2018, 29, 59–67. [Google Scholar] [CrossRef]
- Makinde, O.D.; Aziz, A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 2011, 50, 1326–1332. [Google Scholar] [CrossRef]
- Hogan, C. Density of states of an insulating ferromagnetic alloy. Phys. Rev. 1969, 188, 870. [Google Scholar] [CrossRef]
- Parayanthal, P.; Pollak, F.H. Raman scattering in alloy semiconductors: Spatial correlation model. Phys. Rev. Lett. 1984, 52, 1822–1825. [Google Scholar] [CrossRef]
- Žitňanský, M.; Čaplovič, L. Effect of the thermomechanical treatment on the structure of titanium alloy Ti6Al4V. J. Mater. Process. Technol. 2004, 157, 643–649. [Google Scholar] [CrossRef]
- Zhu, X.J.; Tan, M.J.; Zhou, W. Enhanced super plasticity in commercially pure titanium alloy. Scr. Mater. 2005, 52, 651–655. [Google Scholar] [CrossRef]
- Hao, Y.L.; Li, S.J.; Sun, B.B.; Sui, M.L.; Yang, R. Ductile titanium alloy with low Poisson’s ratio. Phys. Rev. Lett. 2007, 98, 216405. [Google Scholar] [CrossRef] [Green Version]
- Balazic, M.; Kopac, J.; Jackson, M.J.; Ahmed, W. Review: Titanium and titanium alloy applications in medicine. Int. J. Nano Biomater. 2007, 1, 3–34. [Google Scholar] [CrossRef]
- Raju, C.S.K.; Sekhar, K.R.; Ibrahim, S.M.; Lorenzini, G.; Reddy, G.V.; Lorenzini, E. Variable viscosity on unsteady dissipative Carreau fluid over a truncated cone filled with titanium alloy nanoparticles. Contin. Mech. Thermodyn. 2017, 29, 699–713. [Google Scholar] [CrossRef]
- Kassai, M.; Poleczky, L.; Al-Hyari, L.; Kajtar, L.; Nyers, J. Investigation of the Energy Recovery Potentials in Ventilation Systems in Different Climates. Facta Univ. Ser. Mech. Eng. 2018, 16, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Guo, L.J.; Zhang, X.M. Liquid-solid separation phenomena of two-phase turbulent flow in curved pipes. Int. J. Heat Mass Transf. 2002, 45, 4995–5005. [Google Scholar] [CrossRef]
- Kassai, M.; Ge, G.; Simonson, C.J. Dehumidification performance investigation of run-around membrane energy exchanger system. Therm. Sci. 2016, 20, 1927–1938. [Google Scholar] [CrossRef]
- Shi, D.P.; Luo, Z.H.; Zheng, Z.W. Numerical simulation of liquid-solid two-phase flow in a tubular loop polymerization reactor. Powder Technol. 2010, 198, 135–143. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism, 2nd ed.; Clarendon Press: Oxford, UK, 1873; Volume 1. [Google Scholar]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows. In Proceedings of the 1995 International Mechanical Engineering Congress and Exhibition, San Francisco, CA, USA, 12–17 November 1995; Volume 66, pp. 99–105. [Google Scholar]
- Khan, W.; Pop, I. Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 2010, 53, 2477–2483. [Google Scholar] [CrossRef]
- Mabood, F.; Shateye, S.; Rashidi, M.M.; Momoniat, E.; Freidoonimehr, N. MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction. Adv. Powder Technol. 2016, 27, 742–749. [Google Scholar] [CrossRef]
- Hayat, T.; Qayyum, S.; Imtiaz, M.; Alsaedi, A. Comparative study of silver and copper water nanofluids with mixed convection and non-linear thermal radiation. Int. J. Heat Mass Transf. 2016, 102, 723–732. [Google Scholar] [CrossRef]
- Du, M.; Tang, G.H. Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting. Sol. Energy 2016, 137, 393–400. [Google Scholar] [CrossRef]
- Zaib, A.; Abelman, S.; Chamkha, A.J.; Rashidi, M.M. Entropy generation in a Williamson nanofluid near a stagnation point over a moving plate with binary chemical reaction and activation energy. Heat Transf. Res. 2018, 49, 1131–1149. [Google Scholar] [CrossRef]
- Gailitis, A.; Lielausis, O. On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte. Appl. Magnetohydrodyn. Rep. Phys. Inst. Riga 1961, 12, 143–146. [Google Scholar]
- Pantokratoras, A.; Magyari, E. EMHD free-convection boundary-layer flow from a Riga-plate. J. Eng. Math. 2009, 64, 303–315. [Google Scholar] [CrossRef]
- Abbas, T.; Ayub, M.; Bhatti, M.M.; Rashidi, M.M.; Ali, M.E.l. Entropy generation on nanofluid flow through a horizontal Riga plate. Entropy 2016, 18, 223. [Google Scholar] [CrossRef]
- Hayat, T.; Khan, M.; Imtiaz, M.; Alsaedi, A. Squeezing flow past a Riga plate with chemical reaction and convective conditions. J. Mol. Liq. 2017, 225, 569–576. [Google Scholar] [CrossRef]
- Iqbal, Z.; Azhar, E.; Mehmood, Z.; Maraj, E.N. Melting heat transport of nanofluidic problem over a Riga plate with erratic thickness: Use of Keller Box scheme. Res. Phys. 2017, 7, 3648–3658. [Google Scholar] [CrossRef]
- Bejan, A. A study of entropy generation in fundamental convective heat transfer. J. Heat Transf. 1979, 101, 718–725. [Google Scholar] [CrossRef]
- Aiboud, S.; Saouli, S. Entropy analysis for viscoelastic magneto-hydrodynamic flow over a stretching surface. Int. J. Non-linear Mech. 2010, 45, 482–489. [Google Scholar] [CrossRef]
- Butt, A.S.; Munawar, S.; Ali, A.; Mehmood, A. Entropy generation in hydrodynamic slip flow over a vertical plate with convective boundary. J. Mech. Sci. Technol. 2012, 26, 2977–2984. [Google Scholar] [CrossRef]
- Noghrehabadi, A.; Saffarian, M.R.; Pourrajab, R.; Ghalambaz, M. Entropy analysis for nanofluid flow over a stretching sheet in the presence of heat generation/absorption and partial slip. J. Mech. Sci. Technol. 2013, 27, 927–937. [Google Scholar] [CrossRef]
- Abolbashari, M.H.; Freidoonimehr, N.; Nazari, F.; Rashidi, M.M. Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface. Adv. Powder Technol. 2015, 26, 542–552. [Google Scholar] [CrossRef]
- Rehman, S.U.; Haq, R.U.; Khan, Z.H.; Lee, C. Entropy generation analysis for non-Newtonian nanofluid with zero normal flux of nanoparticles at the stretching surface. J. Taiwan Inst. Chem. Eng. 2016, 63, 226–235. [Google Scholar] [CrossRef]
- Azhar, W.A.; Vieru, D.; Fetecau, C. Entropy generation due to fractional Couette flow in a rotating channel with exponential heating of walls. Heat Transf. Res. 2018, 49, 1507–1526. [Google Scholar] [CrossRef]
- Hayat, T.; Khan, M.; Khan, M.I.; Alsaedi, A.; Ayub, M. Electromagneto squeezing rotational flow of carbon (C)-water (H2O) kerosene oil nanofluid past a Riga plate: A numerical study. PLoS ONE 2017, 12, e0180976. [Google Scholar] [CrossRef] [Green Version]
- Zaib, A.; Haq, R.U.; Chamkha, A.J.; Rashidi, M.M. Impact of partial slip on mixed convective flow towards a Riga plate comprising micropolar TiO2-kerosene/water nanoparticles. Int. J. Numer. Meth. Heat Fluid Flow 2019, 29, 1647–1662. [Google Scholar] [CrossRef]
Material | Water | Ti6Al4V |
---|---|---|
4179 | 0.56 | |
997.1 | 4420 | |
0.613 | 7.2 | |
21 | 5.8 | |
Pr | 6.2 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaib, A.; Khan, U.; Khan, I.; H. Seikh, A.; M. Sherif, E.-S. Entropy Generation and Dual Solutions in Mixed Convection Stagnation Point Flow of Micropolar Ti6Al4V Nanoparticle along a Riga Surface. Processes 2020, 8, 14. https://doi.org/10.3390/pr8010014
Zaib A, Khan U, Khan I, H. Seikh A, M. Sherif E-S. Entropy Generation and Dual Solutions in Mixed Convection Stagnation Point Flow of Micropolar Ti6Al4V Nanoparticle along a Riga Surface. Processes. 2020; 8(1):14. https://doi.org/10.3390/pr8010014
Chicago/Turabian StyleZaib, A., Umair Khan, Ilyas Khan, Asiful H. Seikh, and El-Sayed M. Sherif. 2020. "Entropy Generation and Dual Solutions in Mixed Convection Stagnation Point Flow of Micropolar Ti6Al4V Nanoparticle along a Riga Surface" Processes 8, no. 1: 14. https://doi.org/10.3390/pr8010014
APA StyleZaib, A., Khan, U., Khan, I., H. Seikh, A., & M. Sherif, E.-S. (2020). Entropy Generation and Dual Solutions in Mixed Convection Stagnation Point Flow of Micropolar Ti6Al4V Nanoparticle along a Riga Surface. Processes, 8(1), 14. https://doi.org/10.3390/pr8010014