Approaches to Suppress CO2-Induced Plasticization of Polyimide Membranes in Gas Separation Applications
Abstract
:1. Introduction
1.1. Natural Gas Process
1.2. Membrane Materials Used for Gas Separation
1.3. Plasticization in Polyimides
2. Plasticization Mechanism
3. Methods to Reduce CO2-Induced Plasticization
3.1. Thermal-Induced Crosslink
3.1.1. Decarboxylation-Induced Crosslinking
3.1.2. Thermally Rearranged (TR) Polymers
3.2. Chemical Crosslinking
3.2.1. Polyamine Crosslinking
Diamine-Monomer Crosslinking
Amine-Tetramer, Dendrimer Crosslinking
Polyamine Crosslinking
Brief Summary
3.2.2. Diol Crosslinking of Carboxylated and Sulfonated Polyimide Membranes
Diol Crosslinking through Carboxylic Acid Groups
Diol Crosslinking through Sulfonic Acid Groups
3.2.3. Semi-Interpenetrating Network
3.2.4. Ionic Bonding
3.3. Physical Crosslinking
3.3.1. Hydroxyl Group
3.3.2. Carboxyl Group
3.3.3. Mixed Matrix Membranes (MMMs)
3.4. Ultraviolet (UV) Radiation Crosslinking
3.5. Blending
4. Conclusions and Prospects
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Dung, E.J.; Bombom, L.S.; Agusomu, T.D. The effects of gas flaring on crops in the niger delta, nigeria. GeoJournal 2008, 73, 297–305. [Google Scholar] [CrossRef]
- Kidnay, A.; Kidnay, A.; Parrish, W.; McCartney, D. Fundamentals of Natural Gas Processing, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Balzani, V.; Armaroli, N. Energy for A Sustainable World: From the Oil Age to a Sun-Powered Future; John Wiley & Sons: Hoboken, NJ, USA, 2010; p. 390. [Google Scholar]
- Adewole, J.K.; Ahmad, A.L.; Ismail, S.; Leo, C.P. Current challenges in membrane separation of CO2 from natural gas: A review. Int. J. Greenh. Gas Control 2013, 17, 46–65. [Google Scholar] [CrossRef]
- Analysis–Spencer Dale, Group Chief Economist. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/natural-gas.html (accessed on 1 August 2018).
- Bp Statistical Review of World Energy. Available online: https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf (accessed on 1 August 2018).
- Natural Gas. Available online: https://www.bp.com/en/global/corporate/energy-economics/energy-outlook/demand-by-fuel/natural-gas.html (accessed on 1 August 2018).
- Faramawy, S.; Zaki, T.; Sakr, A.A.E. Natural gas origin, composition, and processing: A review. J. Nat. Gas Sci. Eng. 2016, 34, 34–54. [Google Scholar] [CrossRef]
- Shimekit, B.; Mukhtar, H. Natural Gas Purification Technologies–Major Advances for CO2 Separation and Future Directions; InTech: London, UK, 2012. [Google Scholar]
- Baker, R.W.; Lokhandwala, K. Natural gas processing with membranes: An overview. Ind. Eng. Chem. Res. 2008, 47, 2109–2121. [Google Scholar] [CrossRef]
- Bhide, B.D.; Voskericyan, A.; Stern, S.A. Hybrid processes for the removal of acid gases from natural gas. J. Membr. Sci. 1998, 140, 27–49. [Google Scholar] [CrossRef]
- George, G.; Bhoria, N.; AlHallaq, S.; Abdala, A.; Mittal, V. Polymer membranes for acid gas removal from natural gas. Sep. Purif. Technol. 2016, 158, 333–356. [Google Scholar] [CrossRef]
- Xu, G.; Liang, F.; Yang, Y.; Hu, Y.; Zhang, K.; Liu, W. An improved CO2 separation and purification system based on cryogenic separation and distillation theory. Energies 2014, 7, 3484–3502. [Google Scholar] [CrossRef]
- Maqsood, K.; Pal, J.; Turunawarasu, D.; Pal, A.J.; Ganguly, S. Performance enhancement and energy reduction using hybrid cryogenic distillation networks for purification of natural gas with high CO2 content. Korean J. Chem. Eng. 2014, 31, 1120–1135. [Google Scholar] [CrossRef]
- Mandal, B.P.; Guha, M.; Biswas, A.K.; Bandyopadhyay, S.S. Removal of carbon dioxide by absorption in mixed amines: Modelling of absorption in aqueous mdea/mea and amp/mea solutions. Chem. Eng. Sci. 2001, 56, 6217–6224. [Google Scholar] [CrossRef]
- Siriwardane, R.V.; Shen, M.-S.; Fisher, E.P.; Poston, J.A. Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 2001, 15, 279–284. [Google Scholar] [CrossRef]
- Cavenati, S.; Grande, C.A.; Rodrigues, A.E. Removal of carbon dioxide from natural gas by vacuum pressure swing adsorption. Energy Fuels 2006, 20, 2648–2659. [Google Scholar] [CrossRef]
- Peters, L.; Hussain, A.; Follmann, M.; Melin, T.; Hägg, M.B. CO2 removal from natural gas by employing amine absorption and membrane technology—A technical and economical analysis. Chem. Eng. J. 2011, 172, 952–960. [Google Scholar] [CrossRef]
- Staudt-Bickel, C.; Koros, W.J. Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking. J. Membr. Sci. 1999, 155, 145–154. [Google Scholar] [CrossRef]
- Baker, R.W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 2002, 41, 1393–1411. [Google Scholar] [CrossRef]
- Bikson, B.; Nelson, J.K.; Muruganandam, N. Composite cellulose acetate/poly(methyl methacrylate) blend gas separation membranes. J. Membr. Sci. 1994, 94, 313–328. [Google Scholar] [CrossRef]
- Gantzel, P.K.; Merten, U. Gas separations with high-flux cellulose acetate membranes. Ind. Eng. Chem. Process Des. Dev. 1970, 9, 331–332. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, J.H.; Kim, C.K.; Kang, Y.S.; Park, H.C.; Won, J.O. Control of phase separation behavior of pc/pmma blends and their application to the gas separation membranes. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 2950–2959. [Google Scholar] [CrossRef]
- Şen, D.; Kalıpçılar, H.; Yilmaz, L. Development of polycarbonate based zeolite 4a filled mixed matrix gas separation membranes. J. Membr. Sci. 2007, 303, 194–203. [Google Scholar] [CrossRef]
- Hellums, M.W.; Koros, W.J.; Husk, G.R.; Paul, D.R. Fluorinated polycarbonates for gas separation applications. J. Membr. Sci. 1989, 46, 93–112. [Google Scholar] [CrossRef]
- Lai, J.-Y.; Liu, M.-J.; Lee, K.-R. Polycarbonate membrane prepared via a wet phase inversion method for oxygen enrichment from air. J. Membr. Sci. 1994, 86, 103–118. [Google Scholar] [CrossRef]
- Ward, W.J.; Browall, W.R.; Salemme, R.M. Ultrathin silicone/polycarbonate membranes for gas separation processes. J. Membr. Sci. 1976, 1, 99–108. [Google Scholar] [CrossRef]
- Kesting, R.E.; Fritzsche, A.K.; Murphy, M.K.; Cruse, C.A.; Handermann, A.C.; Malon, R.F.; Moore, M.D. The second-generation polysulfone gas-separation membrane. I. The use of lewis acid: Base complexes as transient templates to increase free volume. J. Appl. Polym. Sci. 1990, 40, 1557–1574. [Google Scholar] [CrossRef]
- Gür, T.M. Permselectivity of zeolite filled polysulfone gas separation membranes. J. Membr. Sci. 1994, 93, 283–289. [Google Scholar] [CrossRef]
- Ahn, J.; Chung, W.-J.; Pinnau, I.; Guiver, M.D. Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Membr. Sci. 2008, 314, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.-C.; Liu, T.-C.; Lee, K.-R.; Ruaan, R.-C.; Lai, J.-Y. Zeolite-filled pmma composite membranes: Influence of coupling agent addition on gas separation properties. Desalination 2006, 193, 14–24. [Google Scholar] [CrossRef]
- Jao-Ming, C.; Da-Ming, W.; Fung-Ching, L.; Juin-Yih, L. Formation and gas flux of asymmetric pmma membranes. J. Membr. Sci. 1996, 109, 93–107. [Google Scholar] [CrossRef]
- Lai, J.-Y.; Huang, S.-J.; Chen, S.-H. Poly(methyl methacrylate)/(dmf/metal salt) complex membrane for gas separation. J. Membr. Sci. 1992, 74, 71–82. [Google Scholar] [CrossRef]
- Budd, P.M.; Elabas, E.S.; Ghanem, B.S.; Makhseed, S.; McKeown, N.B.; Msayib, K.J.; Tattershall, C.E.; Wang, D. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity. Adv. Mater. 2004, 16, 456–459. [Google Scholar] [CrossRef]
- Budd, P.M.; Msayib, K.J.; Tattershall, C.E.; Ghanem, B.S.; Reynolds, K.J.; McKeown, N.B.; Fritsch, D. Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 2005, 251, 263–269. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, J.; Tian, Z.; Liu, X.; Cao, B.; Li, P. Molecular design of tröger’s base-based polymers containing spirobichroman structure for gas separation. Ind. Eng. Chem. Res. 2017, 56, 12783–12788. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, L.; Tian, Z.; Cao, B.; Li, P. Post-crosslinking of triptycene-based tröger’s base polymers with enhanced natural gas separation performance. J. Membr. Sci. 2018, 556, 277–284. [Google Scholar] [CrossRef]
- Scholes, C.A.; Stevens, G.W.; Kentish, S.E. Membrane gas separation applications in natural gas processing. Fuel 2012, 96, 15–28. [Google Scholar] [CrossRef]
- Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S. Advanced polyimide materials: Syntheses, physical properties and applications. Progr. Polym. Sci. 2012, 37, 907–974. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Wu, H.; Tian, Z.; Xin, Q.; He, G.; Peng, D.; Chen, S.; Yin, Y.; Jiang, Z.; Guiver, M.D. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Environ. Sci. 2016, 9, 1863–1890. [Google Scholar] [CrossRef]
- Wind, J.D.; Staudt-Bickel, C.; Paul, D.R.; Koros, W.J. The effects of crosslinking chemistry on CO2 plasticization of polyimide gas separation membranes. Ind. Eng. Chem. Res. 2002, 41, 6139–6148. [Google Scholar] [CrossRef]
- Swaidan, R.J.; Ma, X.; Litwiller, E.; Pinnau, I. Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous hydroxyl-functionalized polyimide membrane. J. Membr. Sci. 2015, 495, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Staudt-Bickel, C.; Koros, W.J. Olefin/paraffin gas separations with 6fda-based polyimide membranes. J. Membr. Sci. 2000, 170, 205–214. [Google Scholar] [CrossRef]
- Das, M.; Koros, W.J. Performance of 6fda–6fpda polyimide for propylene/propane separations. J. Membr. Sci. 2010, 365, 399–408. [Google Scholar] [CrossRef]
- Krol, J.J.; Boerrigter, M.; Koops, G.H. Polyimide hollow fiber gas separation membranes: Preparation and the suppression of plasticization in propane/propylene environments. J. Membr. Sci. 2001, 184, 275–286. [Google Scholar] [CrossRef]
- Velioğlu, S.; Ahunbay, M.G.; Tantekin-Ersolmaz, S.B. Propylene/propane plasticization in polyimide membranes. J. Membr. Sci. 2016, 501, 179–190. [Google Scholar] [CrossRef]
- Salinas, O.; Ma, X.; Litwiller, E.; Pinnau, I. Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (pim-1). J. Membr. Sci. 2016, 504, 133–140. [Google Scholar] [CrossRef]
- Xu, L.; Rungta, M.; Koros, W.J. Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation. J. Membr. Sci. 2011, 380, 138–147. [Google Scholar] [CrossRef]
- Zhou, S.; Stern, S.A. The effect of plasticization on the transport of gases in and through glassy polymers. J. Polym. Sci. Part B Polym. Phys. 1989, 27, 205–222. [Google Scholar] [CrossRef]
- Tiwari, R.R.; Smith, Z.P.; Lin, H.; Freeman, B.D.; Paul, D.R. Gas permeation in thin films of “high free-volume” glassy perfluoropolymers: Part ii. CO2 plasticization and sorption. Polymer 2015, 61, 1–14. [Google Scholar] [CrossRef]
- Sanders, E.S. Penetrant-induced plasticization and gas permeation in glassy polymers. J. Membr. Sci. 1988, 37, 63–80. [Google Scholar] [CrossRef]
- Chiou, J.S.; Barlow, J.W.; Paul, D.R. Plasticization of glassy polymers by CO2. J. Appl. Polym. Sci. 1985, 30, 2633–2642. [Google Scholar] [CrossRef]
- Li, P.; Chung, T.S.; Paul, D.R. Gas sorption and permeation in pim-1. J. Membr. Sci. 2013, 432, 50–57. [Google Scholar] [CrossRef]
- Bos, A.; Pünt, I.G.M.; Wessling, M.; Strathmann, H. CO2-induced plasticization phenomena in glassy polymers. J. Membr. Sci. 1999, 155, 67–78. [Google Scholar] [CrossRef]
- Petropoulos, J.H. Plasticization effects on the gas permeability and permselectivity of polymer membranes. J. Membr. Sci. 1992, 75, 47–59. [Google Scholar] [CrossRef]
- Kratochvil, A.M.; Koros, W.J. Decarboxylation-induced cross-linking of a polyimide for enhanced CO2 plasticization resistance. Macromolecules 2008, 41, 7920–7927. [Google Scholar] [CrossRef]
- Qiu, W.; Chen, C.-C.; Xu, L.; Cui, L.; Paul, D.R.; Koros, W.J. Sub-tg cross-linking of a polyimide membrane for enhanced CO2 plasticization resistance for natural gas separation. Macromolecules 2011, 44, 6046–6056. [Google Scholar] [CrossRef]
- Zhang, C.; Li, P.; Cao, B. Decarboxylation crosslinking of polyimides with high CO2/CH4 separation performance and plasticization resistance. J. Membr. Sci. 2017, 528, 206–216. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, B.; Li, P. Thermal oxidative crosslinking of phenolphthalein-based cardo polyimides with enhanced gas permeability and selectivity. J. Membr. Sci. 2018, 546, 90–99. [Google Scholar] [CrossRef]
- Tian, Z.; Cao, B.; Li, P. Effects of sub-tg cross-linking of triptycene-based polyimides on gas permeation, plasticization resistance and physical aging properties. J. Membr. Sci. 2018, 560, 87–96. [Google Scholar] [CrossRef]
- Bos, A.; Pünt, I.G.M.; Wessling, M.; Strathmann, H. Plasticization-resistant glassy polyimide membranes for CO2/co4 separations. Sep. Purif. Technol. 1998, 14, 27–39. [Google Scholar] [CrossRef]
- Park, H.B.; Jung, C.H.; Lee, Y.M.; Hill, A.J.; Pas, S.J.; Mudie, S.T.; Van Wagner, E.; Freeman, B.D.; Cookson, D.J. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 2007, 318, 254–258. [Google Scholar] [CrossRef]
- Gleason, K.L.; Smith, Z.P.; Liu, Q.; Paul, D.R.; Freeman, B.D. Pure- and mixed-gas permeation of CO2 and CH4 in thermally rearranged polymers based on 3,3′-dihydroxy-4,4′-diamino-biphenyl (hab) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6fda). J. Membr. Sci. 2015, 475, 204–214. [Google Scholar] [CrossRef]
- Shao, L.; Chung, T.; Goh, S.; Pramoda, K. Polyimide modification by a linear aliphatic diamine to enhance transport performance and plasticization resistance. J. Membr. Sci. 2005. [Google Scholar] [CrossRef]
- Shao, L.; Chung, T.-S.; Goh, S.H.; Pramoda, K.P. The effects of 1,3-cyclohexanebis(methylamine) modification on gas transport and plasticization resistance of polyimide membranes. J. Membr. Sci. 2005, 267, 78–89. [Google Scholar] [CrossRef]
- Xiao, Y.; Shao, L.; Chung, T.-S.; Schiraldi, D.A. Effects of thermal treatments and dendrimers chemical structures on the properties of highly surface cross-linked polyimide films. Ind. Eng. Chem. Res. 2005, 44, 3059–3067. [Google Scholar] [CrossRef]
- Tin, P.S.; Chung, T.S.; Liu, Y.; Wang, R.; Liu, S.L.; Pramoda, K.P. Effects of cross-linking modification on gas separation performance of matrimid membranes. J. Membr. Sci. 2003, 225, 77–90. [Google Scholar] [CrossRef]
- Wind, J.D.; Sirard, S.M.; Paul, D.R.; Green, P.F.; Johnston, K.P.; Koros, W.J. Carbon dioxide-induced plasticization of polyimide membranes: Pseudo-equilibrium relationships of diffusion, sorption, and swelling. Macromolecules 2003, 36, 6433–6441. [Google Scholar] [CrossRef]
- Wind, J.D.; Staudt-Bickel, C.; Paul, D.R.; Koros, W.J. Solid-state covalent cross-linking of polyimide membranes for carbon dioxide plasticization reduction. Macromolecules 2003, 36, 1882–1888. [Google Scholar] [CrossRef]
- Bos, A.; Pünt, I.G.M.; Wessling, M.; Strathmann, H. Suppression of CO2-plasticization by semiinterpenetrating polymer network formation. J. Polym. Sci. Part B Polym. Phys. 1998, 36, 1547–1556. [Google Scholar] [CrossRef]
- Maya, E.M.; Sanchez, M.L.; Marcos, A.; de la Campa, J.G.; de Abajo, J. Preparation and properties of catalyzed polyimide/dicyanate semi-interpenetrating networks for polymer gas membrane with suppressed CO2-plasticization. J. Appl. Polym. Sci. 2011, 124, 713–722. [Google Scholar] [CrossRef]
- Low, B.T.; Chung, T.S.; Chen, H.; Jean, Y.-C.; Pramoda, K.P. Tuning the free volume cavities of polyimide membranes via the construction of pseudo-interpenetrating networks for enhanced gas separation performance. Macromolecules 2009, 42, 7042–7054. [Google Scholar] [CrossRef]
- Kammakakam, I.; Wook Yoon, H.; Nam, S.; Bum Park, H.; Kim, T.-H. Novel piperazinium-mediated crosslinked polyimide membranes for high performance CO2 separation. J. Membr. Sci. 2015, 487, 90–98. [Google Scholar] [CrossRef]
- Askari, M.; Chung, T.-S. Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/zif-8 mixed matrix membranes. J. Membr. Sci. 2013, 444, 173–183. [Google Scholar] [CrossRef]
- Zhuang, G.-L.; Tseng, H.-H.; Uchytil, P.; Wey, M.-Y. Enhancing the CO2 plasticization resistance of ps mixed-matrix membrane by blunt zeolitic imidazolate framework. J. CO2 Utilization 2018, 25, 79–88. [Google Scholar] [CrossRef]
- Jusoh, N.; Yeong, Y.F.; Lau, K.K.; Shariff, A.M. Enhanced gas separation performance using mixed matrix membranes containing zeolite t and 6fda-durene polyimide. J. Membr. Sci. 2017, 525, 175–186. [Google Scholar] [CrossRef]
- Shahid, S.; Nijmeijer, K. Performance and plasticization behavior of polymer–mof membranes for gas separation at elevated pressures. J. Membr. Sci. 2014, 470, 166–177. [Google Scholar] [CrossRef]
- Bachman, J.E.; Long, J.R. Plasticization-resistant ni2(dobdc)/polyimide composite membranes for the removal of CO2 from natural gas. Energy Environ. Sci. 2016, 9, 2031–2036. [Google Scholar] [CrossRef]
- Kapantaidakis, G.C.; Kaldis, S.P.; Dabou, X.S.; Sakellaropoulos, G.P. Gas permeation through psf-pi miscible blend membranes. J. Membr. Sci. 1996, 110, 239–247. [Google Scholar] [CrossRef]
- Bos, A.; Pünt, I.; Strathmann, H.; Wessling, M. Suppression of gas separation membrane plasticization by homogeneous polymer blending. AIChE J. 2004, 47, 1088–1093. [Google Scholar] [CrossRef]
- Yong, W.F.; Chung, T.-S. Miscible blends of carboxylated polymers of intrinsic microporosity (cpim-1) and matrimid. Polymer 2015, 59, 290–297. [Google Scholar] [CrossRef]
- Yong, W.F.; Li, F.Y.; Chung, T.S.; Tong, Y.W. Molecular interaction, gas transport properties and plasticization behavior of cpim-1/torlon blend membranes. J. Membr. Sci. 2014, 462, 119–130. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Chung, T.-S. Chemical cross-linking modification of polyimide membranes for gas separation. J. Membr. Sci. 2001, 189, 231–239. [Google Scholar] [CrossRef]
- Shao, L.; Liu, L.; Cheng, S.-X.; Huang, Y.-D.; Ma, J. Comparison of diamino cross-linking in different polyimide solutions and membranes by precipitation observation and gas transport. J. Membr. Sci. 2008, 312, 174–185. [Google Scholar] [CrossRef]
- Chung, T.-S.; Chng, M.L.; Pramoda, K.P.; Xiao, Y. Pamam dendrimer-induced cross-linking modification of polyimide membranes. Langmuir 2004, 20, 2966–2969. [Google Scholar] [CrossRef]
- Xiao, Y.; Chung, T.-S.; Chng, M.L. Surface characterization, modification chemistry, and separation performance of polyimide and polyamidoamine dendrimer composite films. Langmuir 2004, 20, 8230–8238. [Google Scholar] [CrossRef]
- Shao, L.; Chung, T.-S.; Goh, S.H.; Pramoda, K.P. Transport properties of cross-linked polyimide membranes induced by different generations of diaminobutane (dab) dendrimers. J. Membr. Sci. 2004, 238, 153–163. [Google Scholar] [CrossRef]
- Zhao, H.-Y.; Cao, Y.-M.; Ding, X.-L.; Zhou, M.-Q.; Liu, J.-H.; Yuan, Q. Poly(ethylene oxide) induced cross-linking modification of matrimid membranes for selective separation of CO2. J. Membr. Sci. 2008, 320, 179–184. [Google Scholar] [CrossRef]
- Wind, J.D.; Paul, D.R.; Koros, W.J. Natural gas permeation in polyimide membranes. J. Membr. Sci. 2004, 228, 227–236. [Google Scholar] [CrossRef]
- Park, H.B.; Lee, C.H.; Sohn, J.Y.; Lee, Y.M.; Freeman, B.D.; Kim, H.J. Effect of crosslinked chain length in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties. J. Membr. Sci. 2006, 285, 432–443. [Google Scholar] [CrossRef]
- Seo, J.; Jang, W.; Lee, S.; Han, H. The stability of semi-interpenetrating polymer networks based on sulfonated polyimide and poly(ethylene glycol) diacrylate for fuel cell applications. Polym. Degrad. Stab. 2008, 93, 298–304. [Google Scholar] [CrossRef]
- Alam, S.; Kandpal, L.D.; Varma, I.K. Ethynyl-terminated imide oligomers. J. Macromol. Sci. Part C 1993, 33, 291–320. [Google Scholar] [CrossRef]
- Alaslai, N.; Ghanem, B.; Alghunaimi, F.; Litwiller, E.; Pinnau, I. Pure- and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl-diamine-based 6fda polyimides for CO2/CH4 separation. J. Membr. Sci. 2016, 505, 100–107. [Google Scholar] [CrossRef]
- Vinoba, M.; Bhagiyalakshmi, M.; Alqaheem, Y.; Alomair, A.A.; Pérez, A.; Rana, M.S. Recent progress of fillers in mixed matrix membranes for CO2 separation: A review. Sep. Purif. Technol. 2017, 188, 431–450. [Google Scholar] [CrossRef]
- Rezakazemi, M.; Ebadi Amooghin, A.; Montazer-Rahmati, M.M.; Ismail, A.F.; Matsuura, T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (mmms): An overview on current status and future directions. Progr. Polym. Sci. 2014, 39, 817–861. [Google Scholar] [CrossRef]
- Vu, D.Q.; Koros, W.J.; Miller, S.J. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. J. Membr. Sci. 2003, 211, 311–334. [Google Scholar] [CrossRef]
- Singh, A.; Koros, W.J. Significance of entropic selectivity for advanced gas separation membranes. Ind. Eng. Chem. Res. 1996, 35, 1231–1234. [Google Scholar] [CrossRef]
- Anson, M.; Marchese, J.; Garis, E.; Ochoa, N.; Pagliero, C. Abs copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation. J. Membr. Sci. 2004, 243, 19–28. [Google Scholar] [CrossRef]
- García, M.G.; Marchese, J.; Ochoa, N.A. High activated carbon loading mixed matrix membranes for gas separations. J. Mater. Sci. 2012, 47, 3064–3075. [Google Scholar] [CrossRef]
- Marchese, J.; Anson, M.; Ochoa, N.A.; Prádanos, P.; Palacio, L.; Hernández, A. Morphology and structure of abs membranes filled with two different activated carbons. Chem. Eng. Sci. 2006, 61, 5448–5454. [Google Scholar] [CrossRef]
- Rostamizadeh, M.; Rezakazemi, M.; Shahidi, K.; Mohammadi, T. Gas permeation through h2-selective mixed matrix membranes: Experimental and neural network modeling. Int. J. Hydrog. Energy 2013, 38, 1128–1135. [Google Scholar] [CrossRef]
- Adams, R.T.; Lee, J.S.; Bae, T.-H.; Ward, J.K.; Johnson, J.R.; Jones, C.W.; Nair, S.; Koros, W.J. CO2–CH4 permeation in high zeolite 4a loading mixed matrix membranes. J. Membr. Sci. 2011, 367, 197–203. [Google Scholar] [CrossRef]
- Merkel, T.C.; He, Z.; Pinnau, I.; Freeman, B.D.; Meakin, P.; Hill, A.J. Effect of nanoparticles on gas sorption and transport in poly(1-trimethylsilyl-1-propyne). Macromolecules 2003, 36, 6844–6855. [Google Scholar] [CrossRef]
- Ge, L.; Zhou, W.; Rudolph, V.; Zhu, Z. Mixed matrix membranes incorporated with size-reduced cu-btc for improved gas separation. J. Mater. Chem. A 2013, 1, 6350–6358. [Google Scholar] [CrossRef]
- He, Z.; Pinnau, I.; Morisato, A. Nanostructured poly(4-methyl-2-pentyne)/silica hybrid membranes for gas separation. Desalination 2002, 146, 11–15. [Google Scholar] [CrossRef]
- Yang, T.; Chung, T.-S. High performance zif-8/pbi nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. Int. J. Hydrog. Energy 2013, 38, 229–239. [Google Scholar] [CrossRef]
- Japip, S.; Wang, H.; Xiao, Y.; Shung Chung, T. Highly permeable zeolitic imidazolate framework (zif)-71 nano-particles enhanced polyimide membranes for gas separation. J. Membr. Sci. 2014, 467, 162–174. [Google Scholar] [CrossRef]
- Shahid, S.; Nijmeijer, K. High pressure gas separation performance of mixed-matrix polymer membranes containing mesoporous fe(btc). J. Membr. Sci. 2014, 459, 33–44. [Google Scholar] [CrossRef]
- Caro, J. Are mof membranes better in gas separation than those made of zeolites? Curr. Opin. Chem. Eng. 2011, 1, 77–83. [Google Scholar] [CrossRef]
- Matsui, S.; Ishiguro, T.; Higuchi, A.; Nakagawa, T. Effect of ultraviolet light irradiation on gas permeability in polyimide membranes. 1. Irradiation with low pressure mercury lamp on photosensitive and nonphotosensitive membranes. J. Polym. Sci. Part B Polym. Phys. 1998, 35, 2259–2269. [Google Scholar] [CrossRef]
- Matsui, S.; Nakagawa, T. Effect of ultraviolet light irradiation on gas permeability in polyimide membranes. Ii. Irradiation of membranes with high-pressure mercury lamp. J. Appl. Polym. Sci. 1998, 67, 49–60. [Google Scholar] [CrossRef]
- Hayes, R.A. EI du Pont de Nemours and Co. Polyimide Gas Separation Membranes. U.S. Patent 4,717,393, 1988. [Google Scholar]
- Kita, H.; Inada, T.; Tanaka, K.; Okamoto, K.-I. Effect of photocrosslinking on permeability and permselectivity of gases through benzophenone- containing polyimide. J. Membr. Sci. 1994, 87, 139–147. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, C.; Ding, M.; Xu, J. Gas permeability and permselectivity of photochemically crosslinked copolyimides. J. Appl. Polym. Sci. 1999, 73, 521–526. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, C.; Ding, M.; Xu, J. Effect of crosslinking distribution on gas permeability and permselectivity of crosslinked polyimides. Eur. Polym. J. 1999, 35, 1739–1741. [Google Scholar] [CrossRef]
- Kapantaidakis, G.C.; Kaldis, S.P.; Sakellaropoulos, G.P.; Chira, E.; Loppinet, B.; Floudas, G. Interrelation between phase state and gas permeation in polysulfone/polyimide blend membranes. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 2788–2798. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.; Li, P.; Chung, T.-S. Pim-1 as an organic filler to enhance the gas separation performance of ultem polyetherimide. J. Membr. Sci. 2014, 453, 614–623. [Google Scholar] [CrossRef]
Component | Composition Range (mol%) |
---|---|
CH4 | 29.98–90.12 |
C2H6 | 0.55–14.22 |
C3H8 | 0.23–12.54 |
C4H10 | 0.14–8.12 |
C5+ | 0.037–3.0 |
N2 | 0.21–26.10 |
H2S | 0.0–3.3 |
CO2 | 0.06–42.66 |
He | 0.0–1.8 |
Component | Groningen (Netherlands) | Laeq (France) | Uch (Pakistan) | Uthmaniyah (Saudi Arabia) | Ardjuna (Indonesia) |
---|---|---|---|---|---|
CH4 | 81.3 | 69 | 27.3 | 55.5 | 65.7 |
C2H6 | 2.9 | 3 | 0.7 | 18 | 8.5 |
C3H8 | 0.4 | 0.9 | 0.3 | 9.8 | 14.5 |
C4H10 | 0.1 | 0.5 | 0.3 | 4.5 | 5.1 |
C5+ | 0.1 | 0.5 | - | 1.6 | 0.8 |
N2 | 14.3 | 1.5 | 25.2 | 0.2 | 1.3 |
H2S | - | 15.3 | - | 1.5 | - |
CO2 | 0.9 | 9.3 | 46.2 | 8.9 | 4.1 |
Component | Specification |
---|---|
CO2 | <2% |
H2O | <120 ppm |
H2S | <4 ppm |
C3+ content | 950–1050 Btu/scf; dew point: <−20 °C |
total inert gases (N2, He) | <4% |
CL Method | SU-1 or BC-1 | SU-2 or BC-2 | SU-3 or BC-3 | Crosslinker or Fillers | Plasticization Pressure (atm) | Ref. |
---|---|---|---|---|---|---|
Decarboxylation CL | 6FDA | DAM | DABA | - | ~34.02 | [56] |
Decarboxylation CL | 6FDA | DAM | DABA | - | - | [57] |
Decarboxylation CL | 6FDA | CADA1 /CADA2 | BTDA /DSDA | - | 30 | [58] |
Decarboxylation CL | 6FDA | MPP | PP | - | 30.62 | [59] |
Decarboxylation CL | 6FDA | DAT | DATCA | - | 30 | [60] |
Heat at 350 °C | Matrimid | - | - | - | >39.48 | [61] |
TR | - | - | - | - | 20 (partial pressure) | [62] |
TR | 6FDA | HAB | - | - | >25 (fugacity) | [63] |
Diamino | 6FDA | durene | - | EDA | 48.99 | [64] |
Diamino | 6FDA | durene | - | CHBA | 48.99 | [65] |
Diamino | 6FDA | durene | - | PAMAM/DAB | 30 | [66] |
Diamino | 6FDA | Matrimid | - | p-xylenediamine | >32 | [67] |
Diol | 6FDA | mPD | DABA | EG | 35 | [19] |
Diol | 6FDA | 6FpDA | DABA | EG | - | [41] |
Diol | 6FDA | DAM | DABA | CHDM | - | [68] |
Diol | 6FDA | DAM | DABA | EG/CHDM | 40 | [69] |
Semi-IPN | Matrimid | - | - | Thermid FA-700 | >49.35 | [70] |
Semi-IPN | Matrimid | - | - | DCFT | >30 | [71] |
Semi-IPN | 6FDA | NDA | TMPDA | azide | 30 | [72] |
Ionic | 6FDA | durene | - | N,N′-dimethylpiperazine | 25 | [73] |
MMMs | 6FDA | durene | DABA | ZIF-8 | 30 | [74] |
MMMs | w-PS | - | - | ZIF-8 | - | [75] |
MMMs | 6FDA | durene | - | zeolite T | 19.74 | [76] |
MMMs | Matrimid | - | - | MIL-53(Al) ZIF-8 Cu3BTC2 | - | [77] |
MMMs | Matrimid 6FDA | DAT durene | DAM | Ni2(dobdc) | - | [78] |
Blending | Matrimid | PSF | - | - | 35 | [79] |
Blending | Matrimid | P84 | - | - | 14.80 | [80] |
Blending | Matrimid | cPIM-1 | - | - | 20 | [81] |
Blending | Torlon | cPIM-1 | - | - | 30 | [82] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Deng, L.; Xiang, D.; Cao, B.; Hosseini, S.S.; Li, P. Approaches to Suppress CO2-Induced Plasticization of Polyimide Membranes in Gas Separation Applications. Processes 2019, 7, 51. https://doi.org/10.3390/pr7010051
Zhang M, Deng L, Xiang D, Cao B, Hosseini SS, Li P. Approaches to Suppress CO2-Induced Plasticization of Polyimide Membranes in Gas Separation Applications. Processes. 2019; 7(1):51. https://doi.org/10.3390/pr7010051
Chicago/Turabian StyleZhang, Moli, Liming Deng, Dongxiao Xiang, Bing Cao, Seyed Saeid Hosseini, and Pei Li. 2019. "Approaches to Suppress CO2-Induced Plasticization of Polyimide Membranes in Gas Separation Applications" Processes 7, no. 1: 51. https://doi.org/10.3390/pr7010051
APA StyleZhang, M., Deng, L., Xiang, D., Cao, B., Hosseini, S. S., & Li, P. (2019). Approaches to Suppress CO2-Induced Plasticization of Polyimide Membranes in Gas Separation Applications. Processes, 7(1), 51. https://doi.org/10.3390/pr7010051