#
Numerical Simulations of Polymer Solution Droplet Impact on Surfaces of Different Wettabilities^{ †}

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. Numerial Methods

**τ**

_{p}), and the governing equations can be written as follows:

_{0}impacting at an initial velocity of V

_{0}was simulated. To analyze droplet impact dynamics, we used the spreading factor, defined as the ratio between the spreading diameter and droplet initial diameter (D

_{0}). In addition, the time was made dimensionless using the kinematic time scale t

_{c}= D

_{0}/V

_{0}.

**A**was expressed as follows:

**A**).

**I**the identity tensor.

**V**

_{c}, describing the relative velocity at the free surface between the fluids, followed the equation below [33]:

_{f}and ${\varphi}_{f}$ represent cell surface area and mass flux, respectively, while the coefficient C

_{α}, set here to 1, defines the degree of compression at the interface. It is worth noting that the adoption of an interface compression scheme avoids the tedious geometrical reconstruction of the interface habitually done in implementation of the VOF method. In addition, the algebraic method used here can readily be extended to unstructured meshes. Further details of the numerical discretization schemes and techniques can be found in Reference [34].

_{cl}corresponds to the contact line velocity, was numerically approximated by taking the velocity within the first cell above the substrate. The effect of the surface hysteresis was accounted for by replacing the equilibrium contact angle θ

_{E}in Equation (9) by either the receding contact angle θ

_{R}or the advancing contact angle θ

_{A}according to the direction of the triple line velocity. By adopting this approach, our model became sensitive to the substrate hysteresis, which plays a significant role in simulating droplet impacts on surfaces with varied wettabilities. It is worth noting that unlike in Reference [36], the presented model did not rely heavily on experimental measurements of the dynamic contact angle evolution in order to match a given experiment.

^{−6}.

#### 2.2. Polymer Solution and Substrates Properties

## 3. Results

#### 3.1. Validation of Newtonian Droplet Impact Dynamics

#### 3.2. Impact of Polymer Solution Droplet

#### 3.2.1. Hydrophilic Surface

_{0}) function of the dimensionless time (t

_{c}= t V

_{0}/D

_{0}). We observed that during the kinematic phase (t

_{c}< 1), droplet spreading seemed to be independent of the fluid model (Figure 4). However, at subsequent phases of the two droplets’ spreading, we observed a much more marked difference between the two cases. Additionally, the viscoelastic liquid droplet displayed little oscillation while having a greater maximum spreading diameter, due to the dominance of the elastic normal stress over of the surface tension, which favored retraction. Interestingly, the liquid flowing out of the droplet center towards its periphery seemed to behave similarly to the filament thinning and stretching situation we reported in Reference [25].

#### 3.2.2. Superhydrophobic Surface

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Rioboo, R.; Marengo, M.; Tropea, C. Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids
**2002**, 33, 112–124. [Google Scholar] [CrossRef] - Mock, U.; Michel, T.; Tropea, C.; Roisman, I.; Rühe, J. Drop impact on chemically structured arrays. J. Phys. Condens. Matter
**2005**, 17, S595–S605. [Google Scholar] [CrossRef] - Vadillo, D.C.; Soucemarianadin, A.; Delattre, C.; Roux, D.C.D. Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces. Phys. Fluids
**2009**, 21, 122002. [Google Scholar] [CrossRef] - Antonini, C.; Amirfazli, A.; Marengo, M. Drop impact and wettability: From hydrophilic to superhydrophobic surfaces. Phys. Fluids
**2012**, 24, 102104. [Google Scholar] [CrossRef] - Tembely, M.; Vadillo, D.; Mackley, M.R.; Soucemarianadin, A. Towards an optimization of DOD printing of complex fluids. Int. Conf. Digit. Print. Technol.
**2011**, 2011, 86–92. [Google Scholar] - Clemens, W.; Fix, W.; Ficker, J.; Knobloch, A.; Ullmann, A. From polymer transistors toward printed electronics. J. Mater. Res.
**2004**, 19, 1963–1973. [Google Scholar] [CrossRef] - Xu, J.; Attinger, D. Drop on demand in a microfluidic chip. J. Micromech. Microeng.
**2008**, 18, 065020. [Google Scholar] [CrossRef] - Ottnad, T.; Kagerer, M.; Irlinger, F.; Lueth, T.C. Modification and further development of a drop on demand printhead for wax enabling future 3D-printing and rapid prototyping. In Proceedings of the 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Kaohsiung, Taiwan, 11–14 July 2012; pp. 117–122. [Google Scholar]
- Joensson, H.N.; Andersson-Svahn, H. Droplet microfluidics—A tool for protein engineering and analysis. Lab Chip
**2011**, 11, 4144. [Google Scholar] [CrossRef] - Tembely, M.; AlSumaiti, A.M.; Jouini, M.S.; Rahimov, K. The effect of heat transfer and polymer concentration on non-Newtonian fluid from pore-scale simulation of rock X-ray micro-CT. Polymers
**2017**, 9, 509. [Google Scholar] [CrossRef] - Fukai, J.; Zhao, Z.; Poulikakos, D.; Megaridis, C.M.; Miyatake, O. Modeling of the deformation of a liquid droplet impinging upon a flat surface. Phys. Fluids A Fluid Dyn.
**1993**, 5, 2588–2599. [Google Scholar] [CrossRef] - Hirt, C.; Nichols, B. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.
**1981**, 39, 201–225. [Google Scholar] [CrossRef] - Sussman, M.; Smereka, P.; Osher, S. A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow. J. Comput. Phys.
**1994**, 114, 146–159. [Google Scholar] [CrossRef] - Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y.J. A Front-Tracking Method for the Computations of Multiphase Flow. J. Comput. Phys.
**2001**, 169, 708–759. [Google Scholar] [CrossRef] [Green Version] - Shan, X.; Doolen, G. Multicomponent lattice-Boltzmann model with interparticle interaction. J. Stat. Phys.
**1995**, 81, 379–393. [Google Scholar] [CrossRef] [Green Version] - Dalgamoni H., N. and Yong X. Axisymmetric lattice Boltzmann simulation of droplet impact on solid surfaces. Phys. Rev. E.
**2018**, 98, 013102. [Google Scholar] [CrossRef] [PubMed] - Roisman, I.V.; Opfer, L.; Tropea, C.; Raessi, M.; Mostaghimi, J.; Chandra, S. Drop impact onto a dry surface: Role of the dynamic contact angle. Colloids Surf. A Physicochem. Eng. Asp.
**2008**, 322, 183–191. [Google Scholar] [CrossRef] - Šikalo, Š.; Wilhelm, H.-D.; Roisman, I.V.; Jakirlić, S.; Tropea, C. Dynamic contact angle of spreading droplets: Experiments and simulations. Phys. Fluids
**2005**, 17, 062103. [Google Scholar] [CrossRef] - Crochet, M.J.; Keunings, R. Finite element analysis of die swell of a highly elastic fluid. J. Nonnewton. Fluid Mech.
**1982**, 10, 339–356. [Google Scholar] [CrossRef] - Morrison, N.F.; Harlen, O.G. Viscoelasticity in inkjet printing. Rheol. Acta
**2010**, 49, 619–632. [Google Scholar] [CrossRef] - Tomé, M.F.; Paulo, G.S.; Pinho, F.T.; Alves, M.A. Numerical solution of the PTT constitutive equation for unsteady three-dimensional free surface flows. J. Nonnewton. Fluid Mech.
**2010**, 165, 247–262. [Google Scholar] [CrossRef] - Fang, J.; Owens, R.G.; Tacher, L.; Parriaux, A. A numerical study of the SPH method for simulating transient viscoelastic free surface flows. J. Nonnewton. Fluid Mech.
**2006**, 139, 68–84. [Google Scholar] [CrossRef] [Green Version] - Yu, J.-D.; Sakai, S.; Sethian, J.A. Two-phase viscoelastic jetting. J. Comput. Phys.
**2007**, 220, 568–585. [Google Scholar] [CrossRef] [Green Version] - Yue, P.; Feng, J.J. Phase-field simulations of dynamic wetting of viscoelastic fluids. J. Nonnewton. Fluid Mech.
**2012**, 189, 8–13. [Google Scholar] [CrossRef] - Tembely, M.; Vadillo, D.; MacKley, M.R.; Soucemarianadin, A. The matching of a “one-dimensional” numerical simulation and experiment results for low viscosity Newtonian and non-Newtonian fluids during fast filament stretching and subsequent break-up. J. Rheol.
**2012**, 56, 159–183. [Google Scholar] [CrossRef] - Dong, H.; Carr, W.W.; Morris, J.F. An experimental study of drop-on-demand drop formation. Phys. Fluids
**2006**, 18, 072102. [Google Scholar] [CrossRef] - Hoath, S.D.; Vadillo, D.C.; Harlen, O.G.; McIlroy, C.; Morrison, N.F.; Hsiao, W.-K.; Tuladhar, T.R.; Jung, S.; Martin, G.D.; Hutchings, I.M. Inkjet printing of weakly elastic polymer solutions. J. Nonnewton. Fluid Mech.
**2014**, 205, 1–10. [Google Scholar] [CrossRef] [Green Version] - Vadillo, D.C.; Tuladhar, T.R.; Mulji, A.C.; Jung, S.; Hoath, S.D.; Mackley, M.R. Evaluation of the inkjet fluid’s performance using the “Cambridge Trimaster” filament stretch and break-up device. J. Rheol.
**2010**, 54, 261–282. [Google Scholar] [CrossRef] - Brackbill, J.; Kothe, D.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys.
**1992**, 100, 335–354. [Google Scholar] [CrossRef] - Chilcott, M.D.; Rallison, J.M. Creeping flow of dilute polymer solutions past cylinders and spheres. J. Nonnewton. Fluid Mech.
**1988**, 29, 381–432. [Google Scholar] [CrossRef] - Vadillo, D.C.; Tembely, M.; Morrison, N.F.; Harlen, O.G.; MacKley, M.R.; Soucemarianadin, A. The matching of polymer solution fast filament stretching, relaxation, and break up experimental results with 1D and 2D numerical viscoelastic simulation. J. Rheol.
**2012**, 56, 1491–1516. [Google Scholar] [CrossRef] - Mackley, M.R.; Butler, S.A.; Huxley, S.; Reis, N.M.; Barbosa, A.I.; Tembely, M. The observation and evaluation of extensional filament deformation and breakup profiles for Non Newtonian fluids using a high strain rate double piston apparatus. J. Nonnewton. Fluid Mech.
**2017**, 239, 13–27. [Google Scholar] [CrossRef] [Green Version] - Rusche, H. Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions. Ph.D. Thesis, Imperial College of Science, Technology and Medicine, London, UK, 2002. [Google Scholar]
- Tembely, M.; Attarzadeh, R.; Dolatabadi, A. On the numerical modeling of supercooled micro-droplet impact and freezing on superhydrophobic surfaces. Int. J. Heat Mass Transf.
**2018**, 127, 193–202. [Google Scholar] [CrossRef] - Kistler, S.F. Hydrodynamics of Wetting. In Wettability; Berg, J.C., Ed.; CRC Press: Boca Raton, FL USA, 1993. [Google Scholar]
- Yokoi, K.; Vadillo, D.; Hinch, J.; Hutchings, I. Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface. Phys. Fluids
**2009**, 21, 072102. [Google Scholar] [CrossRef] [Green Version] - Jadidi, M.; Tembely, M.; Moghtadernejad, S.; Dolatabadi, A. A coupled level set and volume of fluid method in openfoam with application to compressible two-phase flow. In Proceedings of the 22nd Annual Conference of the CFD Society of Canada, Toronto, ON, Canada, 1–4 June 2014. [Google Scholar]
- Graham, P.J.; Farhangi, M.M.; Dolatabadi, A. Dynamics of droplet coalescence in response to increasing hydrophobicity. Phys. Fluids
**2012**, 24, 112105. [Google Scholar] [CrossRef] - Antonini, C.; Villa, F.; Bernagozzi, I.; Amirfazli, A.; Marengo, M. Drop Rebound after Impact: The Role of the Receding Contact Angle. Langmuir
**2013**, 29, 16045–16050. [Google Scholar] [CrossRef]

**Figure 2.**Comparison between simulation and experiment of the dimensionless spreading diameter evolution of a droplet upon impact on a superhydrophobic substrate with hysteresis. VOF: volume of fluid.

**Figure 3.**A comparative simulation of a 1 mm diameter droplet impacting at 1 m/s on a hydrophilic substrate between (

**right**) a Newtonian solvent DEP and (

**left**) polymer solution, DEP + 2.5 wt. % PS.

**Figure 5.**Simulated comparison between (

**right**) the Newtonian solvent DEP and (

**left**) viscoelastic polymer solution, DEP + 2.5 wt. % PS, for the impact of a 1 mm diameter droplet at 1 m/s on the superhydrophobic substrate.

**Figure 6.**Impact of a 1 mm droplet of polymer solution, DEP + 2.5 wt. % PS, at 1 m/s on the superhydrophobic substrate.

**Figure 7.**Simulated spreading diameter of 1 mm droplets of a Newtonian (DEP) fluid and two polymer solutions, DEP + 0.25 wt. % and DEP + 2.5 wt. % PS, impacting at 1 m/s.

Liquids | Interfacial Surface Tension (mN/m) | Viscosity (mPa.s) |
---|---|---|

DEP | 37 | 14 |

DEP + 2.5% PS | 37 | 31 |

Substrate | Equilibrium CA (°) | Advancing CA (°) |
---|---|---|

Hydrophilic (H) | 74 | 90 |

Superhydrophobic (SH) | 154 | 162 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tembely, M.; Vadillo, D.; Soucemarianadin, A.; Dolatabadi, A.
Numerical Simulations of Polymer Solution Droplet Impact on Surfaces of Different Wettabilities. *Processes* **2019**, *7*, 798.
https://doi.org/10.3390/pr7110798

**AMA Style**

Tembely M, Vadillo D, Soucemarianadin A, Dolatabadi A.
Numerical Simulations of Polymer Solution Droplet Impact on Surfaces of Different Wettabilities. *Processes*. 2019; 7(11):798.
https://doi.org/10.3390/pr7110798

**Chicago/Turabian Style**

Tembely, Moussa, Damien Vadillo, Arthur Soucemarianadin, and Ali Dolatabadi.
2019. "Numerical Simulations of Polymer Solution Droplet Impact on Surfaces of Different Wettabilities" *Processes* 7, no. 11: 798.
https://doi.org/10.3390/pr7110798