Qualitative Fingerprint Analysis and Multidirectional Assessment of Different Crude Extracts and Essential Oil from Wild Artemisia santonicum L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extraction Procedures
2.2. Isolation and Analysis of the Essential Oils
2.3. Liquid Chromatography Analysis
2.4. Total Bioactive Components, Antioxidant, and Key Enzymes Inhibitory Effects
2.5. Artemia Salina Lethality Bioassay
2.6. Ex Vivo Studies
2.7. In Vitro Studies
2.8. Statistical Analysis
3. Results
3.1. Chemical Composition of the Essential Oil
3.2. Chemical Composition of the Investigated Extracts
3.3. Antioxidant Properties
3.4. Enzyme Inhibitory Properties
3.5. Toxicological and Pharmacological Studies
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The Artemisia L. genus: A review of bioactive essential oils. Molecules 2012, 17, 2542–2566. [Google Scholar] [CrossRef] [PubMed]
- Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol. 2011, 49, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Dítě, D.; Eliáš, P.; Melečková, Z. Artemisia santonicum subsp. patens in slovakia: The sad story of obligate halophyte on the northern edge of its distribution range. Hacquetia 2013, 12, 5–16. [Google Scholar] [CrossRef]
- Erel, Ş.B.; Şenol, S.G.; Köse, F.A.; Ballar, P. In vitro cytotoxic properties of six Artemisia L. species. Turk. J. Pharm. Sci. 2011, 8, 247–252. [Google Scholar]
- Sengul, M.; Ercisli, S.; Yildiz, H.; Gungor, N.; Kavaz, A.; Çetin, B. Antioxidant, antimicrobial activity and total phenolic content within the aerial parts of Artemisia absinthum, Artemisia santonicum and Saponaria officinalis. Iran. J. Pharm. Res. IJPR 2011, 10, 49. [Google Scholar] [PubMed]
- Yoon, K.D.; Chin, Y.-W.; Yang, M.H.; Kim, J. Separation of anti-ulcer flavonoids from Artemisia extracts by high-speed countercurrent chromatography. Food Chem. 2011, 129, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.F.; Luthria, D.L.; Sasaki, T.; Heyerick, A. Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules 2010, 15, 3135–3170. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Lee, S.H.; Kang, K.H.; Kim, B.K. Flavonol galactosides from Artemisia apiacea. Nat. Prod. Sci. 2005, 11, 10–12. [Google Scholar]
- Kim, K.S.; Lee, S.; Shin, J.S.; Shim, S.H.; Kim, B.-K. Arteminin, a new coumarin from Artemisia apiacea. Fitoterapia 2002, 73, 266–268. [Google Scholar] [CrossRef]
- Kwak, J.H.; Lee, K.B.; Schmitz, F.J. Four New Coumarin Derivatives from Artemisia k eiskeana. J. Nat. Prod. 2001, 64, 1081–1083. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Liu, C. Anti-tumour effects of polysaccharides isolated from Artemisia Annua L by inducing cell apoptosis and immunomodulatory anti-hepatoma effects of polysaccharides. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.A.; Jain, D.; Bhakuni, R.; Zaim, M.; Thakur, R. Occurrence of some antiviral sterols in Artemisia annua. Plant Sci. 1991, 75, 161–165. [Google Scholar] [CrossRef]
- Brown, G.D.; Liang, G.Y.; Sy, L.K. Terpenoids from the seeds of Artemisia annua. Phytochemistry 2003, 64, 303–323. [Google Scholar] [CrossRef]
- Tang, H.Q.; Hu, J.; Yang, L.; Tan, R.X. Terpenoids and flavonoids from Artemisia species. Planta Med. 2000, 66, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Bilia, A.R.; Santomauro, F.; Sacco, C.; Bergonzi, M.C.; Donato, R. Essential oil of Artemisia annua L.: An extraordinary component with numerous antimicrobial properties. Evid. Based Complement. Altern. Med. 2014, 2014, 159819. [Google Scholar] [CrossRef] [PubMed]
- Chaieb, I.; Ben Hamouda, A.; Tayeb, W.; Zarrad, K.; Bouslema, T.; Laarif, A. The Tunisian Artemisia essential oil for reducing contamination of stored cereals by Tribolium castaneum. Food Technol. Biotechnol. 2018, 56, 247–256. [Google Scholar] [CrossRef]
- Korkmaz, H.; Gurdal, A. Effect of Artemisia santonicum L. on blood glucose in normal and alloxan-induced diabetic rabbits. Phytother. Res. 2002, 16, 675–676. [Google Scholar] [CrossRef] [PubMed]
- Kordali, S.; Kotan, R.; Mavi, A.; Cakir, A.; Ala, A.; Yildirim, A. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils. J. Agric. Food Chem. 2005, 53, 9452–9458. [Google Scholar]
- Algieri, F.; Rodriguez-Nogales, A.; Rodriguez-Cabezas, M.E.; Risco, S.; Ocete, M.; Galvez, J. Botanical drugs as an emerging strategy in inflammatory bowel disease: A review. J. Mediat. Inflamm. 2015, 2015, 179616. [Google Scholar] [CrossRef]
- Langhorst, J.; Wulfert, H.; Lauche, R.; Klose, P.; Cramer, H.; Dobos, G.; Korzenik, J. Systematic review of complementary and alternative medicine treatments in inflammatory bowel diseases. J. Crohns Colitis 2014, 9, 86–106. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Zengin, G.; Oskay, M.; Uysal, S.; Ceylan, R.; Aktumsek, A. Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils. Ind. Crop. Prod. 2015, 70, 178–184. [Google Scholar] [CrossRef]
- Zengin, G.; Uysal, A.; Diuzheva, A.; Gunes, E.; Jekő, J.; Cziáky, Z.; Picot-Allain, C.M.N.; Mahomoodally, M.F. Characterization of phytochemical components of Ferula halophila extracts using HPLC-MS/MS and their pharmacological potentials: A multi-functional insight. J. Pharm. Biomed. Anal. 2018, 160, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Rodrıguez-Delgado, M.; Malovana, S.; Perez, J.; Borges, T.; Montelongo, F.G. Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J. Chromatogr. A 2001, 912, 249–257. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Wild.) and their chemical composition. Front. Pharmacol. 2017, 8, 290. [Google Scholar] [CrossRef] [PubMed]
- Menghini, L.; Ferrante, C.; Leporini, L.; Recinella, L.; Chiavaroli, A.; Leone, S.; Pintore, G.; Vacca, M.; Orlando, G.; Brunetti, L. An hydroalcoholic chamomile extract modulates inflammatory and immune response in HT29 cells and isolated rat colon. Phytother. Res. 2016, 30, 1513–1518. [Google Scholar] [CrossRef] [PubMed]
- Chiavaroli, A.; Brunetti, L.; Orlando, G.; Recinella, L.; Ferrante, C.; Leone, S.; Di Michele, P.; Di Nisio, C.; Vacca, M. Resveratrol inhibits isoprostane production in young and aged rat brain. J. Biol. Regul. Homeost. Agents 2010, 24, 441. [Google Scholar] [PubMed]
- Locatelli, M.; Macchione, N.; Ferrante, C.; Chiavaroli, A.; Recinella, L.; Carradori, S.; Zengin, G.; Cesa, S.; Leporini, L.; Leone, S. Graminex Pollen: Phenolic pattern, colorimetric analysis and protective effects in immortalized prostate cells (PC3) and rat prostate challenged with LPS. Molecules 2018, 23, 1145. [Google Scholar] [CrossRef]
- Ferrante, C.; Recinella, L.; Ronci, M.; Menghini, L.; Brunetti, L.; Chiavaroli, A.; Leone, S.; Di Iorio, L.; Carradori, S.; Tirillini, B. Multiple pharmacognostic characterization on hemp commercial cultivars: Focus on inflorescence water extract activity. Food Chem. Toxicol. 2019, 125, 452–461. [Google Scholar] [CrossRef]
- Zengin, G.; Locatelli, M.; Stefanucci, A.; Macedonio, G.; Novellino, E.; Mirzaie, S.; Dvorácskó, S.; Carradori, S.; Brunetti, L.; Orlando, G.; et al. Chemical characterization, antioxidant properties, anti-inflammatory activity, and enzyme inhibition of Ipomoea batatas L. leaf extracts. Int. J. Food Prop. 2017, 20, 1907–1919. [Google Scholar] [CrossRef]
- Brunetti, L.; Orlando, G.; Ferrante, C.; Recinella, L.; Leone, S.; Chiavaroli, A.; Di Nisio, C.; Shohreh, R.; Manippa, F.; Ricciuti, A. Peripheral chemerin administration modulates hypothalamic control of feeding. Peptides 2014, 51, 115–121. [Google Scholar] [CrossRef]
- Ferrante, C.; Orlando, G.; Recinella, L.; Leone, S.; Chiavaroli, A.; Di Nisio, C.; Shohreh, R.; Manippa, F.; Ricciuti, A.; Vacca, M. Central inhibitory effects on feeding induced by the adipo-myokine irisin. Eur. J. Pharmacol. 2016, 791, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Çetin, B.; Özer, H.; Çakir, A.; Mete, E.; Tosun, M.; Öztürk, E.; Polat, T.; Kandemir, A. Chemical composition of hydrodistilled essential oil of Artemisia incana (L.) Druce and antimicrobial activity against foodborne microorganisms. Chem. Biodivers. 2009, 6, 2302–2310. [Google Scholar] [PubMed]
- Korolyuk, E.; Tkachev, A. Chemical composition of the essential oil from two wormwood species Artemisia frigida and Artemisia argyrophylla. Russ. J. Bioorg. Chem. 2010, 36, 884–893. [Google Scholar] [CrossRef]
- Padalia, R.C.; Verma, R.S.; Chauhan, A.; Chanotiya, C.S.; Yadav, A. Variation in the volatile constituents of Artemisia annua var. CIM-Arogya during plant ontogeny. Nat. Prod. Commun. 2011, 6, 1934578X1100600221. [Google Scholar] [CrossRef]
- Shafaghat, A.; Sadeghi, H.; Oji, K. Composition and antibacterial activity of essential oils from leaf, stem and root of Chrysanthemum parthenium (L.) Bernh. from Iran. Nat. Prod. Commun. 2009, 4, 1934578X0900400624. [Google Scholar] [CrossRef]
- Höld, K.M.; Sirisoma, N.S.; Ikeda, T.; Narahashi, T.; Casida, J.E. α-Thujone (the active component of absinthe): γ-aminobutyric acid type A receptor modulation and metabolic detoxification. Proc. Natl. Acad. Sci. USA 2000, 97, 3826–3831. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Zhang, H.W.; Lin, Z.X. Chapter 48—Treatments used in complementary and alternative medicine. In Side Effects of Drugs Annual; Ray, S.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 36, pp. 717–724. [Google Scholar]
- Dzoyem, J.P.; Kuete, V.; Eloff, J.N. Biochemical parameters in toxicological studies in Africa: Significance, principle of methods, data interpretation, and use in plant screenings. In Toxicological Survey of African Medicinal Plants; Elsevier: Amsterdam, The Netherlands, 2014; pp. 659–715. [Google Scholar]
- Lachenmeier, D.W.; Uebelacker, M. Risk assessment of thujone in foods and medicines containing sage and wormwood–evidence for a need of regulatory changes? Regul. Toxicol. Pharmacol. 2010, 58, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Wianowska, D. Chlorogenic acids—Their properties, occurrence and analysis. Ann. Univ. Mariae Curie Sklodowska Sect. AA Chem. 2017, 72, 61–104. [Google Scholar] [CrossRef]
- Santana-Galvez, J.; Cisneros-Zevallos, L.; Jacobo-Velazquez, D.A. Chlorogenic Acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef]
- Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int. 2013, 2013, 963248. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, X.; Ma, Q.; Li, D.; Xu, G.; Piao, G. Flavonoids from Artemisia sacrorum Ledeb. and their cytotoxic activities against human cancer cell lines. Exp. Ther. Med. 2016, 12, 1873–1878. [Google Scholar] [CrossRef] [PubMed]
- Krishna, S.; Bustamante, L.; Haynes, R.K.; Staines, H.M. Artemisinins: Their growing importance in medicine. Trends Pharmacol. Sci. 2008, 29, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Kadri, A.; Chobba, I.B.; Zarai, Z.; Békir, A.; Gharsallah, N.; Damak, M.; Gdoura, R. Chemical constituents and antioxidant activity of the essential oil from aerial parts of Artemisia herba-alba grown in Tunisian semi-arid region. Afr. J. Biotechnol. 2011, 10, 2923–2929. [Google Scholar]
- Kim, D.-O.; Lee, K.W.; Lee, H.J.; Lee, C.Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem. 2002, 50, 3713–3717. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Kitts, D. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules 2014, 19, 19180–19208. [Google Scholar] [CrossRef] [PubMed]
- Mahomoodally, M.F.; Vlaisavljevic, S.; Berezni, S.; Abdallah, H.H.; Zengin, G.; Atanasov, A.G.; Mollica, A.; Lobine, D.; Aktumsek, A. Lotus aegaeus (Gris.) Boiss and Iberis sempervirens L.: Chemical fingerprints, antioxidant potential, and inhibition activities and docking on key enzymes linked to global health problems. Ind. Crop. Prod. 2018, 120, 271–278. [Google Scholar] [CrossRef]
- Uysal, S.; Senkardes, I.; Mollica, A.; Zengin, G.; Bulut, G.; Dogan, A.; Glamočlija, J.; Soković, M.; Lobine, D.; Mahomoodally, F.M. Biologically active compounds from two members of the Asteraceae family: Tragopogon dubius Scop. and Tussilago farfara L. J. Biomol. Struct. Dyn. 2019, 37, 3269–3281. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Chakraborty, I.; Bhattacharjee, R.; Subhra, T.; Banerjee, D.R.V.; Adapa, D.; Bhardwaj, R. An update on pathological implications of enzymatic dysregulation in Alzheimer’s disease. Biomed. Res. 2018, 29, 2215–2226. [Google Scholar] [CrossRef]
- Telagari, M.; Hullatti, K. In-vitro alpha-amylase and alpha-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Indian J. Pharmacol. 2015, 47, 425–429. [Google Scholar]
- Yilmazer-Musa, M.; Griffith, A.M.; Michels, A.J.; Schneider, E.; Frei, B. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity. J. Agric. Food Chem. 2012, 60, 8924–8929. [Google Scholar] [CrossRef]
- Chang, T.-S. Natural Melanogenesis Inhibitors acting through the down-regulation of tyrosinase activity. Materials 2012, 5, 1661–1685. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, B.; Yang, F.; Sun, Q.; Yang, Z.; Zhu, L. Chemical composition and anti-acetyl cholinesterase activity of flower essential oils of Artemisia annua at different flowering stage. Iran. J. Pharm. Res. 2011, 10, 265. [Google Scholar] [PubMed]
- Taherkhani, M. Chemical composition, antimicrobial, antioxidant activity, tyrosinase inhibition and chelating ability of the leaf essential oil of Artemisia diffusa. J. Essent. Oil Bear. Plants 2016, 19, 1600–1613. [Google Scholar] [CrossRef]
- Taviano, M.F.; Marino, A.; Trovato, A.; Bellinghieri, V.; Melchini, A.; Dugo, P.; Cacciola, F.; Donato, P.; Mondello, L.; Guvenc, A.; et al. Juniperus oxycedrus L. subsp. oxycedrus and Juniperus oxycedrus L. subsp. macrocarpa (Sibth. and Sm.) Ball. “berries” from Turkey: Comparative evaluation of phenolic profile, antioxidant, cytotoxic and antimicrobial activities. Food Chem. Toxicol. 2013, 58, 22–29. [Google Scholar] [PubMed]
- Achitei, D.; Ciobica, A.; Balan, G.; Gologan, E.; Stanciu, C.; Stefanescu, G. Different profile of peripheral antioxidant enzymes and lipid peroxidation in active and non-active inflammatory bowel disease patients. Dig. Dis. Sci. 2013, 58, 1244–1249. [Google Scholar] [CrossRef] [PubMed]
- Goggins, M.G.; Shah, S.A.; Goh, J.; Cherukuri, A.; Weir, D.G.; Kelleher, D.; Mahmud, N. Increased urinary nitrite, a marker of nitric oxide, in active inflammatory bowel disease. Mediat. Inflamm. 2001, 10, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Kannan, N.; Guruvayoorappan, C. Protective effect of Bauhinia tomentosa on acetic acid induced ulcerative colitis by regulating antioxidant and inflammatory mediators. Int. Immunopharmacol. 2013, 16, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Nagarjun, S.; Dhadde, S.B.; Veerapur, V.P.; Thippeswamy, B.S.; Chandakavathe, B.N. Ameliorative effect of chromium-d-phenylalanine complex on indomethacin-induced inflammatory bowel disease in rats. Biomed. Pharmacother. 2017, 89, 1061–1066. [Google Scholar] [CrossRef]
- Regmi, S.C.; Park, S.Y.; Ku, S.K.; Kim, J.A. Serotonin regulates innate immune responses of colon epithelial cells through Nox2-derived reactive oxygen species. Free Radic. Biol. Med. 2014, 69, 377–389. [Google Scholar] [CrossRef]
- Mousavizadeh, K.; Rahimian, R.; Fakhfouri, G.; Aslani, F.S.; Ghafourifar, P. Anti-inflammatory effects of 5-HT receptor antagonist, tropisetron on experimental colitis in rats. Eur. J. Clin. Investig. 2009, 39, 375–383. [Google Scholar] [CrossRef]
- Seuwen, K.; Pouysségur, J. Serotonin as a growth factor. Biochem. Pharmacol. 1990, 39, 985–990. [Google Scholar] [CrossRef]
- Alpini, G.; Invernizzi, P.; Gaudio, E.; Venter, J.; Kopriva, S.; Bernuzzi, F.; Onori, P.; Franchitto, A.; Coufal, M.; Frampton, G. Serotonin metabolism is dysregulated in cholangiocarcinoma, which has implications for tumor growth. Cancer Res. 2008, 68, 9184–9193. [Google Scholar] [CrossRef] [PubMed]
- Coufal, M.; Invernizzi, P.; Gaudio, E.; Bernuzzi, F.; Frampton, G.A.; Onori, P.; Franchitto, A.; Carpino, G.; Ramirez, J.C.; Alvaro, D.; et al. Increased local dopamine secretion has growth-promoting effects in cholangiocarcinoma. Int. J. Cancer 2010, 126, 2112–2122. [Google Scholar] [CrossRef] [PubMed]
- Nocito, A.; Dahm, F.; Jochum, W.; Jang, J.H.; Georgiev, P.; Bader, M.; Graf, R.; Clavien, P.A. Serotonin regulates macrophage-mediated angiogenesis in a mouse model of colon cancer allografts. Cancer Res. 2008, 68, 5152–5158. [Google Scholar] [CrossRef] [PubMed]
- Soll, C.; Jang, J.H.; Riener, M.O.; Moritz, W.; Wild, P.J.; Graf, R.; Clavien, P.A. Serotonin promotes tumor growth in human hepatocellular cancer. Hepatology 2010, 51, 1244–1254. [Google Scholar] [CrossRef] [PubMed]
- Nagib, M.M.; Tadros, M.G.; ElSayed, M.I.; Khalifa, A.E. Anti-inflammatory and anti-oxidant activities of olmesartan medoxomil ameliorate experimental colitis in rats. Toxicol. Appl. Pharmacol. 2013, 271, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Clement, M.V.; Ramalingam, J.; Long, L.H. Hydrogen peroxide. Ubiquitous in cell culture and in vivo? IUBMB Life 2000, 50, 251–257. [Google Scholar] [CrossRef]
- Abnosi, M.H.; Yari, S. The toxic effect of gallic acid on biochemical factors, viability and proliferation of rat bone marrow mesenchymal stem cells was compensated by boric acid. J. Trace Elem. Med. Biol. 2018, 48, 246–253. [Google Scholar] [CrossRef]
- Yoon, W.J.; Moon, J.Y.; Song, G.; Lee, Y.K.; Han, M.S.; Lee, J.S.; Ihm, B.S.; Lee, W.J.; Lee, N.H.; Hyun, C.G. Artemisia fukudo essential oil attenuates LPS-induced inflammation by suppressing NF-kappaB and MAPK activation in RAW 264.7 macrophages. Food Chem. Toxicol. 2010, 48, 1222–1229. [Google Scholar] [CrossRef]
- Agus, H.H.; Sengoz, C.O.; Yilmaz, S. Oxidative stress-mediated apoptotic cell death induced by camphor in sod1-deficient Schizosaccharomyces Pombe. Toxicol. Res. 2019, 8, 216–226. [Google Scholar] [CrossRef]
- Curtis, J.J.; Seymour, C.B.; Mothersill, C.E. Cell line-specific direct irradiation and bystander responses are influenced by fetal bovine serum serotonin concentrations. Radiat. Res. 2018, 190, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Tsai, F.-M.; Wu, C.-C.; Shyu, R.-Y.; Wang, C.-H.; Jiang, S.-Y. Tazarotene-induced gene 1 inhibits prostaglandin E2-stimulated HCT116 colon cancer cell growth. J. Biomed. Sci. 2011, 18, 88. [Google Scholar] [CrossRef] [PubMed]
Compounds | RRI a | (%) |
---|---|---|
1,8-Cineole | 1211 | 10.2 |
p-Cymene | 1276 | 0.8 |
Yomogi alcohol | 1394 | tr |
Santolina alcholol | 1400 | 0.9 |
α-Thujone | 1433 | 10.1 |
β-Thujone | 1454 | 3.6 |
trans-Sabinene hydrate | 1469 | 0.2 |
α-Copaene | 1501 | 1.1 |
Chtysanthenone | 1523 | 0.2 |
Camphor | 1535 | 36.6 |
Linalool | 1548 | 0.8 |
cis-Sabinene hydrate | 1554 | 0.2 |
trans-p-Menth-2ene-1-ol | 1570 | 0.7 |
cis-Chrsanthenyl acetate | 1581 | 0.7 |
Pinocarvone | 1588 | 0.6 |
Bornyl acetate | 1593 | 2.1 |
β-Elemene | 1601 | 0.1 |
Terpinen-4-ol | 1612 | 2.4 |
cis-p-Menth-2ene-1-ol | 1634 | 0.5 |
Myrtenal | 1651 | 1.1 |
Sabina ketone | 1655 | 0.3 |
trans-Pinocarveol | 1670 | 2.9 |
δ-Terpineol | 1681 | 0.6 |
trans-Verbenol | 1690 | 0.7 |
γ-Muurolene | 1700 | tr |
α-Terpineol | 1706 | 0.5 |
Borneol | 1715 | 4.5 |
Germacrene D | 1729 | 0.8 |
Verbonone | 1732 | 0.2 |
α-Muurolene | 1740 | tr |
Piperitone | 1749 | 1.0 |
cis-Piperitol | 1754 | 0.5 |
δ-Cadinene | 1773 | 0.3 |
p-Methyl acetophenone | 1800 | 0.1 |
Myrtenol | 1806 | 0.8 |
trans-Carveol | 1846 | 0.1 |
Calamanene | 1854 | 0.1 |
p-Cymen-8-ol | 1861 | 0.4 |
cis-Jasmone | 1968 | 0.4 |
(Z)-Methyl cinnamate | 1976 | 0.1 |
Caryophyllene oxide | 2017 | 0.9 |
cis-Davanone | 2050 | 1.7 |
(E)-Methyl cinnamate | 2103 | 0.5 |
Cumin alcohol | 2121 | 0.4 |
Spathulenol | 2147 | 3.2 |
T-Muurolol | 2208 | 0.7 |
β-Eudesmol | 2256 | 0.1 |
Caryophylladienol I | 2322 | 0.3 |
n-Hexadecanoic acid | 2912 | 0.2 |
Total identified | 95.2 |
Samples | Total Phenolic Content (mg GAE/g Extract) | Total Flavonoid Content (mg RE/g Extract) |
---|---|---|
EO | nt | nt |
EA | 22.17 ± 1.17 c | 41.27 ± 1.19 a |
MeOH | 70.02 ± 1.87 b | 37.37 ± 0.73 b |
Water | 77.45 ± 1.43 a | 23.55 ± 0.25 c |
Samples | Phosphomolybdenum (mmoL TE/g) | DPPH (mgTE/g Extract) | ABTS (mg TE/g Extract) | CUPRAC (mg TE/g Extract) | FRAP (mg TE/g Extract) | Metal Chelating Ability (mg EDTAE/g) |
---|---|---|---|---|---|---|
EO | 61.37 ± 4.17 a | 3.76 ± 0.58 d | 52.94 ± 1.85 c | 85.59 ± 1.53 c | 48.19 ± 1.39 b | 33.25 ± 2.33 b |
EA | 2.12 ± 0.12 c | 34.47 ± 1.28 c | 65.48 ± 1.43 c | 99.76 ± 8.07 b | 37.15 ± 3.61 c | 60.66 ± 0.97 a |
MeOH | 2.20 ± 0.07 c | 278.57 ± 3.77 b | 217.60 ± 6.31 b | 515.30 ± 3.19 a | 255.35 ± 7.11 a | 21.96 ± 2.32 c |
Water | 2.41 ± 0.02 b | 298.28 ± 12.75 a | 277.96 ± 11.73 a | 505.60 ± 3.62 a | 262.71 ± 3.99 a | 26.43 ± 0.29 c |
Samples | AChE (mg GALAE/g Extract) | BChE (mg GALAE/g Extract) | Tyrosinase (mg KAE/g Extract) | α-Amylase (mmol ACAE/g Extract) | α-Glucosidase (mmol ACAE/g Extract) |
---|---|---|---|---|---|
EO | 2.26 ± 0.22 a,b | 3.52 ± 0.39 a | 37.98 ± 1.45 d | 0.21 ± 0.04 c | 11.85 ± 0.06 b |
EA | 3.87 ± 0.70 a | 1.15 ± 0.31 b | 96.82 ± 3.14 b | 0.69 ± 0.01 a | 24.69 ± 0.10 a |
MeOH | 3.21 ± 0.08 a | 0.56 ± 0.10 b | 122.43 ± 3.25 a | 0.49 ± 0.02 b | 23.00 ± 2.25 a |
Water | na | na | 71.50 ± 1.24 c | 0.15 ± 0.01 d | 4.97 ± 0.27 c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrante, C.; Zengin, G.; Menghini, L.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Recinella, L.; Chiavaroli, A.; Leone, S.; Brunetti, L.; et al. Qualitative Fingerprint Analysis and Multidirectional Assessment of Different Crude Extracts and Essential Oil from Wild Artemisia santonicum L. Processes 2019, 7, 522. https://doi.org/10.3390/pr7080522
Ferrante C, Zengin G, Menghini L, Diuzheva A, Jekő J, Cziáky Z, Recinella L, Chiavaroli A, Leone S, Brunetti L, et al. Qualitative Fingerprint Analysis and Multidirectional Assessment of Different Crude Extracts and Essential Oil from Wild Artemisia santonicum L. Processes. 2019; 7(8):522. https://doi.org/10.3390/pr7080522
Chicago/Turabian StyleFerrante, Claudio, Gokhan Zengin, Luigi Menghini, Alina Diuzheva, József Jekő, Zoltán Cziáky, Lucia Recinella, Annalisa Chiavaroli, Sheila Leone, Luigi Brunetti, and et al. 2019. "Qualitative Fingerprint Analysis and Multidirectional Assessment of Different Crude Extracts and Essential Oil from Wild Artemisia santonicum L." Processes 7, no. 8: 522. https://doi.org/10.3390/pr7080522
APA StyleFerrante, C., Zengin, G., Menghini, L., Diuzheva, A., Jekő, J., Cziáky, Z., Recinella, L., Chiavaroli, A., Leone, S., Brunetti, L., Lobine, D., Senkardes, I., Mahomoodally, M. F., & Orlando, G. (2019). Qualitative Fingerprint Analysis and Multidirectional Assessment of Different Crude Extracts and Essential Oil from Wild Artemisia santonicum L. Processes, 7(8), 522. https://doi.org/10.3390/pr7080522