Surrogate Modeling for Liquid–Liquid Equilibria Using a Parameterization of the Binodal Curve
Abstract
:1. Introduction
2. Background
2.1. Liquid–Liquid Equilibrium Modeling
2.2. Surrogate Modeling of LLE
2.2.1. Selection of Inputs and Outputs
2.2.2. Description of the Input Domain X
2.2.3. Sample Data and Surrogate Generation
3. Methods
3.1. Parameterization of Binodal Curves
3.2. Numerical Continuation for Sample Calculation
4. Results
4.1. Description of the Case Study
4.2. Data Generation
4.3. Surrogate Fitting
4.4. Optimization
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nentwich, C.; Engell, S. Application of surrogate models for the optimization and design of chemical processes. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 1291–1296. [Google Scholar] [CrossRef]
- Asher, M.J.; Croke, B.F.W.; Jakeman, A.J.; Peeters, L.J.M. A review of surrogate models and their application to groundwater modeling. Water Resour. Res. 2015, 51, 5957–5973. [Google Scholar] [CrossRef]
- McBride, K.; Sundmacher, K. Overview of Surrogate Modeling in Chemical Process Engineering. Chem. Ing. Tech. 2019, 91, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Nentwich, C.; Engell, S. Surrogate modeling of phase equilibrium calculations using adaptive sampling. Comput. Chem. Eng. 2019, 126, 204–217. [Google Scholar] [CrossRef]
- Keßler, T.; Kunde, C.; McBride, K.; Mertens, N.; Michaels, D.; Sundmacher, K.; Kienle, A. Global optimization of distillation columns using explicit and implicit surrogate models. Chem. Eng. Sci. 2019, 197, 235–245. [Google Scholar] [CrossRef]
- Boukouvala, F.; Floudas, C.A. ARGONAUT: AlgoRithms for Global Optimization of coNstrAined grey-box compUTational problems. Optim. Lett. 2017, 11, 895–913. [Google Scholar] [CrossRef]
- Gross, J.; Sadowski, G. Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules. Ind. Eng. Chem. Res. 2001, 40, 1244–1260. [Google Scholar] [CrossRef]
- Weidlich, U.; Gmehling, J. A modified UNIFAC model. 1. Prediction of VLE, hE, and γ∞. Ind. Eng. Chem. Res. 1987, 26, 1372–1381. [Google Scholar] [CrossRef]
- Daya Sagar, B.; Cheng, Q.; Agterberg, F. (Eds.) Handbook of Mathematical Geosciences: Fifty Years of IAMG; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- McBride, K.; Kaiser, N.M.; Sundmacher, K. Integrated reaction-extraction process for the hydroformylation of long-chain alkenes with a homogeneous catalyst. Comput. Chem. Eng. 2017, 105, 212–223. [Google Scholar] [CrossRef]
- Forrester, A.I.; Keane, A.J. Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 2009, 45, 50–79. [Google Scholar] [CrossRef]
- Bhosekar, A.; Ierapetritou, M. Advances in surrogate based modeling, feasibility analysis, and optimization: A review. Comput. Chem. Eng. 2018, 108, 250–267. [Google Scholar] [CrossRef]
- Seydel, R. Practical Bifurcation and Stability Analysis, 3rd ed.; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Bausa, J.; Marquardt, W. Quick and reliable phase stability test in VLLE flash calculations by homotopy continuation. Comput. Chem. Eng. 2000, 24, 2447–2456. [Google Scholar] [CrossRef]
- Brown, A.A.; Bartholomew-Biggs, M.C. Some effective methods for unconstrained optimization based on the solution of systems of ordinary differential equations. J. Optim. Theory Appl. 1989, 62, 211–224. [Google Scholar] [CrossRef]
- Ryll, O.; Blagov, S.; Hasse, H. Convex envelope method for the determination of fluid phase diagrams. Fluid Phase Equilibria 2012, 324, 108–116. [Google Scholar] [CrossRef]
- MATLAB Release; The MathWorks, Inc.: Natick, MA, USA, 2018; Available online: https://www.mathworks.com/ (accessed on 14 October 2019).
- Privat, R.; Jaubert, J.N.; Privat, Y. A simple and unified algorithm to solve fluid phase equilibria using either the gamma-phi or the phi-phi approach for binary and ternary mixtures. Comput. Chem. Eng. 2013, 50, 139–151. [Google Scholar] [CrossRef]
- Douglas, J. Conceptual Design of Chemical Processes; McGraw-Hill Book Company: Singapore, 1988; p. 601. [Google Scholar]
- Fenske, M. Fractionation of Straight-Run Pennsylvania Gasoline. Ind. Eng. Chem. 1932, 24, 482–485. [Google Scholar] [CrossRef]
- Doherty, M.; Fidkowski, Z.; Malone, M.; Taylor, R. Perry’s Chemical Engineers’ Handbook; Chapter Distillation; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Gilliland, E. Multicomponent Rectification. Ind. Eng. Chem. 1940, 32, 1101–1106. [Google Scholar] [CrossRef]
- Eduljee, H. Equations replace Gilliland Plot. Hydrocarb. Process. 1975, 54, 120–122. [Google Scholar]
- Keßler, T.; Kunde, C.; Linke, S.; McBride, K.; Sundmacher, K.; Kienle, A. Systematic Selection of Green Solvents and Process Optimization for the Hydroformylation of Long-Chain Olefines. Process. Adv. Methods Process. Syst. Eng. 2019. forthcoming. [Google Scholar]
- COSMOtherm, C30, Release 1601; COSMOlogic GmbH & Co. KG: Leverkusen, Germany; Available online: http://www.cosmologic.de (accessed on 14 October 2019).
- Schweidtmann, A.M.; Mitsos, A. Deterministic Global Optimization with Artificial Neural Networks Embedded. J. Optim. Theory Appl. 2019, 180, 925–948. [Google Scholar] [CrossRef]
- General Algebraic Modeling System (GAMS), 26.1.0; GAMS Development Corporation: Fairfax, VA, USA. Available online: https://www.gams.com/ (accessed on 14 October 2019).
- Kılınç, M.R.; Sahinidis, N.V. Exploiting integrality in the global optimization of mixed-integer nonlinear programming problems with BARON. Optim. Methods Softw. 2018, 33, 540–562. [Google Scholar] [CrossRef]
- Drud, A.S. CONOPT-A Large-Scale GRG Code. ORSA J. Comput. 1994, 6, 207–216. [Google Scholar] [CrossRef]
- Drud, A.S. CONOPT: A GRG Code for Large Sparse Dynamic Nonlinear Optimization Problems. Math. Program. 1985, 31, 153–191. [Google Scholar] [CrossRef]
- CPLEX Optimizer; IBM Corporation: Armonk, NY, USA. Available online: https://www.cplex.com/ (accessed on 14 October 2019).
- Koch, T.; Achterberg, T.; Andersen, E.; Bastert, O.; Berthold, T.; Bixby, R.E.; Danna, E.; Gamrath, G.; Gleixner, A.M.; Heinz, S.; et al. MIPLIB 2010. Math. Program. Comput. 2011, 3, 103–163. [Google Scholar] [CrossRef]
- Bongartz, D.; Mitsos, A. Deterministic global flowsheet optimization: Between equation-oriented and sequential-modular methods. AIChE J. 2019, 65, 1022–1034. [Google Scholar] [CrossRef]
- Bongartz, D.; Mitsos, A. Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations. J. Glob. Optim. 2017, 69, 761–796. [Google Scholar] [CrossRef]
Index i | Name | Description |
---|---|---|
1 | dimethylformamide | polar solvent |
2 | dodecane | nonpolar solvent |
3 | n-undecanal | product |
4 | 1-decene | substrate |
Parameter | Value | Unit | Parameter | Value | Unit |
---|---|---|---|---|---|
mol s | 504155 | $ year | |||
mol s | 1 | ||||
mol s | mol s $ year | ||||
mol s | mol s $ year | ||||
$ year | |||||
mol s $ year |
# of Parameters | sumParANN | ||||
---|---|---|---|---|---|
5 | 103 | 0.00202 | 0.0163 | 0.1002 | 644.7 |
6 | 114 | 0.00227 | 0.0195 | 0.1002 | 2311 |
7 | 125 | 0.00127 | 0.0080 | 0.1002 | 667.7 |
8 | 136 | 0.00070 | 0.0083 | 0.1002 | 618.1 |
9 | 147 | 0.00058 | 0.0087 | 0.1002 | 311.6 |
10 | 158 | 0.00039 | 0.0038 | 0.1002 | 369.8 |
11 | 169 | 0.00054 | 0.0044 | 0.1002 | 291.9 |
12 | 180 | 0.00033 | 0.0034 | 0.1002 | 391.5 |
13 | 191 | 0.00030 | 0.0035 | 0.1002 | 357.7 |
14 | 202 | 0.00035 | 0.0064 | 0.1002 | 246.3 |
15 | 213 | 0.00022 | 0.0020 | 0.1002 | 254.9 |
Parameter | Value | Unit |
---|---|---|
18.8 | mol s | |
16.5 | mol s | |
0.563 | mol s | |
2.25 | mol s | |
mol s |
Objective | Solvent Recycle | Catalyst Retention | Iterations | Solve Time | Solve Time | |
---|---|---|---|---|---|---|
J in $ year | in mol s | (CONOPT) | (CONOPT) | (BARON) | ||
1 | 541,760 | 2.3524 | 0.9002 | 89 | 0.035 s | 0.38 s |
2 | 305,686 | 4.8854 | 0.9725 | 191 | 0.066 s | 3.74 s |
3 | 249,418 | 4.1435 | 0.9859 | 330 | 0.122 s | 8.39 s |
4 | 236,250 | 3.6599 | 0.9910 | 398 | 0.175 s | 28.71 s |
5 | 238,577 | 3.3459 | 0.9936 | 464 | 0.285 s | 56.33 s |
6 | 248,022 | 3.1299 | 0.9950 | 608 | 0.405 s | 664.44 s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunde, C.; Keßler, T.; Linke, S.; McBride, K.; Sundmacher, K.; Kienle, A. Surrogate Modeling for Liquid–Liquid Equilibria Using a Parameterization of the Binodal Curve. Processes 2019, 7, 753. https://doi.org/10.3390/pr7100753
Kunde C, Keßler T, Linke S, McBride K, Sundmacher K, Kienle A. Surrogate Modeling for Liquid–Liquid Equilibria Using a Parameterization of the Binodal Curve. Processes. 2019; 7(10):753. https://doi.org/10.3390/pr7100753
Chicago/Turabian StyleKunde, Christian, Tobias Keßler, Steffen Linke, Kevin McBride, Kai Sundmacher, and Achim Kienle. 2019. "Surrogate Modeling for Liquid–Liquid Equilibria Using a Parameterization of the Binodal Curve" Processes 7, no. 10: 753. https://doi.org/10.3390/pr7100753
APA StyleKunde, C., Keßler, T., Linke, S., McBride, K., Sundmacher, K., & Kienle, A. (2019). Surrogate Modeling for Liquid–Liquid Equilibria Using a Parameterization of the Binodal Curve. Processes, 7(10), 753. https://doi.org/10.3390/pr7100753