Comparison of Packed-Bed and Micro-Channel Reactors for Hydrogen Production via Thermochemical Cycles of Water Splitting in the Presence of Ceria-Based Catalysts
Abstract
1. Introduction
2. Methodology
2.1. Catalyst Preparation, Substrate Pretreatment and Catalyst Coating
2.1.1. Catalyst Preparation
2.1.2. Stainless Steel Substrate Preparation
2.1.3. Catalyst Coating
2.2. Characterization
2.3. Experimental Set-Up
3. Result and Discussion
3.1. Characterization
3.2. Catalytic Performance Experiments
3.2.1. Effect of ZrO2 Addition
3.2.2. Comparison of Micro-Channel Reactor and Packed-Bed Reactor
3.2.3. The Influence of Alumina Addition into the Catalyst System in the Micro-Channel Reactor
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Balat, M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrog. Energy 2008, 33, 4013–4029. [Google Scholar] [CrossRef]
- Mathur, H.B.; Das, L.M.; Patro, T.N. Hydrogen fuel utilization in CI engine powered end utility systems. Int. J. Hydrog. Energy 1992, 17, 369–374. [Google Scholar] [CrossRef]
- Chang, A.C.C.; Chang, H.F.; Lin, F.J.; Lin, K.H.; Chen, C.H. Biomass gasification for hydrogen production. Int. J. Hydrog. Energy 2011, 36, 14252–14260. [Google Scholar] [CrossRef]
- Appleby, A.J. Fuel cell technology and innovation. J. Power Sources 1992, 37, 223–239. [Google Scholar] [CrossRef]
- Ismagilov, Z.R.; Matus, E.V.; Ismagilov, I.Z. Hydrogen production through hydrocarbon fuel reforming processes over Ni based catalysts. Catal. Today 2019, 166–182. [Google Scholar] [CrossRef]
- Lecart, B.; Devalette, M.; Manaud, J.P.; Meunier, G.; Hagenmuller, P. A new thermochemical process for hydrogen production. Int. J. Hydrog. Energy 1979, 4, 7–11. [Google Scholar] [CrossRef]
- DeLuchi, M.A. Hydrogen vehicles: An evaluation of fuel storage, performance, safety, environmental impacts, and cost. Int. J. Hydrog. Energy 1989, 14, 81–130. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Agrafiotis, C.; Roeb, M.; Konstandopoulos, A.G. Solar water splitting for hydrogen production with monolithic reactors. Sol. Energy 2005, 79, 409–421. [Google Scholar] [CrossRef]
- Dersch, J.; Mathijsen, A.; Roeb, M.; Sattler, C. Modelling of a solar thermal reactor for hydrogen generation. In Proceedings of the 5th International Modelica Conference, Vienna, Austria, 4–5 September 2006; pp. 441–448. Available online: http://elib.dlr.de/46853/ (accessed on 15 June 2019).
- Venstrom, L.J.; Petkovich, N.; Rudisill, S.; Stein, A.; Davidson, J.H. The effects of morphology on the oxidation of ceria by water and carbon dioxide. J. Sol. Energy Eng. 2012, 134, 011005. [Google Scholar] [CrossRef]
- Roeb, M.; Sattler, C.; Klüser, R. Solar hydrogen production by a two-step cycle based on mixed iron oxides. In Proceedings of the ASME 2005 International Solar Energy Conference, Orlando, FL, USA, 6–12 August 2005; pp. 671–678. [Google Scholar] [CrossRef]
- Steinfeld, A. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int. J. Hydrog. Energy 2002, 27, 611–619. [Google Scholar] [CrossRef]
- Sibieude, F.; Ducarroir, M.; Tofighi, A.; Ambriz, J. High temperature experiments with a solar furnace: The decomposition of Fe3O4, Mn3O4, CdO. Int. J. Hydrog. Energy 1982, 7, 79–88. [Google Scholar] [CrossRef]
- Popa, S.G.; Ungureanu, B.S.; Gheonea, I.A. Experimental Study of SnO2/SnO/Sn Thermochemical Systems for Solar Production of Hydrogen. Rom. J. Morphol Embryol. 2015, 56, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.S.; Kim, C.H.; Cho, W.C.; Bae, K.K.; Kim, S.H.; Park, C.S. Novel two-step thermochemical cycle for hydrogen production from water using germanium oxide: KIER 4 thermochemical cycle. Int. J. Hydrog. Energy 2009, 34, 4283–4290. [Google Scholar] [CrossRef]
- Charvin, P.; Abanades, S.; Flamant, G.; Lemort, F. Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production. Energy 2007, 32, 1124–1133. [Google Scholar] [CrossRef]
- Tamaura, Y.; Ueda, Y.; Matsunami, J. Solar hydrogen production by using ferrites. Sol. Energy 1999, 65, 55–57. [Google Scholar] [CrossRef]
- Scheffe, J.R.; Li, J.; Weimer, A.W. A spinel ferrite/hercynite water-splitting redox cycle. Int. J. Hydrog. Energy 2010, 35, 3333–3340. [Google Scholar] [CrossRef]
- Chueh, W.C.; Haile, S.M. A thermochemical study of ceria: Exploiting an old material for new modes of energy conversion and CO2 mitigation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 3269–3294. [Google Scholar] [CrossRef]
- Meng, Q.L.; Lee, C.I.l.; Ishihara, T.; Kaneko, H.; Tamaura, Y. Reactivity of CeO2-based ceramics for solar hydrogen production via a two-step water-splitting cycle with concentrated solar energy. Int. J. Hydrog. Energy 2011, 36, 13435–13441. [Google Scholar] [CrossRef]
- Furler, P.; Scheffe, J.; Gorbar, M.; Moes, L.; Vogt, U.; Steinfeld, A. Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system. Energy Fuels 2012, 26, 7051–7059. [Google Scholar] [CrossRef]
- Scheffe, J.R.; Weibel, D.; Steinfeld, A. Lanthanum-strontium-manganese perovskites as redox materials for solar thermochemical splitting of H2O and CO2. Energy Fuels 2013, 27, 4250–4257. [Google Scholar] [CrossRef]
- Mamontov, E.; Egami, T.; Brezny, R.; Koranne, M.; Tyagi, S. Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia. J. Phys. Chem. B 2000, 104, 11110–11116. [Google Scholar] [CrossRef]
- Epifani, M.; Andreu, T.; Abdollahzadeh-Ghom, S.; Arbiol, J.; Morante, J.R. Synthesis of ceria-zirconia nanocrystals with improved microstructural homogeneity and oxygen storage capacity by hydrolytic sol-gel process in coordinating environment. Adv. Funct. Mater. 2012, 22, 2867–2875. [Google Scholar] [CrossRef]
- Bader, R.; Venstrom, L.J.; Davidson, J.H.; Lipiński, W. Thermodynamic analysis of isothermal redox cycling of ceria for solar fuel production. Energy Fuels 2013, 27, 5533–5544. [Google Scholar] [CrossRef]
- Fueki, K. Efficiency of thermochemical production of hydrogen. Int. J. Hydrog. Energy 1976, 1, 129–131. [Google Scholar] [CrossRef]
- Scheffe, J.R.; Steinfeld, A. Thermodynamic analysis of cerium-based oxides for solar thermochemical fuel production. Energy Fuels 2012, 26, 1928–1936. [Google Scholar] [CrossRef]
- Falter, C.; Pitz-Paal, R. Energy analysis of solar thermochemical fuel production pathway with a focus on waste heat recuperation and vacuum generation. Sol. Energy 2018, 176, 230–240. [Google Scholar] [CrossRef]
- Pengpanich, S.; Meeyoo, V.; Rirksomboon, T.; Bunyakiat, K. Catalytic oxidation of methane over CeO2-ZrO2 mixed oxide solid solution catalysts prepared via urea hydrolysis. Appl. Catal. A Gen. 2002, 234, 221–233. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Zhan, W.; Guo, Y.; Guo, Y.; Lu, G. Preparation of high oxygen storage capacity and thermally stable ceria-zirconia solid solution. Catal. Sci. Technol. 2016, 6, 897–907. [Google Scholar] [CrossRef]
- Reddy, B.M.; Reddy, G.K.; Reddy, L.H.; Ganesh, I. Synthesis of Nanosized Ceria-Zirconia Solid Solutions by a Rapid Microwave-Assisted Combustion Method. Open Phys. Chem. J. 2009, 3, 24–29. [Google Scholar] [CrossRef]
- Sujana, M.G.; Chattopadyay, K.K.; Anand, S. Characterization and optical properties of nano-ceria synthesized by surfactant-mediated precipitation technique in mixed solvent system. Appl. Surf. Sci. 2008, 254, 7405–7409. [Google Scholar] [CrossRef]
- Shih, C.J.; Chen, Y.J.; Hon, M.H. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process. Mater. Chem. Phys. 2010, 121, 99–102. [Google Scholar] [CrossRef]
- Osman, A.I.; Abu-Dahrieh, J.K.; Rooney, D.W.; Halawy, S.A.; Mohamed, M.A.; Abdelkader, A. Effect of precursor on the performance of alumina for the dehydration of methanol to dimethyl ether. Appl. Catal. B Environ. 2012, 127, 307–315. [Google Scholar] [CrossRef]
- Takashi, S.; Hideo, W.; Masayoshi, F.; Minoru, T. Structural Properties and Surface Characteristics on Aluminum Oxide Powders. Rev. Med. Chile 2009, 9, 23–31. [Google Scholar]
- Wang, X.; Liu, D.; Li, J.; Zhen, J.; Zhang, H. Clean synthesis of Cu2O@CeO2 core@shell nanocubes with highly active interface. NPG Asia Mater. 2015, 7, 158–164. [Google Scholar] [CrossRef]
- Zhang, X.M.; Deng, Y.Q.; Tian, P.; Shang, H.H.; Xu, J.; Han, Y.F. Dynamic active sites over binary oxide catalysts: In situ/operando spectroscopic study of low-temperature CO oxidation over MnOx-CeO2 catalysts. Appl. Catal. B Environ. 2016, 191, 179–191. [Google Scholar] [CrossRef]
- Liu, L.; Shi, J.; Zhang, X.; Liu, J. Flower-Like Mn-Doped CeOMicrostructures: Synthesis, Characterizations, and Catalytic Properties. J. Chem. 2015, 2015, 254750. [Google Scholar] [CrossRef]
- MacIel, C.G.; Silva, T.D.F.; Hirooka, M.I.; Belgacem, M.N.; Assaf, J.M. Effect of nature of ceria support in CuO/CeO2 catalyst for PROX-CO reaction. Fuel 2012, 97, 245–252. [Google Scholar] [CrossRef]
- Biswas, P.; Kunzru, D. Steam reforming of ethanol for production of hydrogen over Ni/CeO2-ZrO2 catalyst: Effect of support and metal loading. Int. J. Hydrog. Energy 2007, 32, 969–980. [Google Scholar] [CrossRef]
- Kim, D.J. Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite-Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions. J. Am. Ceram. Soc. 1989, 72, 1415–1421. [Google Scholar] [CrossRef]
- Kang, K.; Kim, C.; Park, C.; Kim, J. Hydrogen Reduction and Subsequent Water Splitting. J. Ind. Eng. Chem. 2007, 13, 657–663. [Google Scholar]
- Córdoba, L.F.; Martínez-Hernández, A. Preferential oxidation of CO in excess of hydrogen over Au/CeO2-ZrO2 catalysts. Int. J. Hydrog. Energy 2015, 40, 16192–16201. [Google Scholar] [CrossRef]
- Le Gal, A.; Abanades, S.; Flamant, G. CO2 and H2O splitting for thermochemical production of solar fuels using nonstoichiometric ceria and ceria/zirconia solid solutions. Energy Fuels 2011, 25, 4836–4845. [Google Scholar] [CrossRef]
- Zhao, Z.; Uddi, M.; Tsvetkov, N.; Yildiz, B.; Ghoniem, A.F. Enhanced intermediateerature CO2 splitting using nonstoichiometric ceria and ceria-zirconia. Phys. Chem. Chem. Phys. 2017, 19, 25774–25785. [Google Scholar] [CrossRef] [PubMed]
- Sukonket, T.; Khan, A.; Saha, B. Influence of the Catalyst Preparation Method, Surfactant Amount, and Steam on CO2 Reforming of CH4 over 5Ni/Ce0.6Zr 0.4O2 Catalysts. Energy Fuels 2011, 25, 864–877. [Google Scholar] [CrossRef]
- Kolb, G. Review: Microstructured reactors for distributed and renewable production of fuels and electrical energy. Chem. Eng. Process. Process Intensif. 2013, 65, 1–44. [Google Scholar] [CrossRef]
- Pennemann, H.; Watts, P.; Haswell, S.J.; Hessel, V.; Löwe, H. Benchmarking of microreactor applications. Org. Process Res. Dev. 2004, 8, 422–439. [Google Scholar] [CrossRef]
- Mathieu-Potvin, F.; Gosselin, L.; Da Silva, A.K. Optimal geometry of catalytic microreactors: Maximal reaction rate density with fixed amount of catalyst and pressure drop. Chem. Eng. Sci. 2012, 73, 249–260. [Google Scholar] [CrossRef]
- Lau, W.N.; Yeung, K.L.; Martin-Aranda, R. Knoevenagel condensation reaction between benzaldehyde and ethyl acetoacetate in microreactor and membrane microreactor. Microporous Mesoporous Mater. 2008, 115, 156–163. [Google Scholar] [CrossRef]
- Peela, N.R.; Mubayi, A.; Kunzru, D. Washcoating of γ-alumina on stainless steel microchannels. Catal. Today 2009, 147, 17–23. [Google Scholar] [CrossRef]
- Wu, X.; Weng, D.; Zhao, S.; Chen, W. Influence of an aluminized intermediate layer on the adhesion of a γ-Al2O3 washcoat on FeCrAl. Surf. Coat. Technol. 2005, 190, 434–439. [Google Scholar] [CrossRef]
Catalysts | Peak α | Peak β | Total OSC (µmol/g) | Total % Reduction (δ) | ||||
---|---|---|---|---|---|---|---|---|
Tred (°C) | OSC (µmol/g) | % Reduction (δ) | Tred (°C) | OSC (µmol/g) | % Reduction (δ) | |||
CeO2-δ | 545 | 585 | 9.34% (δ = 0.046) | 900 | 915 | 14.64% (δ = 0.074) | 1500 | 23.98% (δ = 0.12) |
Ce0.75Zr0.25O2-δ | 680 | 1700 | 547.40% (δ = 0.272) | 950 | 1390 | 44346% (δ = 0.222) | 3090 | 98.86% (δ = 0.49) |
Condition | O | Cr | Mn | Fe | Ni | Others | Total |
---|---|---|---|---|---|---|---|
Before annealing | 7.69 | 28.61 | − | 47.87 | 5.65 | 10.18 | 100 |
Annealed at 600 °C | 24.84 | 29.53 | 2.72 | 35.95 | 4.22 | 2.75 | 100 |
Annealed at 700 °C | 30.04 | 26.34 | − | 30.44 | 3.75 | 9.43 | 100 |
Annealed at 800 °C | 41.78 | 27.90 | 4.82 | 18.70 | − | 6.79 | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngoenthong, N.; Hartley, M.; Sornchamni, T.; Siri-nguan, N.; Laosiripojana, N.; Hartley, U.W. Comparison of Packed-Bed and Micro-Channel Reactors for Hydrogen Production via Thermochemical Cycles of Water Splitting in the Presence of Ceria-Based Catalysts. Processes 2019, 7, 767. https://doi.org/10.3390/pr7100767
Ngoenthong N, Hartley M, Sornchamni T, Siri-nguan N, Laosiripojana N, Hartley UW. Comparison of Packed-Bed and Micro-Channel Reactors for Hydrogen Production via Thermochemical Cycles of Water Splitting in the Presence of Ceria-Based Catalysts. Processes. 2019; 7(10):767. https://doi.org/10.3390/pr7100767
Chicago/Turabian StyleNgoenthong, Nonchanok, Matthew Hartley, Thana Sornchamni, Nuchanart Siri-nguan, Navadol Laosiripojana, and Unalome Wetwatana Hartley. 2019. "Comparison of Packed-Bed and Micro-Channel Reactors for Hydrogen Production via Thermochemical Cycles of Water Splitting in the Presence of Ceria-Based Catalysts" Processes 7, no. 10: 767. https://doi.org/10.3390/pr7100767
APA StyleNgoenthong, N., Hartley, M., Sornchamni, T., Siri-nguan, N., Laosiripojana, N., & Hartley, U. W. (2019). Comparison of Packed-Bed and Micro-Channel Reactors for Hydrogen Production via Thermochemical Cycles of Water Splitting in the Presence of Ceria-Based Catalysts. Processes, 7(10), 767. https://doi.org/10.3390/pr7100767