Chromium VI and Fluoride Competitive Adsorption on Different Soils and By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Characterization of the Soil Samples and Sorbent Materials
2.2.2. Competitive Adsorption Experiments for F− and Cr(VI)
2.2.3. Modeling Adsorption
3. Results and Discussion
3.1. F− and Cr(VI) Competitive Adsorption in a Binary System
3.2. Fitting to Adsorption Models
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Aoudj, S.; Khelifa, A.; Drouiche, N.; Belkada, R.; Miroud, D. Simultaneous removal of chromium(VI) and fluoride by electrocoagulation–electroflotation: Application of a hybrid Fe-Al anode. Chem. Eng. J. 2015, 267, 153–162. [Google Scholar] [CrossRef]
- Li, T.; Xie, D.; He, C.; Xu, X.; Huang, B.; Nie, R.; Liu, S.; Duan, Z.; Liu, W. Simultaneous adsorption of fluoride and hexavalent chromium by synthetic mesoporous alumina: Performance and interaction mechanism. RSC Adv. 2016, 6, 48610–48619. [Google Scholar] [CrossRef]
- Rafique, T.; Naseem, S.; Bhanger, M.I.; Usmani, T.H. Fluoride ion contamination in the groundwater of Mithi sub-district, the Thar Desert, Pakistan. Environ. Geol. 2008, 56, 317–326. [Google Scholar] [CrossRef]
- Kumar, A.; Parimal, P.; Nataraj, S.K. Bionanomaterial scaffolds for effective removal of fluoride, chromium, and dye. ACS Sustain. Chem. Eng. 2016, 5, 895–903. [Google Scholar] [CrossRef]
- Wang, Y.; Reardon, E.J. Activation and regeneration of a soil sorbent for defluoridation of drinking water. Appl. Geochem. 2001, 16, 531–539. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.X.; Cao, L.X.; Yang, C.F. Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning. Carbohydr. Polym. 2015, 125, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Ayuso, E.; Garcia-Sanchez, A.; Querol, X. Adsorption of Cr(VI) from synthetic solutions and electroplating wastewaters on amorphous aluminium oxide. J. Hazard. Mater. 2007, 142, 191–198. [Google Scholar] [CrossRef]
- Teng, S.X.; Wang, S.G.; Gong, W.X.; Liu, X.W.; Gao, B.Y. Removal of fluoride by hydrous manganese oxide-coated alumina: Performance and mechanism. J. Hazard. Mater. 2009, 168, 1004–1011. [Google Scholar] [CrossRef]
- Mohapatra, M.; Anand, S.; Mishra, B.K.; Giles, D.E.; Singh, P. Review of fluoride removal from drinking water. J. Environ. Manag. 2009, 91, 67–77. [Google Scholar] [CrossRef]
- Gago, C.; Romar, A.; Fernández-Marcos, M.L.; Álvarez, E. Fluorine sorption by soils developed from various parent materials in Galicia (NW Spain). J. Colloid Interface Sci. 2012, 374, 232–236. [Google Scholar] [CrossRef]
- Quintáns-Fondo, A.; Ferreira-Coelho, G.; Paradelo-Núñez, R.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. F sorption/desorption on two soils and on different by-products and waste materials. Environ. Sci. Pollut. Res. 2016, 23, 14676–14685. [Google Scholar] [CrossRef] [PubMed]
- Quintáns-Fondo, A.; Santás-Miguel, V.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. Effects of changing pH, incubation time, and As(V) competition, on F−retention on soils, natural adsorbents, by-products, and waste materials. Front. Chem. 2018, 6, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Romar-Gasalla, A.; Santás-Miguel, V.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J. Chromium and fluoride sorption/desorption on un-amended and waste amended forest and vineyard soils and pyritic material. J. Environ. Manag. 2018, 222, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Alejano, L.R.; Perucho, A.; Olalla, C.; Jiménez, R. Rock Engineering and Rock Mechanics: Structures in and on Rock Masses; CRC Press: London, UK, 2014; p. 372. [Google Scholar]
- Álvarez, E.; Fernández-Sanjurjo, M.J.; Núñez, A.; Seco, N.; Corti, G. Aluminium fractionation and speciation in bulk and rhizosphere of a grass soil amended with mussel shells or lime. Geoderma 2012, 173–174, 322–329. [Google Scholar] [CrossRef]
- Banerjee, S.; Chattopadhyaya, M.C. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab. J. Chem. 2017, 10, S1629–S1638. [Google Scholar] [CrossRef] [Green Version]
- Brás, I.; Teixeira-Lemos, L.; Alves, A.; Pereira, M.F.R. Application of pine bark as a sorbent for organic pollutants in effluents. Manag. Environ. Qual. Int. J. 2004, 15, 491–501. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Lal, R.; Wielopolski, L.; Martin, M.Z.; Ebinger, M.H. Evaluation of different soil carbon determination methods. Crit. Rev. Plant Sci. 2009, 28, 164–178. [Google Scholar] [CrossRef]
- Coelho, G.F.; ConÇalves, A.C.; Tarley, C.R.T.; Casarin, J.; Nacke, N.; Francziskowski, M.A. Removal of metal ions Cd (II), Pb (II) and Cr (III) from water by the cashew nut shell Anarcadium occidentale L. Ecol. Eng. 2014, 73, 514–525. [Google Scholar] [CrossRef]
- Dlapa, P.; Bodí, M.B.; Mataix-Solera, J.; Cerdà, A.; Doerr, S.H. FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition. Catena 2013, 108, 35–43. [Google Scholar] [CrossRef]
- Fackler, K.; Stevanic, J.S.; Ters, T.; Hinterstoisser, B.; Schwanninger, M.; Salmén, L. Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy. Enzym. Microb. Technol. 2010, 47, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Haberhauer, G.; Gerzabek, M.H. Drift and transmission FT-IR spectroscopy of forest soils: An approach to determine decomposition processes of forest litter. Vib. Spectrosc. 1999, 19, 413–417. [Google Scholar] [CrossRef]
- Kamprath, E.J. Exchangeable aluminium as a criterion for liming leached mineral soils. Soil Sci. Soc. Am. Proc. 1970, 34, 252–254. [Google Scholar] [CrossRef]
- Margenot, A.J.; Calderón, F.J.; Goyne, K.W.; Mukome, F.N.D.; Parikh, S.J. IR spectroscopy, soil analysis applications. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Lindon, J., George, E., Tranter, D.K., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 2, pp. 448–454. [Google Scholar] [CrossRef]
- McLean, E.O. Soil pH and lime requirement. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA: Madison, WI, USA, 1982; Volume 2, pp. 199–223. [Google Scholar]
- Mimura, A.M.S.; Vieira, T.V.A.; Martinelli, P.B.; Gorgulho, H.F. Utilization of rice husk to remove Cu2+, Al3+, Ni2+ and Zn2+ from wastewater. Química Nova 2010, 33, 1279–1284. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; Rehman, I. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2008, 43, 134–179. [Google Scholar] [CrossRef]
- Nóbrega, J.A.; Pirola, C.; Fialho, L.L.; Rota, G.; de Campos, C.E.; Pollo, F. Microwave-assisted digestion of organic samples: How simple can it become? Talanta 2012, 98, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.R. Introdução à Espectroscopia, 4th ed.; Cengage Learning: São Paulo, Bresil, 2010; p. 700. [Google Scholar]
- Rubio, F.; GonÇalves, A.C., Jr.; Meneghel, A.P.; Tarley, C.R.T.; Schwantes, D.; Coelho, G.F. Removal of cadmium from water using by-product Crambe abyssinica Hochst seeds as biosorbent material. Water Sci. Technol. 2013, 68, 227–233. [Google Scholar] [CrossRef]
- Saikia, B.J.; Parthasarathy, G. Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 2010, 1, 206–210. [Google Scholar] [CrossRef]
- Sila, A.M.; Shepherd, K.D.; Pokhariyal, G.P. Evaluating the utility of mid-infrared spectral subspaces for predicting soil properties. Chemom. Intell. Lab. Syst. 2016, 153, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Smidt, W.; Meissl, K. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag. 2007, 27, 268–276. [Google Scholar] [CrossRef]
- Sumner, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis, Part 3, Chemical Methods; Bartels, J.M., Bigham, J.M., Eds.; ASA: Madison, WI, USA, 1996; Volume 3, pp. 437–474. [Google Scholar]
- Tan, K.H. Soil Sampling, Preparation, and Analysis; Marcel Dekker: New York, NY, USA, 1996; p. 408. [Google Scholar]
- Tarley, C.R.T.; Arruda, M.A.Z. Biosorption of heavy metals using rice milling by-products. Characterisation and application for removal of metals from aqueous effluents. Chemosphere 2004, 54, 987–995. [Google Scholar] [CrossRef]
- Tinti, A.; Tugnoli, V.; Bonora, S.; Francioso, O. Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: A review. J. Cent. Eur. Agric. 2015, 16. [Google Scholar] [CrossRef]
- Mahapatra, A.; Mishra, B.G.; Hota, G. Studies on Electrospun Alumina Nanofibers for the Removal of Chromium(VI) and Fluoride Toxic Ions from an Aqueous System. Ind. Eng. Chem. Res. 2013, 52, 1554–1561. [Google Scholar] [CrossRef]
- Wang, X.S.; Li, Z.Z.; Tao, S.R. Removal of chromium (VI) from aqueous solution using walnut hull. J. Environ. Manag. 2009, 90, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Choppala, G.; Bolan, N.; Lamb, D.; Kunhikrishnan, A. Comparative sorption and mobility of Cr(III) and Cr(VI) species in a range of soils: Implications to bioavailability. Water Air Soil Pollut. 2013, 224, 1699–1711. [Google Scholar] [CrossRef]
- Griffin, R.; Au, A.K.; Frost, R. Effect of pH on adsorption of chromium from landfill-leachate by clay minerals. J. Environ. Sci. Health A 1977, 12, 431–449. [Google Scholar] [CrossRef]
- Cutillas-Barreiro, L.; Ansias-Manso, L.; Calviño, D.F.; Arias-Estévez, M.; Nóvoa-Muñoz, J.C.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn: Batch-type and stirred flow chamber experiments. J. Environ. Manag. 2014, 144, 258–264. [Google Scholar] [CrossRef]
- Paradelo, R.; Cutillas-Barreiro, L.; Soto-Gomez, D.; Novoa-Muñoz, J.C.; Arias-Estevez, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. Study of metal transport through pine bark for reutilization as a biosorbent. Chemosphere 2016, 149, 146–153. [Google Scholar] [CrossRef]
- Fernández-Pazos, M.T.; Garrido-Rodriguez, B.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A.; Álvarez, E. Cr(VI) adsorption and desorption on soils and biosorbents. Water Air Soil Pollut. 2013, 224, 1366. [Google Scholar] [CrossRef]
- Otero, M.; Cutillas-Barreiro, L.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Álvarez-Rodríguez, E.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A. Cr(VI) sorption/desorption on untreated and mussel-shell-treated soil materials: Fractionation and effects of pH and chromium concentration. Solid Earth 2015, 6, 373–382. [Google Scholar] [CrossRef]
- Gago, C.; Romar, A.; Fernández-Marcos, M.L.; Álvarez, E. Fluorine sorption and desorption on soils located in the surroundings of an aluminium smelter in Galicia (NW Spain). Environ. Earth Sci. 2014, 72, 4105–4114. [Google Scholar] [CrossRef]
- Alexandratos, V.G.; Elzinga, E.J.; Reeder, R.J. Arsenate uptake by calcite: Macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms. Geochim. Cosmochim. Acta 2007, 71, 4172–4187. [Google Scholar] [CrossRef]
- Deng, H.; Yu, X. Adsorption of fluoride, arsenate and phosphate in aqueous solution by cerium impregnated fibrous protein. Chem. Eng. J. 2012, 184, 205–212. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, X.; Feng, M.; Liu, M. Behavior of chromium and arsenic on activated carbon. J. Hazard. Mater. 2008, 159, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wnag, T.; Borthwick, A.; Wang, Y.; Yin, X.; Li, X.; Ni, J. Adsorption of Pb2⁺, Cd2⁺, Cu2⁺ and Crᶾ⁺ onto titanate nanotubes: Competition and effect of inorganic ions. Sci. Total Environ. 2013, 456–457, 171–180. [Google Scholar] [CrossRef]
- Ucun, H.; Bayhan, Y.K.; Kaya, Y.; Cakici, A.; Algur, O.F. Biosorption of chromium (VI) form aqueous solution by cone biomass of Pinus sylvestris. Bioresource Technol. 2002, 85, 155–158. [Google Scholar] [CrossRef]
- Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Cutillas-Barreiro, L.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M. Cr(VI) sorption/desorption on pine sawdust and oak wood ash. Int. J. Environ. Res. Public Health 2015, 12, 8849–8860. [Google Scholar] [CrossRef]
- Khezami, L.; Capart, R. Removal of chromium (VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies. J. Hazard. Mater. 2005, 123, 223–231. [Google Scholar] [CrossRef]
- Bhaumik, R.; Mondal, N.K.; Das, B.; Roy, P.K.C. Eggshell powder as an adsorbent for removal of fluoride from aqueous solution: Equilibrium, kinetic and thermodynamic studies. J. Chem. 2012, 9, 1457–1480. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Palanivelu, K.; Velan, M. Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresour. Technol. 2006, 97, 1411–1419. [Google Scholar] [CrossRef]
- Behnajady, M.A.; Bimeghdar, S. Synthesis of mesoporous NiO nanoparticles and their application in the adsorption of Cr(VI). Chem. Eng. J. 2014, 239, 105–113. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Ofomaja, A.E.; Unuabonah, E.I. Kinetics and time-dependent Langmuir modeling of 4-nitrophenoladsorption onto Mansonia sawdust. J. Taiwan Inst. Chem. Eng. 2013, 44, 566–567. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S.M.; Su, X. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 2012, 368, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Rajapaksha, A.U.; Vithanage, M.; Ahmad, M.; Seo, D.C.; Cho, J.S.; Lee, S.E.; Ok, Y.S. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. J. Hazard. Mater. 2015, 290, 43–50. [Google Scholar] [CrossRef]
Adsorbent | Adsorbate | Langmuir Parameters | ||||
---|---|---|---|---|---|---|
Qmax (mmol kg−1) | Error | KL (L mmol−1) | Error | R2 | ||
Forest soil | Cr (S) | - | - | - | - | - |
Cr (B) | - | - | - | - | - | |
F (S) | - | - | - | - | - | |
F (B) | - | - | - | - | - | |
Vineyard soil | Cr (S) | - | - | - | - | - |
Cr (B) | - | - | - | - | - | |
F (S) | 82.050 | 9.960 | 0.188 | 0.030 | 0.999 | |
F (B) | 43.418 | 10.653 | 0.407 | 0.188 | 0.959 | |
Pyritic material | Cr (S) | 36.594 | 4.049 | 2.636 | 1.012 | 0.970 |
Cr (B) | 40.779 | 5.260 | 3.320 | 1.540 | 0.947 | |
F (S) | - | - | - | - | - | |
F (B) | - | - | - | - | - | |
Pine bark | Cr (S) | - | - | - | - | - |
Cr (B) | - | - | - | - | - | |
F (S) | 93.130 | 12.790 | 0.297 | 0.061 | 0.997 | |
F (B) | 24.991 | 4.055 | 0.225 | 0.063 | 0.989 | |
Hemp waste | Cr (S) | - | - | - | - | - |
Cr (B) | - | - | - | - | - | |
F (S) | 107.829 | 57.080 | 0.038 | 0.023 | 0.997 | |
F (B) | - | - | - | - | - | |
Cr (S) | - | - | - | - | - | |
Pine sawdust | Cr (B) | - | - | - | - | - |
F (S) | 31.90557 | 4.480 | 0.345 | 0.151 | 0.932 | |
F (B) | - | - | - | - | - | |
Cr (S) | - | - | - | - | - | |
Mussel shell | Cr (B) | - | - | - | - | - |
F (S) | 37.900 | 3.170 | 0.420 | 0.020 | 0.997 | |
F (B) | - | - | - | - | - | |
Cr (S) | - | - | - | - | - | |
Oak ash | Cr (B) | 26.756 | 2.752 | 0.287 | 0.055 | 0.994 |
F (S) | 139.780 | 37.080 | 0.140 | 0.050 | 0.997 | |
F (B) | 5.808 | 0.551 | 0.648 | 0.074 | 0.980 |
Adsorbent | Adsorbate | Freundlich Parameters | ||||
---|---|---|---|---|---|---|
KF (Ln kg−1 mmol(1−n)) | Error | n | Error | R2 | ||
Forest soil | Cr (S) | 1.380 | 0.260 | 1.200 | 0.130 | 0.990 |
Cr (B) | 1.303 | 0.246 | 1.224 | 0.125 | 0.986 | |
F (S) | 26.370 | 1.260 | 1.075 | 0.009 | 0.999 | |
F (B) | 22.988 | 1.642 | 1.026 | 0.123 | 0.977 | |
Vineyard soil | Cr (S) | 0.890 | 0.249 | 1.482 | 0.182 | 0.990 |
Cr (B) | 0.815 | 0.394 | 1.349 | 0.309 | 0.936 | |
F (S) | 12.180 | 0.250 | 0.778 | 0.002 | 0.999 | |
F (B) | 11.660 | 1.737 | 0.639 | 0.138 | 0.926 | |
Pyritic material | Cr (S) | 23.343 | 1.171 | 0.381 | 0.045 | 0.980 |
Cr (B) | 28.504 | 0.075 | 0.344 | 0.002 | 0.999 | |
F (S) | 17.240 | 0.3929 | 1.208 | 0.003 | 0.998 | |
F (B) | 4.584 | 0.974 | 1.480 | 0.191 | 0.980 | |
Pine bark | Cr (S) | 8436.359 | 3298.200 | 1.976 | 0.153 | 1.000 |
Cr (B) | 1357.763 | 1269.334 | 1.385 | 0.387 | 0.941 | |
F (S) | 20.238 | 0.837 | 0.771 | 0.005 | 0.994 | |
F (B) | 4.675 | 0.233 | 0.662 | 0.038 | 0.995 | |
Hemp waste | Cr (S) | 1.515 | 0.263 | 1.094 | 0.109 | 0.993 |
Cr (B) | 0.059 | 0.053 | 2.037 | 0.889 | 0.876 | |
F (S) | 4.073 | 0.260 | 0.910 | 0.005 | 0.997 | |
F (B) | 2.875 | 0.612 | 0.687 | 0.145 | 0.968 | |
Pine sawdust | Cr (S) | 10.010 | 0.000 | - | - | 1.000 |
Cr (B) | 1.257 | 0.149 | 1.599 | 0.082 | 0.997 | |
F (S) | 4.073 | 0.253 | 0.908 | 0.047 | 0.996 | |
F (B) | 2.875 | 0.612 | 0.687 | 0.145 | 0.968 | |
Mussel shell | Cr (S) | 0.2817 | 0.1362 | 2.117 | 0.301 | 0.990 |
Cr (B) | - | - | 9.341 | 0.892 | 0.999 | |
F (S) | 10.34 | 1.260 | 0.562 | 0.083 | 0.971 | |
F (B) | 1.215 | 0.922 | 8.843 | 1.896 | 0.947 | |
Cr (S) | 3.536 | 0.766 | 1.112 | 0.163 | 0.980 | |
Oak ash | Cr (B) | 5.808 | 0.551 | 0.648 | 0.074 | 0.980 |
F (S) | 17.11 | 0.480 | 0.842 | 0.035 | 0.999 | |
F (B) | 10.585 | 0.216 | 10.585 | 0.020 | 0.999 |
Adsorbent | Adsorbate | Temkin Parameter | ||||
---|---|---|---|---|---|---|
bt | Error | Kt (L g−1) | Error | R2 | ||
Forest soil | Cr (S) | 3,176,374.39 | 0.485 | - | - | 0.680 |
Cr (B) | 813,385.42 | 1.022 | 2.361 | 1.303 | 0.897 | |
F (S) | 126,626.39 | 2.385 | 4.083 | 0.610 | 0.983 | |
F (B) | 128,112.72 | 2.604 | 4.905 | 0.853 | 0.980 | |
Vineyard soil | Cr (S) | 780,829.49 | 1.226 | 2.075 | 1.242 | 0.866 |
Cr (B) | 1,035,341.41 | 0.911 | 2.316 | 1.458 | 0.874 | |
F (S) | 280,522.19 | 1.661 | 5.973 | 2.167 | 0.965 | |
F (B) | 272,680.16 | 0.924 | 4.480 | 0.789 | 0.989 | |
Pyritic material | Cr (S) | 463,270.75 | 0.727 | 112.489 | 60.409 | 0.983 |
Cr (B) | - | - | 235.022 | 170.959 | 0.974 | |
F (S) | - | - | 4.574 | 1.657 | 0.939 | |
F (B) | 325,525.16 | 3.093 | 4.189 | 3.104 | 0.862 | |
Pine bark | Cr (S) | 189,257.65 | 6.035 | 222.501 | 214.420 | 0.781 |
Cr (B) | 134,453.35 | 5.739 | 120.715 | 66.304 | 0.912 | |
F (S) | 207,675.77 | 1.763 | 7.664 | 2.080 | 0.977 | |
F (B) | - | - | 4.268 | 1.207 | 0.982 | |
Hemp waste | Cr (S) | - | - | 2.755 | 2.094 | 0.824 |
Cr (B) | - | - | - | - | - | |
F (S) | - | - | - | - | - | |
F (B) | - | - | 2.430 | 1.127 | 0.943 | |
Pine sawdust | Cr (S) | - | - | 25.597 | 29.425 | 0.464 |
Cr (B) | - | - | - | - | - | |
F (S) | - | - | - | - | - | |
F (B) | - | - | - | - | - | |
Cr (S) | - | - | - | - | - | |
Mussel shell | Cr (B) | - | - | 1.144 | 0.763 | 0.717 |
F (S) | - | - | - | - | - | |
F (B) | - | - | 2.052 | 1.302 | 0.693 | |
Cr (S) | - | - | 2.221 | 0.818 | 0.935 | |
Oak ash | Cr (B) | - | - | 3.808 | 0.417 | 0.996 |
F (S) | - | - | 15.540 | 9.444 | 0.910 | |
F (B) | - | - | 4.866 | 1.858 | 0.956 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintáns-Fondo, A.; Ferreira-Coelho, G.; Arias-Estévez, M.; Nóvoa-Muñoz, J.C.; Fernández-Calviño, D.; Álvarez-Rodríguez, E.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A. Chromium VI and Fluoride Competitive Adsorption on Different Soils and By-Products. Processes 2019, 7, 748. https://doi.org/10.3390/pr7100748
Quintáns-Fondo A, Ferreira-Coelho G, Arias-Estévez M, Nóvoa-Muñoz JC, Fernández-Calviño D, Álvarez-Rodríguez E, Fernández-Sanjurjo MJ, Núñez-Delgado A. Chromium VI and Fluoride Competitive Adsorption on Different Soils and By-Products. Processes. 2019; 7(10):748. https://doi.org/10.3390/pr7100748
Chicago/Turabian StyleQuintáns-Fondo, Ana, Gustavo Ferreira-Coelho, Manuel Arias-Estévez, Juan Carlos Nóvoa-Muñoz, David Fernández-Calviño, Esperanza Álvarez-Rodríguez, María J. Fernández-Sanjurjo, and Avelino Núñez-Delgado. 2019. "Chromium VI and Fluoride Competitive Adsorption on Different Soils and By-Products" Processes 7, no. 10: 748. https://doi.org/10.3390/pr7100748